-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
46 lines (41 loc) · 1.45 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import torch.utils.data
from self_spiking_model import *
from snn_dataset import SNNDataset
data_path = './dataset'
names = 'spiking_model'
size = 100
preload = True
loadckpt = True
total = 0
correct = 0
sum_acc = 0
test_times = 20
batch_size = 10
snn = SCNN()
snn.to(device)
path = './checkpoint/ckptspiking_model.t7'
optimizer = torch.optim.Adam(snn.parameters(), lr=0.01)
checkpoint = torch.load(path)
snn.load_state_dict(checkpoint['net'])
acc = checkpoint['acc']
acc_record = checkpoint['acc_record']
epoch = checkpoint['epoch']
test_dataset = SNNDataset(data_path, size=size, train=True, preload=preload)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
for i in range(test_times):
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs = inputs.to(device)
optimizer.zero_grad()
outputs = snn(inputs)
labels_ = torch.zeros(batch_size, 11).scatter_(1, targets.view(-1, 1) - 1, 1)
_, predicted = outputs.cpu().max(1)
total += float(targets.size(0))
correct += float(predicted.eq(targets-1).sum().item())
acc = 100. * float(correct) / float(total)
sum_acc += acc
if (batch_idx % 5 == 0):
print((predicted+1).tolist())
print(targets.tolist())
print( ' Acc: %.5f' % acc)
print( '[Test %d] The Acc on %d test examples is %.5f \n\n' %(i+1,batch_size,sum_acc/((i+1)*batch_size)))