diff --git a/src/main/java/edu/harvard/dbmi/avillach/dictionary/concept/ConceptRepository.java b/src/main/java/edu/harvard/dbmi/avillach/dictionary/concept/ConceptRepository.java index 3743710..ee47341 100644 --- a/src/main/java/edu/harvard/dbmi/avillach/dictionary/concept/ConceptRepository.java +++ b/src/main/java/edu/harvard/dbmi/avillach/dictionary/concept/ConceptRepository.java @@ -49,10 +49,11 @@ public List getConcepts(Filter filter, Pageable pageable) { LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' - WHERE concept_node.concept_node_id IN + WHERE concept_node.concept_node_id IN ( + """; QueryParamPair filterQ = filterGen.generateFilterQuery(filter, pageable); - sql = sql + filterQ.query(); + sql = sql + filterQ.query() + "\n)"; MapSqlParameterSource params = filterQ.params(); return template.query(sql, params, mapper); diff --git a/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetCategoryExtractor.java b/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetCategoryExtractor.java index 7f93d89..1379075 100644 --- a/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetCategoryExtractor.java +++ b/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetCategoryExtractor.java @@ -33,7 +33,10 @@ public List extractData(ResultSet rs) throws SQLException, DataAc // group facets by category, then add them to their respective category Map> grouped = facets.stream().collect(Collectors.groupingBy(Facet::category)); return categories.entrySet().stream() - .map(e -> new FacetCategory(e.getValue(), grouped.getOrDefault(e.getKey(), List.of()))) + .map(e -> new FacetCategory( + e.getValue(), + grouped.getOrDefault(e.getKey(), List.of()).stream().sorted(Comparator.comparingInt(Facet::count).reversed()).toList() + )) .toList(); } } diff --git a/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetQueryGenerator.java b/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetQueryGenerator.java new file mode 100644 index 0000000..7abd75c --- /dev/null +++ b/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetQueryGenerator.java @@ -0,0 +1,445 @@ +package edu.harvard.dbmi.avillach.dictionary.facet; + +import edu.harvard.dbmi.avillach.dictionary.filter.Filter; +import org.springframework.jdbc.core.namedparam.MapSqlParameterSource; +import org.springframework.stereotype.Component; +import org.springframework.util.CollectionUtils; +import org.springframework.util.StringUtils; + +import java.util.HashMap; +import java.util.List; +import java.util.Map; +import java.util.stream.Collectors; +import java.util.stream.IntStream; +import java.util.stream.Stream; + +@Component +public class FacetQueryGenerator { + + public String createFacetSQLAndPopulateParams(Filter filter, MapSqlParameterSource params) { + Map> groupedFacets = (filter.facets() == null ? Stream.of() : filter.facets().stream()) + .collect(Collectors.groupingBy(Facet::category)); + if (CollectionUtils.isEmpty(filter.facets())) { + if (StringUtils.hasLength(filter.search())) { + return createNoFacetSQLWithSearch(filter.search(), params); + } else { + return createNoFacetSQLNoSearch(params); + } + } else if (groupedFacets.size() == 1) { + if (StringUtils.hasLength(filter.search())) { + return createSingleCategorySQLWithSearch(filter.facets(), filter.search(), params); + } else { + return createSingleCategorySQLNoSearch(filter.facets(), params); + } + } else { + if (StringUtils.hasLength(filter.search())) { + return createMultiCategorySQLWithSearch(groupedFacets, filter.search(), params); + } else { + return createMultiCategorySQLNoSearch(groupedFacets, params); + } + } + } + + private Map createSQLSafeCategoryKeys(List categories) { + HashMap keys = new HashMap<>(); + for (int i = 0; i < categories.size(); i++) { + keys.put(categories.get(i), "cat_" + i); + } + return keys; + } + + private String createMultiCategorySQLWithSearch(Map> facets, String search, MapSqlParameterSource params) { + Map categoryKeys = createSQLSafeCategoryKeys(facets.keySet().stream().toList()); + params.addValue("search", search); + + /* + For each category of facet present in the filter, create a query that represents all the concept IDs + associated with the selected facets in that category + */ + String conceptsQuery = "WITH " + facets.keySet().stream().map(category -> { + List selectedFacetsInCateory = facets.entrySet().stream() + .filter(e -> category.equals(e.getKey())) + .flatMap(e -> e.getValue().stream()) + .map(facet -> new String[]{facet.category(), facet.name()}) + .toList(); + params.addValue("facets_in_cat_" + categoryKeys.get(category), selectedFacetsInCateory); + params.addValue("facet_category_" + categoryKeys.get(category), category); + return """ + facet_category_%s_concepts AS ( + SELECT + DISTINCT(concept_node.concept_node_id) as concept_node_id + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = fcn.concept_node_id + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + (fc.name, facet.name) IN (:facets_in_cat_%s) + AND concept_node.searchable_fields @@ (phraseto_tsquery(:search)::text || ':*')::tsquery + AND ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) + ) + """.formatted(categoryKeys.get(category), categoryKeys.get(category)); + }).collect(Collectors.joining(",\n")); + /* + Categories with no selected facets contribute no concepts, so ignore them for now. + Now, for each category with selected facets, take all the concepts from all other categories with selections + and INTERSECT them. This creates the concepts for this category + */ + String selectedFacetsQuery = facets.keySet().stream().map(category -> { + String allConceptsForCategory = categoryKeys.values().stream() + .filter(key -> !categoryKeys.get(category).equals(key)) + .map(key -> "SELECT * FROM facet_category_" + key + "_concepts") + .collect(Collectors.joining(" INTERSECT ")); + params.addValue("", ""); + return """ + ( + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + WHERE + fcn.concept_node_id IN (%s) + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + """.formatted(allConceptsForCategory); + }) + .collect(Collectors.joining("\n\tUNION\n")); + + /* + For categories with no selected facets, take all the concepts from all facets, and use them for the counts + */ + params.addValue("all_selected_facet_categories", facets.keySet()); + String allConceptsForUnselectedCategories = categoryKeys.values().stream() + .map(key -> "SELECT * FROM facet_category_" + key + "_concepts") + .collect(Collectors.joining(" INTERSECT ")); + String unselectedFacetsQuery = """ + UNION + ( + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + WHERE + fc.name NOT IN (:all_selected_facet_categories) + AND fcn.concept_node_id IN (%s) + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + """.formatted(allConceptsForUnselectedCategories); + + return conceptsQuery + selectedFacetsQuery + unselectedFacetsQuery; + } + + private String createMultiCategorySQLNoSearch(Map> facets, MapSqlParameterSource params) { + Map categoryKeys = createSQLSafeCategoryKeys(facets.keySet().stream().toList()); + + /* + For each category of facet present in the filter, create a query that represents all the concept IDs + associated with the selected facets in that category + */ + String conceptsQuery = "WITH " + facets.keySet().stream().map(category -> { + List selectedFacetsInCateory = facets.entrySet().stream() + .filter(e -> category.equals(e.getKey())) + .flatMap(e -> e.getValue().stream()) + .map(facet -> new String[]{facet.category(), facet.name()}) + .toList(); + params.addValue("facets_in_cat_" + categoryKeys.get(category), selectedFacetsInCateory); + params.addValue("facet_category_" + categoryKeys.get(category), category); + return """ + facet_category_%s_concepts AS ( + SELECT + DISTINCT(concept_node.concept_node_id) as concept_node_id + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = fcn.concept_node_id + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + (fc.name, facet.name) IN (:facets_in_cat_%s) + AND ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) + ) + """.formatted(categoryKeys.get(category), categoryKeys.get(category)); + }).collect(Collectors.joining(",\n")); + /* + Now, for each category with selected facets, take all the concepts from all other categories with selections + and INTERSECT them. This creates the concepts for this category + */ + String selectedFacetsQuery = facets.keySet().stream().map(category -> { + params.addValue("facet_category_" + categoryKeys.get(category), category); + String allConceptsForCategory = categoryKeys.values().stream() + .filter(key -> !categoryKeys.get(category).equals(key)) + .map(key -> "SELECT * FROM facet_category_" + key + "_concepts") + .collect(Collectors.joining(" INTERSECT ")); + params.addValue("", ""); + return """ + ( + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + WHERE + fcn.concept_node_id IN (%s) + AND fc.name = :facet_category_%s + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + """.formatted(allConceptsForCategory, categoryKeys.get(category)); + }) + .collect(Collectors.joining("\n\tUNION\n")); + + /* + For categories with no selected facets, take all the concepts from all facets, and use them for the counts + */ + params.addValue("all_selected_facet_categories", facets.keySet()); + String allConceptsForUnselectedCategories = categoryKeys.values().stream() + .map(key -> "SELECT * FROM facet_category_" + key + "_concepts") + .collect(Collectors.joining(" INTERSECT ")); + String unselectedFacetsQuery = """ + UNION + ( + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + WHERE + fc.name NOT IN (:all_selected_facet_categories) + AND fcn.concept_node_id IN (%s) + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + """.formatted(allConceptsForUnselectedCategories); + + return conceptsQuery + selectedFacetsQuery + unselectedFacetsQuery; + } + + private String createSingleCategorySQLWithSearch(List facets, String search, MapSqlParameterSource params) { + params.addValue("facet_category_name", facets.getFirst().category()); + params.addValue("facets", facets.stream().map(Facet::name).toList()); + params.addValue("search", search); + // return all the facets that + // are in the matched category + // are displayable + // match a concept with search hits + // UNION + // all the facets from other categories that match concepts that + // match selected facets from this category + // match search + return """ + ( + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = fcn.concept_node_id + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + fc.name = :facet_category_name + AND concept_node.searchable_fields @@ (phraseto_tsquery(:search)::text || ':*')::tsquery + AND ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + UNION + ( + WITH matching_concepts AS ( + SELECT + DISTINCT(concept_node.concept_node_id) AS concept_node_id + FROM + facet + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = facet__concept_node.concept_node + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + fc.name = :facet_category_name + AND facet.name IN (:facets) + AND concept_node.searchable_fields @@ (phraseto_tsquery(:search)::text || ':*')::tsquery + AND ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) + ) + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN matching_concepts ON fcn.concept_node_id = matching_concepts.concept_node_id + WHERE + fc.name <> :facet_category_name + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + """; + } + + private String createSingleCategorySQLNoSearch(List facets, MapSqlParameterSource params) { + params.addValue("facet_category_name", facets.getFirst().category()); + params.addValue("facets", facets.stream().map(Facet::name).toList()); + // return all the facets in the matched category that are displayable + // UNION + // all the facets from other categories that match concepts that match selected facets from this category + return """ + ( + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = fcn.concept_node_id + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + fc.name = :facet_category_name + AND ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + UNION + ( + WITH matching_concepts AS ( + SELECT + DISTINCT(concept_node.concept_node_id) AS concept_node_id + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = fcn.concept_node_id + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + fc.name = :facet_category_name + AND facet.name IN (:facets) + AND ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) + ) + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN matching_concepts ON fcn.concept_node_id = matching_concepts.concept_node_id + WHERE + fc.name <> :facet_category_name + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + ) + """; + } + + private String createNoFacetSQLWithSearch(String search, MapSqlParameterSource params) { + // return all the facets that match concepts that + // match search + // are displayable + params.addValue("search", search); + return """ + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = fcn.concept_node_id + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + concept_node.searchable_fields @@ (phraseto_tsquery(:search)::text || ':*')::tsquery + AND ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + """; + + } + + private String createNoFacetSQLNoSearch(MapSqlParameterSource params) { + // return all the facets that match displayable concepts + // this is the easy one! + return """ + SELECT + facet.facet_id, count(*) as facet_count + FROM + facet + JOIN facet__concept_node fcn ON fcn.facet_id = facet.facet_id + JOIN facet_category fc on fc.facet_category_id = facet.facet_category_id + JOIN concept_node ON concept_node.concept_node_id = fcn.concept_node_id + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + GROUP BY + facet.facet_id + ORDER BY + facet_count DESC + """; + } +} diff --git a/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetRepository.java b/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetRepository.java index 2921dec..7283805 100644 --- a/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetRepository.java +++ b/src/main/java/edu/harvard/dbmi/avillach/dictionary/facet/FacetRepository.java @@ -1,11 +1,8 @@ package edu.harvard.dbmi.avillach.dictionary.facet; import edu.harvard.dbmi.avillach.dictionary.filter.Filter; -import edu.harvard.dbmi.avillach.dictionary.filter.FilterQueryGenerator; -import edu.harvard.dbmi.avillach.dictionary.filter.QueryParamPair; import edu.harvard.dbmi.avillach.dictionary.util.MapExtractor; import org.springframework.beans.factory.annotation.Autowired; -import org.springframework.data.domain.Pageable; import org.springframework.jdbc.core.namedparam.MapSqlParameterSource; import org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate; import org.springframework.stereotype.Repository; @@ -19,13 +16,13 @@ public class FacetRepository { private final NamedParameterJdbcTemplate template; - private final FilterQueryGenerator generator; - private final FacetMapper mapper; + private final FacetQueryGenerator generator; + @Autowired public FacetRepository( - NamedParameterJdbcTemplate template, FilterQueryGenerator generator, FacetMapper mapper + NamedParameterJdbcTemplate template, FacetQueryGenerator generator, FacetMapper mapper ) { this.template = template; this.generator = generator; @@ -33,32 +30,29 @@ public FacetRepository( } public List getFacets(Filter filter) { - QueryParamPair pair = generator.generateFilterQuery(filter, Pageable.unpaged()); + MapSqlParameterSource params = new MapSqlParameterSource(); + String innerSQL = generator.createFacetSQLAndPopulateParams(filter, params); + // return a list of facets and the number of concepts associated with them String sql = """ + WITH facet_counts_q AS ( + %s + ) SELECT facet_category.name AS category_name, parent_facet.name AS parent_name, - facet_count_q.facet_count AS facet_count, + facet_counts_q.facet_count AS facet_count, facet_category.display as category_display, facet_category.description as category_description, facet.name, facet.display, facet.description FROM facet + LEFT JOIN facet_counts_q ON facet.facet_id = facet_counts_q.facet_id LEFT JOIN facet_category ON facet_category.facet_category_id = facet.facet_category_id LEFT JOIN facet as parent_facet ON facet.parent_id = parent_facet.facet_id - INNER JOIN ( - SELECT - count(*) as facet_count, inner_facet_q.facet_id AS inner_facet_id - FROM - facet AS inner_facet_q - JOIN facet__concept_node AS inner_facet__concept_node_q ON inner_facet__concept_node_q.facet_id = inner_facet_q.facet_id - WHERE - inner_facet__concept_node_q.concept_node_id IN (%s) - GROUP BY inner_facet_q.facet_id - ) AS facet_count_q ON facet_count_q.inner_facet_id = facet.facet_id - """.formatted(pair.query()); + + """.formatted(innerSQL); - return template.query(sql, pair.params(), new FacetCategoryExtractor()); + return template.query(sql, params, new FacetCategoryExtractor()); } public Optional getFacet(String facetCategory, String facet) { diff --git a/src/main/java/edu/harvard/dbmi/avillach/dictionary/filter/FilterQueryGenerator.java b/src/main/java/edu/harvard/dbmi/avillach/dictionary/filter/FilterQueryGenerator.java index 4021a66..d6ec485 100644 --- a/src/main/java/edu/harvard/dbmi/avillach/dictionary/filter/FilterQueryGenerator.java +++ b/src/main/java/edu/harvard/dbmi/avillach/dictionary/filter/FilterQueryGenerator.java @@ -31,30 +31,27 @@ public QueryParamPair generateFilterQuery(Filter filter, Pageable pageable) { if (!CollectionUtils.isEmpty(filter.facets())) { clauses.addAll(createFacetFilter(filter.facets(), params)); } + clauses.add(createValuelessNodeFilter()); + + + String query = "(\n" + String.join("\n\tINTERSECT\n", clauses) + "\n)"; + String havingClause = ""; if (StringUtils.hasText(filter.search())) { - clauses.add(createSearchFilter(filter.search(), params)); + String searchQuery = createSearchFilter(filter.search(), params); + query = "(" + query + "\n\tUNION \n\t" + searchQuery + ")"; + havingClause = "HAVING max(rank) > 0\n"; } - clauses.add(""" - ( - SELECT - concept_node.concept_node_id, 0 as rank - FROM - concept_node - LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' - LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' - LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' - WHERE - continuous_min.value <> '' OR - continuous_max.value <> '' OR - categorical_values.value <> '' + String superQuery = """ + WITH q AS ( + %s ) - """ - ); - - - String query = "(\n" + String.join("\n\tINTERSECT\n", clauses) + "\n) ORDER BY concept_node_id\n"; + SELECT concept_node_id + FROM q + GROUP BY concept_node_id %s + ORDER BY max(rank) DESC + """.formatted(query, havingClause); if (pageable.isPaged()) { - query = query + """ + superQuery = superQuery + """ LIMIT :limit OFFSET :offset """; @@ -62,14 +59,27 @@ public QueryParamPair generateFilterQuery(Filter filter, Pageable pageable) { .addValue("offset", pageable.getOffset()); } - String superQuery = """ - WITH q AS (%s) SELECT concept_node_id FROM q GROUP BY concept_node_id ORDER BY sum(rank) DESC" - """.formatted(query); - return new QueryParamPair(superQuery, params); } + private String createValuelessNodeFilter() { + // concept nodes that have no values and no min/max should not get returned by search + return """ + SELECT + concept_node.concept_node_id, 0 as rank + FROM + concept_node + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' + WHERE + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + """; + } + private String createSearchFilter(String search, MapSqlParameterSource params) { params.addValue("search", search); return """ @@ -79,8 +89,16 @@ private String createSearchFilter(String search, MapSqlParameterSource params) { ts_rank(searchable_fields, (phraseto_tsquery(:search)::text || ':*')::tsquery) as rank FROM concept_node + LEFT JOIN concept_node_meta AS continuous_min ON concept_node.concept_node_id = continuous_min.concept_node_id AND continuous_min.KEY = 'min' + LEFT JOIN concept_node_meta AS continuous_max ON concept_node.concept_node_id = continuous_max.concept_node_id AND continuous_max.KEY = 'max' + LEFT JOIN concept_node_meta AS categorical_values ON concept_node.concept_node_id = categorical_values.concept_node_id AND categorical_values.KEY = 'values' WHERE - concept_node.searchable_fields @@ (phraseto_tsquery(:search)::text || ':*')::tsquery + concept_node.searchable_fields @@ (phraseto_tsquery(:search)::text || ':*')::tsquery AND + ( + continuous_min.value <> '' OR + continuous_max.value <> '' OR + categorical_values.value <> '' + ) ) """; } diff --git a/src/test/resources/seed.sql b/src/test/resources/seed.sql index 05ed318..ab1e635 100644 --- a/src/test/resources/seed.sql +++ b/src/test/resources/seed.sql @@ -16,6 +16,12 @@ SET xmloption = content; SET client_min_messages = warning; SET row_security = off; +-- +-- Name: dict; Type: SCHEMA; Schema: -; Owner: picsure +-- + +CREATE SCHEMA dict; + -- -- Name: pg_trgm; Type: EXTENSION; Schema: -; Owner: - -- @@ -35,7 +41,7 @@ SET default_tablespace = ''; SET default_table_access_method = heap; -- --- Name: concept_node; Type: TABLE; Schema: public; Owner: picsure +-- Name: concept_node; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.concept_node ( @@ -45,12 +51,12 @@ CREATE TABLE public.concept_node ( display character varying(512) NOT NULL, concept_type character varying(32) DEFAULT 'Interior'::character varying NOT NULL, concept_path character varying(10000) DEFAULT 'INVALID'::character varying NOT NULL, - parent_id integer + parent_id integer, + searchable_fields tsvector ); - -- --- Name: concept_node_concept_node_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: concept_node_concept_node_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.concept_node ALTER COLUMN concept_node_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -64,7 +70,7 @@ ALTER TABLE public.concept_node ALTER COLUMN concept_node_id ADD GENERATED ALWAY -- --- Name: concept_node_meta; Type: TABLE; Schema: public; Owner: picsure +-- Name: concept_node_meta; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.concept_node_meta ( @@ -74,9 +80,8 @@ CREATE TABLE public.concept_node_meta ( value text NOT NULL ); - -- --- Name: concept_node_meta_concept_node_meta_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: concept_node_meta_concept_node_meta_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.concept_node_meta ALTER COLUMN concept_node_meta_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -90,7 +95,7 @@ ALTER TABLE public.concept_node_meta ALTER COLUMN concept_node_meta_id ADD GENER -- --- Name: consent; Type: TABLE; Schema: public; Owner: picsure +-- Name: consent; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.consent ( @@ -101,9 +106,8 @@ CREATE TABLE public.consent ( authz character varying(512) NOT NULL ); - -- --- Name: consent_consent_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: consent_consent_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.consent ALTER COLUMN consent_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -117,7 +121,7 @@ ALTER TABLE public.consent ALTER COLUMN consent_id ADD GENERATED ALWAYS AS IDENT -- --- Name: dataset; Type: TABLE; Schema: public; Owner: picsure +-- Name: dataset; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.dataset ( @@ -128,9 +132,8 @@ CREATE TABLE public.dataset ( description text DEFAULT ''::text ); - -- --- Name: dataset_dataset_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: dataset_dataset_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.dataset ALTER COLUMN dataset_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -144,7 +147,7 @@ ALTER TABLE public.dataset ALTER COLUMN dataset_id ADD GENERATED ALWAYS AS IDENT -- --- Name: dataset_meta; Type: TABLE; Schema: public; Owner: picsure +-- Name: dataset_meta; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.dataset_meta ( @@ -154,9 +157,8 @@ CREATE TABLE public.dataset_meta ( value text NOT NULL ); - -- --- Name: dataset_meta_dataset_meta_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: dataset_meta_dataset_meta_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.dataset_meta ALTER COLUMN dataset_meta_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -170,7 +172,7 @@ ALTER TABLE public.dataset_meta ALTER COLUMN dataset_meta_id ADD GENERATED ALWAY -- --- Name: facet; Type: TABLE; Schema: public; Owner: picsure +-- Name: facet; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.facet ( @@ -182,9 +184,8 @@ CREATE TABLE public.facet ( parent_id integer ); - -- --- Name: facet__concept_node; Type: TABLE; Schema: public; Owner: picsure +-- Name: facet__concept_node; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.facet__concept_node ( @@ -193,9 +194,8 @@ CREATE TABLE public.facet__concept_node ( concept_node_id integer NOT NULL ); - -- --- Name: facet__concept_node_facet__concept_node_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: facet__concept_node_facet__concept_node_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.facet__concept_node ALTER COLUMN facet__concept_node_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -209,7 +209,7 @@ ALTER TABLE public.facet__concept_node ALTER COLUMN facet__concept_node_id ADD G -- --- Name: facet_category; Type: TABLE; Schema: public; Owner: picsure +-- Name: facet_category; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.facet_category ( @@ -219,9 +219,8 @@ CREATE TABLE public.facet_category ( description text DEFAULT ''::text ); - -- --- Name: facet_category_facet_category_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: facet_category_facet_category_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.facet_category ALTER COLUMN facet_category_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -235,7 +234,7 @@ ALTER TABLE public.facet_category ALTER COLUMN facet_category_id ADD GENERATED A -- --- Name: facet_category_meta; Type: TABLE; Schema: public; Owner: picsure +-- Name: facet_category_meta; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.facet_category_meta ( @@ -245,9 +244,8 @@ CREATE TABLE public.facet_category_meta ( value text NOT NULL ); - -- --- Name: facet_category_meta_facet_category_meta_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: facet_category_meta_facet_category_meta_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.facet_category_meta ALTER COLUMN facet_category_meta_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -261,7 +259,7 @@ ALTER TABLE public.facet_category_meta ALTER COLUMN facet_category_meta_id ADD G -- --- Name: facet_facet_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: facet_facet_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.facet ALTER COLUMN facet_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -275,7 +273,7 @@ ALTER TABLE public.facet ALTER COLUMN facet_id ADD GENERATED ALWAYS AS IDENTITY -- --- Name: facet_meta; Type: TABLE; Schema: public; Owner: picsure +-- Name: facet_meta; Type: TABLE; Schema: dict; Owner: picsure -- CREATE TABLE public.facet_meta ( @@ -285,9 +283,8 @@ CREATE TABLE public.facet_meta ( value text NOT NULL ); - -- --- Name: facet_meta_facet_meta_id_seq; Type: SEQUENCE; Schema: public; Owner: picsure +-- Name: facet_meta_facet_meta_id_seq; Type: SEQUENCE; Schema: dict; Owner: picsure -- ALTER TABLE public.facet_meta ALTER COLUMN facet_meta_id ADD GENERATED ALWAYS AS IDENTITY ( @@ -301,147 +298,435 @@ ALTER TABLE public.facet_meta ALTER COLUMN facet_meta_id ADD GENERATED ALWAYS AS -- --- Data for Name: concept_node; Type: TABLE DATA; Schema: public; Owner: picsure --- - -COPY public.concept_node (concept_node_id, dataset_id, name, display, concept_type, concept_path, parent_id) FROM stdin; -44 1 a A Categorical \\\\\\\\A\\\\\\\\ \N -51 1 b B Categorical \\\\\\\\B\\\\\\\\ \N -45 1 1 1 Categorical \\\\\\\\A\\\\\\\\1\\\\\\\\ 44 -46 1 0 0 Categorical \\\\\\\\A\\\\\\\\0\\\\\\\\ 44 -52 1 0 0 Categorical \\\\\\\\B\\\\\\\\0\\\\\\\\ 51 -53 1 2 2 Categorical \\\\\\\\B\\\\\\\\2\\\\\\\\ 51 -49 1 x X Continuous \\\\\\\\A\\\\\\\\1\\\\\\\\X\\\\\\\\ 45 -50 1 z Z Continuous \\\\\\\\A\\\\\\\\1\\\\\\\\Z\\\\\\\\ 45 -54 1 x X Categorical \\\\\\\\B\\\\\\\\0\\\\\\\\X\\\\\\\\ 52 -55 1 y Y Categorical \\\\\\\\B\\\\\\\\0\\\\\\\\Y\\\\\\\\ 52 -56 1 z Z Categorical \\\\\\\\B\\\\\\\\0\\\\\\\\Z\\\\\\\\ 52 -57 1 y Y Continuous \\\\\\\\B\\\\\\\\2\\\\\\\\Y\\\\\\\\ 53 -58 1 z Z Continuous \\\\\\\\B\\\\\\\\2\\\\\\\\Z\\\\\\\\ 53 -47 1 x X Categorical \\\\\\\\A\\\\\\\\0\\\\\\\\X\\\\\\\\ 46 -48 1 y Y Categorical \\\\\\\\A\\\\\\\\0\\\\\\\\Y\\\\\\\\ 46 +-- Data for Name: concept_node; Type: TABLE DATA; Schema: dict; Owner: picsure +-- + +COPY public.concept_node (concept_node_id, dataset_id, name, display, concept_type, concept_path, parent_id, searchable_fields) FROM stdin; +209 14 categorical \\Bio Specimens\\ \N 'bio':1 'specimen':2 +180 14 categorical \\ACT Diagnosis ICD-10\\ \N '-10':4 'act':1 'diagnosi':2 'icd':3 +191 14 categorical \\ACT Lab Test Results\\ \N 'act':1 'lab':2 'result':4 'test':3 +197 14 categorical \\ACT Medications\\ \N 'act':1 'medic':2 +202 14 categorical \\ACT Procedures CPT\\ \N 'act':1 'cpt':3 'procedur':2 +215 14 categorical \\Consent Type\\ \N 'consent':1 'type':2 +219 15 categorical \\NHANES\\ \N 'nhane':1 +226 19 categorical \\phs000007\\ \N 'phs000007':1 +236 18 categorical \\phs000284\\ \N 'phs000284':1 +243 20 categorical \\phs002385\\ \N 'phs002385':1 +247 17 \\phs002715\\ \N 'phs002715':1 +250 23 categorical \\phs002808\\ \N 'phs002808':1 +259 21 categorical \\phs003463\\ \N 'phs003463':1 +262 24 categorical \\phs003566\\ \N 'phs003566':1 +265 14 categorical \\Variant Data Type\\ \N 'data':2 'type':3 'variant':1 +181 14 categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\ 180 '-10':4 'act':1 'diagnosi':2 'diseas':8 'icd':3 'j00':6,14 'j00-j99':5,13 'j99':7,15 'respiratori':11 'system':12 +182 14 categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\ 181 '-10':4 'act':1 'chronic':19 'diagnosi':2 'diseas':8,22 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j47':18,25 'j99':7,15 'lower':20 'respiratori':11,21 'system':12 +183 14 categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\ 182 '-10':4 'act':1 'asthma':27 'chronic':19 'diagnosi':2 'diseas':8,22 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j47':18,25 'j99':7,15 'lower':20 'respiratori':11,21 'system':12 +184 14 categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\J45.5 Severe persistent asthma\\ 183 '-10':4 'act':1 'asthma':27,31 'chronic':19 'diagnosi':2 'diseas':8,22 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j45.5':28 'j47':18,25 'j99':7,15 'lower':20 'persist':30 'respiratori':11,21 'sever':29 'system':12 +223 15 categorical \\NHANES\\questionnaire\\ 219 'nhane':1 'questionnair':2 +263 24 Visit01 Visit01 categorical \\phs003566\\Visit01\\ 262 'phs003566':1 'visit01':2,3 +185 14 J45.51 Severe persistent asthma with (acute) exacerbation J45.51 Severe persistent asthma with (acute) exacerbation categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\J45.5 Severe persistent asthma\\J45.51 Severe persistent asthma with (acute) exacerbation\\ 184 '-10':4 'act':1 'acut':37,44 'asthma':27,31,35,42 'chronic':19 'diagnosi':2 'diseas':8,22 'exacerb':38,45 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j45.5':28 'j45.51':32,39 'j47':18,25 'j99':7,15 'lower':20 'persist':30,34,41 'respiratori':11,21 'sever':29,33,40 'system':12 +186 14 J45.52 Severe persistent asthma with status asthmaticus J45.52 Severe persistent asthma with status asthmaticus categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\J45.5 Severe persistent asthma\\J45.52 Severe persistent asthma with status asthmaticus\\ 184 '-10':4 'act':1 'allerg':50,57,72,81 'approxim':46 'asthma':27,31,35,42,51,58,64,70,79,89 'asthmaticus':38,45,54,61,67,76,85,92 'chronic':19 'diagnosi':2 'diseas':8,22 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j45.5':28 'j45.52':32,39,86 'j47':18,25 'j99':7,15 'lower':20 'persist':30,34,41,49,56,63,69,78,88 'respiratori':11,21 'rhiniti':73,82 'sever':29,33,40,48,55,62,68,77,87 'status':37,44,53,60,66,75,84,91 'synonym':47 'system':12 +187 14 categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\J45.9 Other and unspecified asthma\\ 183 '-10':4 'act':1 'asthma':27,32 'chronic':19 'diagnosi':2 'diseas':8,22 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j45.9':28 'j47':18,25 'j99':7,15 'lower':20 'respiratori':11,21 'system':12 'unspecifi':31 +188 14 categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\J45.9 Other and unspecified asthma\\J45.90 Unspecified asthma\\ 187 '-10':4 'act':1 'asthma':27,32,35 'chronic':19 'diagnosi':2 'diseas':8,22 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j45.9':28 'j45.90':33 'j47':18,25 'j99':7,15 'lower':20 'respiratori':11,21 'system':12 'unspecifi':31,34 +189 14 J45.901 Unspecified asthma with (acute) exacerbation J45.901 Unspecified asthma with (acute) exacerbation categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\J45.9 Other and unspecified asthma\\J45.90 Unspecified asthma\\J45.901 Unspecified asthma with (acute) exacerbation\\ 188 '-10':4 'act':1 'acut':40,46,50,60,64,74,83 'allerg':55,57,71 'approxim':48 'asthma':27,32,35,38,44,53,58,62,69,78,81 'chronic':19 'diagnosi':2 'diseas':8,22 'exacerb':41,47,51,61,65,75,76,84 'flare':67 'flare-up':66 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j45.9':28 'j45.90':33 'j45.901':36,42,79 'j47':18,25 'j99':7,15 'lower':20 'respiratori':11,21 'rhiniti':56,72 'synonym':49 'system':12 'unspecifi':31,34,37,43,80 +231 19 categorical \\phs000007\\pht000022\\phv00004260\\ 230 'phs000007':1 'pht000022':2 'phv00004260':3 +232 19 phv00004260 FM219 Continuous \\phs000007\\pht000022\\phv00004260\\FM219\\ 231 '0':17 '1':18 '12':6 'caffein':10 'cola':11 'cup':8 'day':12 'fm219':4,5 'oz':7 'phs000007':1 'pht000022':2 'phv00004260':3 'yes':16 +190 14 J45.902 Unspecified asthma with status asthmaticus J45.902 Unspecified asthma with status asthmaticus categorical \\ACT Diagnosis ICD-10\\J00-J99 Diseases of the respiratory system (J00-J99)\\J40-J47 Chronic lower respiratory diseases (J40-J47)\\J45 Asthma\\J45.9 Other and unspecified asthma\\J45.90 Unspecified asthma\\J45.902 Unspecified asthma with status asthmaticus\\ 188 '-10':4 'act':1 'allerg':52,59,72 'approxim':48 'asthma':27,32,35,38,44,50,57,64,67,71,77,83 'asthmaticus':41,47,56,63,70,75,80,86 'chronic':19 'diagnosi':2 'diseas':8,22 'extrins':76 'icd':3 'j00':6,14 'j00-j99':5,13 'j40':17,24 'j40-j47':16,23 'j45':26 'j45.9':28 'j45.90':33 'j45.902':36,42,81 'j47':18,25 'j99':7,15 'lower':20 'respiratori':11,21 'rhiniti':53,60 'status':40,46,55,62,66,69,74,79,85 'synonym':49 'system':12 'unspecifi':31,34,37,43,82 +192 14 categorical \\ACT Lab Test Results\\Virus\\ 191 'act':1 'lab':2 'result':4 'test':3 'virus':5 +193 14 categorical \\ACT Lab Test Results\\Virus\\Hepatitis B virus\\ 192 'act':1 'b':7 'hepat':6 'lab':2 'result':4 'test':3 'virus':5,8 +194 14 categorical \\ACT Lab Test Results\\Virus\\Hepatitis B virus\\Hepatitis B virus core Ab\\ 193 'ab':13 'act':1 'b':7,10 'core':12 'hepat':6,9 'lab':2 'result':4 'test':3 'virus':5,8,11 +195 14 Hepatitis B virus core Ab Hepatitis B virus core Ab categorical \\ACT Lab Test Results\\Virus\\Hepatitis B virus\\Hepatitis B virus core Ab\\Hepatitis B virus core Ab [Presence] in Serum by Immunoassay\\ 194 'ab':13,18,28 'act':1 'b':7,10,15,25 'core':12,17,27 'hepat':6,9,14,24 'immunoassay':23 'lab':2 'presenc':19 'result':4 'serum':21 'test':3 'virus':5,8,11,16,26 +196 14 Hepatitis B virus core Ab Hepatitis B virus core Ab categorical \\ACT Lab Test Results\\Virus\\Hepatitis B virus\\Hepatitis B virus core Ab\\Hepatitis B virus core Ab [Presence] in Serum\\ 194 'ab':13,18,26 'act':1 'b':7,10,15,23 'core':12,17,25 'hepat':6,9,14,22 'lab':2 'presenc':19 'result':4 'serum':21 'test':3 'virus':5,8,11,16,24 +198 14 categorical \\ACT Medications\\C [Preparations]\\ 197 'act':1 'c':3 'medic':2 'prepar':4 +199 14 categorical \\ACT Medications\\C [Preparations]\\Cefpodoxime\\ 198 'act':1 'c':3 'cefpodoxim':5 'medic':2 'prepar':4 +200 14 categorical \\ACT Medications\\C [Preparations]\\Cefpodoxime\\Cefpodoxime Oral Tablet\\ 199 'act':1 'c':3 'cefpodoxim':5,6 'medic':2 'oral':7 'prepar':4 'tablet':8 +201 14 Cefpodoxime Oral Tablet Cefpodoxime Oral Tablet categorical \\ACT Medications\\C [Preparations]\\Cefpodoxime\\Cefpodoxime Oral Tablet\\Cefpodoxime 100 Mg Oral Tablet\\ 200 '100':10 'act':1 'c':3 'cefpodoxim':5,6,9,14 'medic':2 'mg':11 'oral':7,12,15 'prepar':4 'tablet':8,13,16 +203 14 categorical \\ACT Procedures CPT\\Medicine Services and Procedures\\ 202 'act':1 'cpt':3 'medicin':4 'procedur':2,7 'servic':5 +204 14 categorical \\ACT Procedures CPT\\Medicine Services and Procedures\\Neurology and Neuromuscular Procedures\\ 203 'act':1 'cpt':3 'medicin':4 'neurolog':8 'neuromuscular':10 'procedur':2,7,11 'servic':5 +241 18 phv00122507 age Continuous \\phs000284\\pht001902\\phv00122507\\age\\ 240 '0':11 '21':12 'age':4,5,6 'phs000284':1 'pht001902':2 'phv00122507':3 'yes':10 +205 14 categorical \\ACT Procedures CPT\\Medicine Services and Procedures\\Neurology and Neuromuscular Procedures\\Special Eeg Testing Procedures\\ 204 'act':1 'cpt':3 'eeg':13 'medicin':4 'neurolog':8 'neuromuscular':10 'procedur':2,7,11,15 'servic':5 'special':12 'test':14 +206 14 Special Eeg Testing Procedures Special Eeg Testing Procedures categorical \\ACT Procedures CPT\\Medicine Services and Procedures\\Neurology and Neuromuscular Procedures\\Special Eeg Testing Procedures\\Pharmacological or physical activation requiring physician or other qualified health care professional attendance during EEG recording of activation phase (eg, thiopental activation test)\\ 205 'act':1 'activ':19,33,37 'attend':28 'care':26 'cpt':3 'eeg':13,30,40 'eg':35 'health':25 'medicin':4 'neurolog':8 'neuromuscular':10 'pharmacolog':16 'phase':34 'physic':18 'physician':21 'procedur':2,7,11,15,42 'profession':27 'qualifi':24 'record':31 'requir':20 'servic':5 'special':12,39 'test':14,38,41 'thiopent':36 +207 14 Special Eeg Testing Procedures Special Eeg Testing Procedures categorical \\ACT Procedures CPT\\Medicine Services and Procedures\\Neurology and Neuromuscular Procedures\\Special Eeg Testing Procedures\\Wada activation test for hemispheric function, including electroencephalographic (EEG) monitoring\\ 205 'act':1 'activ':17 'cpt':3 'eeg':13,24,27 'electroencephalograph':23 'function':21 'hemispher':20 'includ':22 'medicin':4 'monitor':25 'neurolog':8 'neuromuscular':10 'procedur':2,7,11,15,29 'servic':5 'special':12,26 'test':14,18,28 'wada':16 +208 14 Medicine Services and Procedures Medicine Services and Procedures categorical \\ACT Procedures CPT\\Medicine Services and Procedures\\Non-Face-To-Face Nonphysician Services\\ 203 'act':1 'cpt':3 'face':10,12 'medicin':4,15 'non':9 'non-face-to-fac':8 'nonphysician':13 'procedur':2,7,18 'servic':5,14,16 +210 14 categorical \\Bio Specimens\\HumanFluid\\ 209 'bio':1 'humanfluid':3 'specimen':2 +211 14 SPECIMENS:HF.BLD.000 Quantity SPECIMENS:HF.BLD.000 Quantity Continuous \\Bio Specimens\\HumanFluid\\Blood (Whole)\\SPECIMENS:HF.BLD.000 Quantity\\ 210 '000':8,12 '100':18 '500':19 'bio':1 'biosampl':15,17 'blood':4 'gic':14 'hf.bld':7,11 'humanfluid':3 'quantiti':9,13 'specimen':2,6,10 'whole':5 'wholeblood':16 +212 14 HumanTissue HumanTissue categorical \\Bio Specimens\\HumanTissue\\ 212 'bio':1 'humantissu':3,4 'specimen':2 'true':5 +213 14 categorical \\Bio Specimens\\NucleicAcid\\ 209 'bio':1 'nucleicacid':3 'specimen':2 +214 14 DNA DNA categorical \\Bio Specimens\\NucleicAcid\\DNA\\ 213 'bio':1 'dna':4,5 'nucleicacid':3 'specimen':2 'true':6 +216 14 Consent Type Consent Type categorical \\Consent Type\\GIC Consent\\ 215 '2':15 'align':10 'consent':1,4,5,18 'gic':3,17 'irb':13 'patient':8 'phase':14 'protocol':16 'type':2,6 +217 14 Consent Type Consent Type categorical \\Consent Type\\GIC Legacy Consent\\ 215 '2':18 'align':13 'consent':1,5,6,22 'gic':3,20 'irb':16 'legaci':4,21 'patient':9 'phase':17 'protocol':19 'type':2,7 +218 14 Consent Type Consent Type categorical \\Consent Type\\Waiver of Consent\\ 215 'consent':1,5,6,12,15 'patient':8 'type':2,7 'waiv':11 'waiver':3,13 +220 15 categorical \\NHANES\\examination\\ 219 'examin':2 'nhane':1 +221 15 physical fitness physical fitness categorical \\NHANES\\examination\\physical fitness\\ 220 'examin':2 'fit':4,6 'nhane':1 'physic':3,5 +222 15 CVDS1HR Stage 1 heart rate (per min) Continuous \\NHANES\\examination\\physical fitness\\Stage 1 heart rate (per min) 221 '0':63 '1':6,12,50 '150':64 'autom':23 'automat':44 'blood':24 'captur':29,43 'comput':33 'direct':30 'end':47 'enter':55 'event':37 'examin':2 'fit':4 'heart':7,13,17,39,60 'manual':54 'min':10,16 'monitor':27,62 'nhane':1 'per':9,15 'physic':3 'pressure/heart':25 'rate':8,14,18,26,40,61 'read':57 'stage':5,11,49 'system':34 'taken':20 'technician':52 'would':53 +224 15 disease disease categorical \\NHANES\\questionnaire\\disease\\ 223 'diseas':3,4 'nhane':1 'questionnair':2 +225 15 MCQ300a Any family with heart attack or angina? categorical \\NHANES\\questionnaire\\disease\\Any family with heart attack or angina?\\ 224 '50':61 'age':59 'an-gi-na':53 'angina':10,17,52 'attack':8,15,50 'biolog':28 'blood':31 'brother':38 'close':27 'deceas':21 'diseas':3 'ever':39 'famili':5,12 'father':34 'gi':55 'health':43 'heart':7,14,49 'includ':18,33 'live':19 'mother':35 'na':56 'nhane':1 'profession':44 'questionnair':2 'relat':32 's/your':26 'sister':36 'sp':25 'told':40 'yes':62 +227 19 pht000021 ex0_19s categorical \\phs000007\\pht000021\\ 226 '19':10 '19s':4 'clinic':5 'cohort':8 'ex0':3 'exam':6,9 'origin':7 'phs000007':1 'pht000021':2 +228 19 categorical \\phs000007\\pht000021\\phv00003844\\ 227 'phs000007':1 'pht000021':2 'phv00003844':3 +229 19 phv00003844 FL200 Continuous \\phs000007\\pht000021\\phv00003844\\FL200\\ 228 '0':17 '12':6 '3':18 'caffein':10 'cola':11 'cup':8 'day':12 'fl200':4,5 'oz':7 'phs000007':1 'pht000021':2 'phv00003844':3 'yes':16 +230 19 pht000022 ex0_20s categorical \\phs000007\\pht000022\\ 226 '20':10 '20s':4 'clinic':5 'cohort':8 'ex0':3 'exam':6,9 'origin':7 'phs000007':1 'pht000022':2 +233 19 pht000033 ex1_4s categorical \\phs000007\\pht000033\\ 226 '4':10 '4s':4 'clinic':5 'cohort':8 'ex1':3 'exam':6,9 'offspr':7 'phs000007':1 'pht000033':2 +234 19 categorical \\phs000007\\pht000033\\phv00008849\\ 233 'phs000007':1 'pht000033':2 'phv00008849':3 +235 19 phv00008849 D080 Continuous \\phs000007\\pht000033\\phv00008849\\D080\\ 234 '0':16 '12':6 '5':17 'caffein':10 'cola/day':11 'cup':8 'd080':4,5 'oz':7 'phs000007':1 'pht000033':2 'phv00008849':3 'yes':15 +237 18 pht001902 CFS_CARe_Subject_Phenotypes categorical \\phs000284\\pht001902\\ 236 'adults/children':16 'care':4,7 'cfs':3,8 'cleveland':9 'famili':10 'health':14 'phenotyp':6,15 'phs000284':1 'pht001902':2 'sleep':12 'studi':11 'subject':5 +238 18 categorical \\phs000284\\pht001902\\phv00122360\\ 237 'phs000284':1 'pht001902':2 'phv00122360':3 +239 18 phv00122360 RECOCC categorical \\phs000284\\pht001902\\phv00122360\\RECOCC\\ 238 'account':10 'occup':8 'phs000284':1 'pht001902':2 'phv00122360':3 'recent':7 'recocc':4,5 +240 18 categorical \\phs000284\\pht001902\\phv00122507\\ 237 'phs000284':1 'pht001902':2 'phv00122507':3 +242 18 phv00122622 PERART Continuous \\phs000284\\pht001902\\phv00122622\\PERART\\ 242 '0':14 '30':15 'artifact':9 'perart':4,5 'phs000284':1 'pht001902':2 'phv00122622':3 'time':7 'yes':13 +244 20 AGE AGE continuous \\phs002385\\AGE\\ 243 '42':9 'age':2,3,5 'hct':16 'patient':4 'phs002385':1 'pre':15 'pre-hct':14 'transplant':7 'year':8 'yes':13,17 +245 20 RACEG RACEG categorical \\phs002385\\RACEG\\ 243 'phs002385':1 'race':4 'raceg':2,3 'regroup':5 'report':7 'yes':11 +246 20 TXNUM TXNUM continuous \\phs002385\\TXNUM\\ 243 '1':6 'hct':13 'number':5 'phs002385':1 'pre':12 'pre-hct':11 'transplant':4 'txnum':2,3 'yes':7,14 +248 17 AGE_CATEGORY age categorical \\phs002715\\age\\ 247 '21':8 'age':2,3,6 'categori':7 'particip':4 'phs002715':1 'yes':12 +249 17 nsrr_ever_smoker nsrr_ever_smoker categorical \\phs002715\\nsrr_ever_smoker\\ 247 'ever':3,6 'nsrr':2,5 'phs002715':1 'smoker':4,7,8 'status':9 'yes':10,14 +251 23 categorical \\phs002808\\1 Administrative Data Forms\\ 250 '1':2 'administr':3 'data':4 'form':5 'phs002808':1 +252 23 \\phs002808\\1 Administrative Data Forms\\AFC No Future Contact\\ 1 Administrative Data Forms / AFC No Future Contact categorical \\phs002808\\1 Administrative Data Forms\\AFC No Future Contact\\ 251 '1':2,10 'administr':3,11 'afc':6,14 'contact':9,17 'data':4,12 'form':5,13 'futur':8,16 'phs002808':1 +253 23 AFCA03A AFCA03A categorical \\phs002808\\1 Administrative Data Forms\\AFC No Future Contact\\AFCA03A\\ 252 '1':2 'administr':3 'afc':6,12 'afca03a':10,11 'consent':19 'contact':9,17,23 'data':4 'end':15 'form':5 'futur':8,16,21 'numom2b':22 'phs002808':1 'reason':13 'withdrew':18 'yes':27 +254 23 \\phs002808\\1 Administrative Data Forms\\H01 Heart Health Study Contact Information\\ 1 Administrative Data Forms / H01 Heart Health Study Contact Information categorical \\phs002808\\1 Administrative Data Forms\\H01 Heart Health Study Contact Information\\ 251 '1':2,12 'administr':3,13 'contact':10,20 'data':4,14 'form':5,15 'h01':6,16 'health':8,18 'heart':7,17 'inform':11,21 'phs002808':1 'studi':9,19 +255 23 V5AD09A5_SP V5AD09A5_SP categorical \\phs002808\\1 Administrative Data Forms\\H01 Heart Health Study Contact Information\\V5AD09A5_SP\\ 254 '1':2 'administr':3 'care':27 'contact':10 'data':4 'doctor':24 'field':39 'follow':20 'form':5 'h01':6 'health':8,26 'heart':7 'infect':40 'inform':11 'kidney':36 'phs002808':1 'problem':21 'profession':28 'sp':13,15 'specifi':38 'studi':9 'told':29 'v5a':16 'v5ad09a5':12,14 'yes':42 +256 23 categorical \\phs002808\\3a Visit Forms\\ 250 '3a':2 'form':4 'phs002808':1 'visit':3 +257 23 \\phs002808\\3a Visit Forms\\V5A Maternal Interview 2-7 Years Postpartum\\T01H01B\\ 3a Visit Forms / V5A Maternal Interview 2-7 Years Postpartum categorical \\phs002808\\3a Visit Forms\\V5A Maternal Interview 2-7 Years Postpartum\\ 256 '-7':9,19 '2':8,18 '3a':2,12 'form':4,14 'interview':7,17 'matern':6,16 'phs002808':1 'postpartum':11,21 'v5a':5,15 'visit':3,13 'year':10,20 +258 23 T01H01B T01H01B categorical \\phs002808\\3a Visit Forms\\V5A Maternal Interview 2-7 Years Postpartum\\T01H01B\\ 257 '-7':9 '2':8 '3a':2 'blood':23 'current':17 'form':4 'high':22 'interview':7 'matern':6 'medic':19 'phs002808':1 'postpartum':11 'prescrib':18 'pressur':24 't01':14 't01h01b':12,13 'v5a':5 'visit':3 'year':10 'yes':25,28 +260 21 enrollment_alcohol_and_tobacco alcohol_and_tobacco categorical \\phs003463\\alcohol_and_tobacco_enrollment\\ 259 'adult':25 'alcohol':2,6,15 'answers.tsv':20 'associ':10 'enrol':5,14 'file':21 'pair':13 'phs003463':1 'recov':24 'studi':26 'tobacco':4,8,17 'variabl':9 'visit/form':12 +261 21 alco_tobaccopre_enrollment_alcohol_and_tobacco alco_tobaccopre_enrollment_alcohol_and_tobacco categorical \\phs003463\\alcohol_and_tobacco_enrollment\\alco_tobaccopre_enrollment_alcohol_and_tobacco\\ 260 'alco':6,12 'alcohol':2,9,15 'enrol':5,8,14 'phs003463':1 'tobacco':4,11,17 'tobaccopr':7,13 +264 24 visit01_original_ecgsamplebase VISIT01_ORIGINAL_ECGSAMPLEBASE continuous \\phs003566\\Visit01\\VISIT01_ORIGINAL_ECGSAMPLEBASE\\ 263 'ecgsamplebas':5,8 'origin':4,7 'phs003566':1 'visit01':2,3,6 +266 14 Genotype array Genotype array categorical \\Variant Data Type\\Genotype array\\ 265 'array':5,7,9 'data':2 'genotyp':4,6,8 'true':10 'type':3 'variant':1 +267 14 Low coverage WGS Low coverage WGS categorical \\Variant Data Type\\Low coverage WGS\\ 265 'coverag':5,8,11 'data':2 'low':4,7,10 'true':13 'type':3 'variant':1 'wgs':6,9,12 +268 14 WES WES categorical \\Variant Data Type\\WES\\ 265 'data':2 'exom':7 'sequenc':8 'true':9 'type':3 'variant':1 'wes':4,5 'whole':6 +269 14 WGS WGS categorical \\Variant Data Type\\WGS\\ 265 'data':2 'genom':7 'sequenc':8 'true':9 'type':3 'variant':1 'wgs':4,5 'whole':6 \. -- --- Data for Name: concept_node_meta; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: concept_node_meta; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.concept_node_meta (concept_node_meta_id, concept_node_id, key, value) FROM stdin; -62 49 MIN 0 -63 50 MIN 0 -64 57 MIN 0 -65 58 MIN 0 -66 49 MAX 0 -67 50 MAX 0 -68 57 MAX 0 -69 58 MAX 0 -70 44 VALUES 0,1 -71 45 VALUES X,Z -72 46 VALUES X,Y -73 47 VALUES foo,bar -74 48 VALUES foo,bar,baz -75 51 VALUES 0,2 -76 52 VALUES X,Y,Z -77 53 VALUES Y,Z -78 54 VALUES bar,baz -79 55 VALUES bar,baz,qux -80 56 VALUES foo,bar,baz,qux -81 54 STIGMATIZING true -82 55 STIGMATIZING true -83 56 STIGMATIZING true +19 186 description Approximate Synonyms:\nSevere persistent allergic asthma in status asthmaticus\nSevere persistent allergic asthma with status asthmaticus\nSevere persistent asthma in status asthmaticus\nSevere persistent asthma with allergic rhinitis in status asthmaticus\nSevere persistent asthma with allergic rhinitis with status asthmaticus +20 186 values J45.52 Severe persistent asthma with status asthmaticus +21 189 description Approximate Synonyms:\nAcute exacerbation of asthma with allergic rhinitis\nAllergic asthma with acute exacerbation\nAsthma, with acute exacerbation (flare-up)\nAsthma, with allergic rhinitis with acute exacerbation\nExacerbation of asthma +22 189 values J45.901 Unspecified asthma with (acute) exacerbation +23 190 description Approximate Synonyms:\nAsthma with allergic rhinitis in status asthmaticus\nAsthma with allergic rhinitis with status asthmaticus\nAsthma with status\nAsthma with status asthmaticus\nAsthma, allergic with status asthmaticus\nExtrinsic asthma with status asthmaticus +24 190 values J45.902 Unspecified asthma with status asthmaticus +25 211 description GIC biosample: wholeblood +26 211 data_source Biosample +27 212 values TRUE +28 214 values TRUE +29 216 description Those patients who align with the IRB Phase 2 protocols +30 216 values GIC Consent +31 217 description Those patients who DO NOT align with the IRB Phase 2 protocols +32 217 values GIC Legacy Consent +33 218 description Patients who have waived consent +34 218 values Waiver of Consent +35 222 description Heart rate is taken by the automated blood pressure/heart rate monitor and captured directly into the computer system. In the event the heart rate is not captured automatically at the end of stage 1, the technician would manually enter the readings from the heart rate monitor. +37 225 description Including living and deceased, were any of {SP's/your} close biological that is, blood relatives including father, mother, sisters or brothers, ever told by a health professional that they had a heart attack or angina (an-gi-na) before the age of 50? +38 225 values Yes +39 229 description # 12 OZ CUPS OF CAFFEINATED COLA / DAY +41 229 stigmatizing no +42 229 unique_identifier no +43 229 free_text no +44 229 bdc_open_access yes +45 232 description # 12 OZ CUPS OF CAFFEINATED COLA / DAY +47 232 stigmatizing no +48 232 unique_identifier no +49 232 free_text no +50 232 bdc_open_access yes +51 235 description # 12 OZ CUPS OF CAFFEINATED COLA/DAY +53 235 stigmatizing no +54 235 unique_identifier no +55 235 free_text no +56 235 bdc_open_access yes +57 239 description Most recent occupation (A) +58 239 values ACCOUNTANT +59 241 description Age +61 241 stigmatizing no +62 241 unique_identifier no +63 241 free_text no +64 241 bdc_open_access yes +65 242 description % of time in artifacts +67 242 stigmatizing no +68 242 unique_identifier no +69 242 free_text no +70 242 bdc_open_access yes +71 244 description Patient age at transplant, years +72 244 values 42 +73 244 stigmatizing no +74 244 unique_identifier no +75 244 free_text no +76 244 bdc_open_access yes +77 244 hct status pre-hct +78 244 computed variable yes +79 245 description Race (regrouped) +80 245 values Not Reported +81 245 stigmatizing no +82 245 unique_identifier no +83 245 free_text no +84 245 bdc_open_access yes +85 246 description Transplant Number +86 246 values 1 +87 246 stigmatizing yes +88 246 unique_identifier no +89 246 free_text no +90 246 bdc_open_access no +91 246 hct status pre-hct +92 246 computed variable yes +93 248 description Participant's age (category) +94 248 values 21 +95 248 stigmatizing no +96 248 unique_identifier no +97 248 free_text no +98 248 bdc_open_access yes +99 249 description Smoker status +100 249 values yes +101 249 stigmatizing no +102 249 unique_identifier no +103 249 free_text no +104 249 bdc_open_access yes +105 253 description (AFC) Reason for ending future contact: Withdrew consent for future nuMoM2b contact +106 253 values No +107 253 unique_identifier no +108 253 free_text no +109 253 bdc_open_access yes +110 255 description (V5A) Which of the following problems have a doctor or health care professional told you that you have with your kidney?: Other - Specify Field +111 255 values infection +112 255 unique_identifier no +113 255 free_text yes +114 255 bdc_open_access no +115 258 description (T01) Are you currently prescribed medication for your high blood pressure? +116 258 values Yes +117 258 unique_identifier no +118 258 free_text no +119 258 bdc_open_access yes +120 266 description Genotype array +121 266 values TRUE +122 267 description Low coverage WGS +123 267 values TRUE +124 268 description Whole exome sequencing +40 229 values [0, 3] +46 232 values [0, 1] +52 235 values [0, 5] +60 241 values [0, 21] +125 268 values TRUE +126 269 description Whole genome sequencing +127 269 values TRUE +128 227 description Clinic Exam, Original Cohort Exam 19 +129 230 description Clinic Exam, Original Cohort Exam 20 +130 233 description Clinic Exam, Offspring Cohort Exam 4 +131 237 description CARe_CFS (Cleveland Family Study) - Sleep and Health Phenotype (Adults/Children) +132 260 description Variables associated with visit/form pair enrollment_alcohol_and_tobacco in the answers.tsv file in the RECOVER Adult study +133 211 values [100, 500] +36 222 values [0, 150] +66 242 values [0, 30] \. -- --- Data for Name: consent; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: consent; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.consent (consent_id, dataset_id, consent_code, description, authz) FROM stdin; +4 17 c1 Disease-Specific (Heart, Lung, Blood, and Sleep Disorders, IRB, NPU) (DS-HLBS-IRB-NPU) /programs/NSRR/projects/NSRR-CFS_DS-HLBS-IRB-NPU +5 18 c1 Disease-Specific (Heart, Lung, Blood, and Sleep Disorders, IRB, NPU) (DS-HLBS-IRB-NPU) /programs/parent/projects/CFS_ +6 19 c1 Health/Medical/Biomedical (IRB, MDS) (HMB-IRB-MDS) /programs/parent/projects/FHS_ +7 19 c2 Health/Medical/Biomedical (IRB, NPU, MDS) (HMB-IRB-NPU-MDS) /programs/parent/projects/FHS_ +8 20 c1 General Research Use (GRU) /programs/BioLINCC/projects/CIBMTR_ +9 21 c1 General Research Use (GRU) /programs/RECOVER/projects/RC_Adult_ +10 22 c1 General Research Use (GRU) /programs/NSRR/projects/SR_HCHS_ +11 23 c1 General Research Use (IRB) (GRU-IRB) /programs/topmed/projects/nuMoM2b_ +12 24 c1 General Research Use (IRB) (GRU-IRB) /programs/Imaging/projects/SPRINT_ +13 25 c1 GRU \. -- --- Data for Name: dataset; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: dataset; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.dataset (dataset_id, ref, full_name, abbreviation, description) FROM stdin; -1 invalid.invalid Test Dataset A test_a A test dataset -2 invalid.invalid2 Test Dataset B test_b A test dataset +14 1 Genomic Information Commons GIC The GIC utilizes the ACT ontology to ensure data alignment across the sites. This project also includes other variables of interest as defined by the Governance Committee, such as biosamples, consents, etc. +15 2 National Health and Nutrition Examination Survey NHANES The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. +16 3 1000 Genomes Project 1000 Genomes The 1000 Genomes Project created a catalogue of common human genetic variation, using openly consented samples from people who declared themselves to be healthy. The reference data resources generated by the project remain heavily used by the biomedical science community. +17 phs002715 National Sleep Research Resource (NSRR): Cleveland Family Study (CFS) NSRR CFS The Cleveland Family Study (CFS) is a family-based study of sleep apnea, consisting of 2,284 individuals (46% African American) from 361 families studied on up to 4 occasions over a period of 16 years. The study began in 1990 with the initial aims of quantifying the familial aggregation of sleep apnea. National Institutes of Health (NIH) renewals provided expansion of the original cohort, including increased minority recruitment, and longitudinal follow-up, with the last exam occurring in February 2006. The CFS was designed to provide fundamental epidemiological data on risk factors for sleep disordered breathing (SDB). The sample was selected by identifying affected probands who had laboratory diagnosed obstructive sleep apnea. All first-degree relatives, spouses and available second-degree relatives of affected probands were studied. In addition, during the first 5 study years, neighborhood control families were identified through a neighborhood proband, and his/her spouses and first-degree relatives. Each exam, occurring at approximately 4-year intervals, included new enrollment as well as follow up exams for previously enrolled subjects. For the first three visits, data, including an overnight sleep study, were collected in participants' homes while the last visit occurred in a general clinical research center (GCRC). Phenotypic characterization of the entire cohort included overnight sleep apnea studies, blood pressure, spirometry, anthropometry and questionnaires. Currently, data of 710 individuals are available for use through BioData Catalyst (with genotype data available through dbGaP).\n\nThe National Sleep Research Resource (NSRR) is a NIH-supported sleep data repository that offers free access to large collections of de-identified physiological signals and related clinical data from a large range of cohort studies, clinical trials and other data sources from children and adults, including healthy individuals from the community and individuals with known sleep or other health disorders. The goals of NSRR are to facilitate rigorous research that requires access to large or more diverse data sets, including raw physiological signals, to promote a better understanding of risk factors for sleep and circadian disorders and/or the impact of sleep disturbances on health-related outcomes. Data from over 15 data sources and more than 40,000 individual sleep studies, many linked to dozens if not hundreds of clinical data elements, are available (as of Feb. 2022). Query tools are available to identify variables of interest, and their meta-data and provenance. +18 phs000284 NHLBI Cleveland Family Study (CFS) Candidate Gene Association Resource (CARe) CFS The Cleveland Family Study is the largest family-based study of sleep apnea world-wide, consisting of 2284 individuals (46% African American) from 361 families studied on up to 4 occasions over a period of 16 years. The study was begun in 1990 with the initial aims of quantifying the familial aggregation of sleep apnea. NIH renewals provided expansion of the original cohort (including increased minority recruitment) and longitudinal follow-up, with the last exam occurring in February 2006. Index probands (n=275) were recruited from 3 area hospital sleep labs if they had a confirmed diagnosis of sleep apnea and at least 2 first-degree relatives available to be studied. In the first 5 years of the study, neighborhood control probands (n=87) with at least 2 living relatives available for study were selected at random from a list provided by the index family and also studied. All available first degree relatives and spouses of the case and control probands also were recruited. Second-degree relatives, including half-sibs, aunts, uncles and grandparents, were also included if they lived near the first degree relatives (cases or controls), or if the family had been found to have two or more relatives with sleep apnea. Blood was sampled and DNA isolated for participants seen in the last two exam cycles (n=1447). The sample, which is enriched with individuals with sleep apnea, also contains a high prevalence of individuals with sleep apnea-related traits, including: obesity, impaired glucose tolerance, and HTN.\n\nPhenotyping data have been collected over 4 exam cycles, each occurring ~every 4 years. The last three exams targeted all subjects who had been studied at earlier exams, as well as new minority families and family members of previously studied probands who had been unavailable at prior exams. Data from one, two, three and four visits are available for 412, 630, 329 and 67, participants, respectively. In the first 3 exams, participants underwent overnight in-home sleep studies, allowing determination of the number and duration of hypopneas and apneas, sleep period, heart rate, and oxygen saturation levels; anthropometry (weight, height, and waist, hip, and neck circumferences); resting blood pressure; spirometry; standardized questionnaire evaluation of symptoms, medications, sleep patterns, quality of life, daytime sleepiness measures and health history; venipuncture and measurement of total and HDL cholesterol. The 4th exam (2001-2006) was designed to collect more detailed measurements of sleep, metabolic and CVD phenotypes and included measurement of state-of-the-art polysomnography, with both collection of blood and measurement of blood pressure before and after sleep, and anthropometry, upper airway assessments, spirometry, exhaled nitric oxide, and ECG performed the morning after the sleep study.\n\nData have been collected by trained research assistants or GCRC nurses following written Manuals of Procedures who were certified following standard approaches for each study procedure. Ongoing data quality, with assessment of within or between individual drift, has been monitored on an ongoing basis, using statistical techniques as well as regular re-certification procedures. Between and within scorer reliabilities for key sleep apnea indices have been excellent, with intra-class correlation coefficients (ICCs) exceeding 0.92 for the apnea-hypopnea index (AHI). Sleep staging, assessed with epoch specific comparisons, also demonstrate excellent reliability for stage identification (kappas>0.82). There has been no evidence of significant time trends-between or within scorers- for the AHI variables. We also have evaluated the night-to-night variability of the AHI and other sleep variables in 91 subjects, with each measurement made 1-3 months apart. There is high night to night consistency for the AHI (ICC: 0.80), the arousal index (0.76), and the % sleep time in slow-wave sleep (0.73). We have demonstrated the comparability of the apnea estimates (AHI) determined from limited channel studies obtained at in-home settings with in full in-laboratory polysomnography. In addition to our published validation study, we more recently compared the AHI in 169 Cleveland Family Study participants undergoing both assessments (in-home and in-laboratory) within one week apart. These showed excellent levels of agreement (ICC=0.83), demonstrating the feasibility of examining data from either in-home or in-laboratory studies for apnea phenotyping. Data collected in the GCRC were obtained, when possible, with comparable, if not identical techniques, as were the same measures collected at prior exams performed in the participants' homes. To address the comparability of data collected over different exams, we calculated the crude age-adjusted correlations ~3 year within individual correlations between measures made in the most recent GCRC exam with measures made in a prior exam and demonstrated excellent levels of agreement for BMI (r=.91); waist circumference (0.91); FVC (0.88); and FEV1 (0.86). As expected due to higher biological and measurement variability, 149 somewhat lower 3-year correlations were demonstrated for SBP (0.56); Diastolic BP (0.48); AHI (0.62); and nocturnal oxygen desaturation (0.60). +19 phs000007 Framingham Cohort FHS Startup of Framingham Heart Study. Cardiovascular disease (CVD) is the leading cause of death and serious illness in the United States. In 1948, the Framingham Heart Study (FHS) -- under the direction of the National Heart Institute (now known as the National Heart, Lung, and Blood Institute, NHLBI) -- embarked on a novel and ambitious project in health research. At the time, little was known about the general causes of heart disease and stroke, but the death rates for CVD had been increasing steadily since the beginning of the century and had become an American epidemic.\n\nThe objective of the FHS was to identify the common factors or characteristics that contribute to CVD by following its development over a long period of time in a large group of participants who had not yet developed overt symptoms of CVD or suffered a heart attack or stroke.\n\nDesign of Framingham Heart Study. In 1948, the researchers recruited 5,209 men and women between the ages of 30 and 62 from the town of Framingham, Massachusetts, and began the first round of extensive physical examinations and lifestyle interviews that they would later analyze for common patterns related to CVD development. Since 1948, the subjects have returned to the study every two years for an examination consisting of a detailed medical history, physical examination, and laboratory tests, and in 1971, the study enrolled a second-generation cohort -- 5,124 of the original participants' adult children and their spouses -- to participate in similar examinations. The second examination of the Offspring cohort occurred eight years after the first examination, and subsequent examinations have occurred approximately every four years thereafter. In April 2002 the Study entered a new phase: the enrollment of a third generation of participants, the grandchildren of the original cohort. The first examination of the Third Generation Study was completed in July 2005 and involved 4,095 participants. Thus, the FHS has evolved into a prospective, community-based, three generation family study. The FHS is a joint project of the National Heart, Lung and Blood Institute and Boston University.\n\nResearch Areas in the Framingham Heart Study. Over the years, careful monitoring of the FHS population has led to the identification of the major CVD risk factors -- high blood pressure, high blood cholesterol, smoking, obesity, diabetes, and physical inactivity -- as well as a great deal of valuable information on the effects of related factors such as blood triglyceride and HDL cholesterol levels, age, gender, and psychosocial issues. Risk factors have been identified for the major components of CVD, including coronary heart disease, stroke, intermittent claudication, and heart failure. It is also clear from research in the FHS and other studies that substantial subclinical vascular disease occurs in the blood vessels, heart and brain that precedes clinical CVD. With recent advances in technology, the FHS has enhanced its research capabilities and capitalized on its inherent resources by the conduct of high resolution imaging to detect and quantify subclinical vascular disease in the major blood vessels, heart and brain. These studies have included ultrasound studies of the heart (echocardiography) and carotid arteries, computed tomography studies of the heart and aorta, and magnetic resonance imaging studies of the brain, heart, and aorta. Although the Framingham cohort is primarily white, the importance of the major CVD risk factors identified in this group have been shown in other studies to apply almost universally among racial and ethnic groups, even though the patterns of distribution may vary from group to group. In the past half century, the Study has produced approximately 1,200 articles in leading medical journals. The concept of CVD risk factors has become an integral part of the modern medical curriculum and has led to the development of effective treatment and preventive strategies in clinical practice.\n\nIn addition to research studies focused on risk factors, subclinical CVD and clinically apparent CVD, Framingham investigators have also collaborated with leading researchers from around the country and throughout the world on projects involving some of the major chronic illnesses in men and women, including dementia, osteoporosis and arthritis, nutritional deficiencies, eye diseases, hearing disorders, and chronic obstructive lung diseases.\n\nGenetic Research in the Framingham Heart Study. While pursuing the Study's established research goals, the NHLBI and the Framingham investigators has expanded its research mission into the study of genetic factors underlying CVD and other disorders. Over the past two decades, DNA has been collected from blood samples and from immortalized cell lines obtained from Original Cohort participants, members of the Offspring Cohort and the Third Generation Cohort. Several large-scale genotyping projects have been conducted in the past decade. Genome-wide linkage analysis has been conducted using genotypes of approximately 400 microsatellite markers that have been completed in over 9,300 subjects in all three generations. Analyses using microsatellite markers completed in the original cohort and offspring cohorts have resulted in over 100 publications, including many publications from the Genetics Analysis Workshop 13. Several other recent collaborative projects have completed thousands of SNP genotypes for candidate gene regions in subsets of FHS subjects with available DNA. These projects include the Cardiogenomics Program of the NHLBI's Programs for Genomics Applications, the genotyping of ~3000 SNPs in inflammation genes, and the completion of a genome-wide scan of 100,000 SNPs using the Affymetrix 100K Genechip.\n\nFramingham Cohort Phenotype Data. The phenotype database contains a vast array of phenotype information available in all three generations. These will include the quantitative measures of the major risk factors such as systolic blood pressure, total and HDL cholesterol, fasting glucose, and cigarette use, as well as anthropomorphic measures such as body mass index, biomarkers such as fibrinogen and CRP, and electrocardiography measures such as the QT interval. Many of these measures have been collected repeatedly in the original and offspring cohorts. Also included in the SHARe database will be an array of recently collected biomarkers, subclinical disease imaging measures, clinical CVD outcomes as well as an array of ancillary studies. The phenotype data is located here in the top-level study phs000007 Framingham Cohort. To view the phenotype variables collected from the Framingham Cohort, please click on the Variables tab above. +20 phs002385 Hematopoietic Cell Transplant for Sickle Cell Disease (HCT for SCD) HCT_for_SCD The Center for International Blood and Marrow Transplant Research (CIBMTR) is a hematopoietic cell transplant registry that was established in 1972 at the Medical College of Wisconsin. The overarching goal of the registry is to study trends in transplantations and to advance the understanding and application of allogeneic hematopoietic cell transplantation for malignant and non-malignant diseases. Included in this dataset are children, adolescents and young adults with severe sickle cell disease who received an allogeneic hematopoietic cell transplant in the United States and provided written informed consent for research.\n\nHematopoietic cell transplant for sickle cell disease is curative. Offering this treatment for patients with severe disease is challenging as only about 20-25% of patients expected to benefit have an HLA-matched sibling. Consequently, several transplantations have utilized an HLA-matched or mismatched unrelated adult donor and HLA-mismatched relative. Transplantation strategies have also evolved over time that has included transplant conditioning regimens of varying intensity, grafts other than bone marrow and novel approaches to overcome the donor-recipient histocompatibility barrier and limit graft-versus-host disease. The data that is available for sickle cell disease transplants have been utilized to report on outcomes after transplantation and compare outcomes after transplantation of grafts HLA-matched related, HLA-mismatched related, HLA-matched and HLA-mismatched unrelated donors. Collectively, these data have advanced our knowledge and understanding of hematopoietic cell transplant for this disease. These data can also serve as contemporaneous controls for comparison with other more recent curative treatments like gene therapy and gene editing. +21 phs003463 Researching COVID to Enhance Recovery (RECOVER): Adult Observational Cohort Study RECOVER_Adult +22 phs003543 National Sleep Research Resource (NSRR): (HSHC) NSRR_HSHC +23 phs002808 Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be Heart Health Study (nuMoM2b Heart Health Study) nuMoM2b +24 phs003566 Systolic Blood Pressure Intervention Trial (SPRINT-Imaging) SPRINT +25 phs001963 DEMENTIA-SEQ: WGS in Lewy Body Dementia and Frontotemporal Dementia DEMENTIA-SEQ \. -- --- Data for Name: dataset_meta; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: dataset_meta; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.dataset_meta (dataset_meta_id, dataset_id, key, value) FROM stdin; -1 1 size 1000 -2 2 size 900 -3 1 institution Mars University -4 2 institution Bending School -5 1 species lizard -6 2 species rocks +1 17 focus Sleep Apnea Syndromes +2 18 focus Sleep Apnea Syndromes +3 19 focus Cardiovascular Disease +4 20 focus Sickle Cell Disease +5 21 focus Covid-19 +6 22 focus Sleep Apnea Syndromes +7 23 focus Hypertension +8 24 focus Imaging +9 25 focus Lewy Body Disease +10 17 design Prospective Longitudinal Cohort +11 18 design Prospective Longitudinal Cohort +12 19 design Prospective Longitudinal Cohort +13 20 design Prospective Longitudinal Cohort +14 21 design Clinical Trial +15 22 design Prospective Longitudinal Cohort +16 23 design Prospective Longitudinal Cohort +17 25 design Case-Control +18 25 category code Case-Control +19 25 focus display Lewy Body Disease +20 25 condition coding system urn:oid:2.16.840.1.113883.6.177 +21 25 condition coding code D020961 +22 25 condition coding display Lewy Body Disease +23 25 description Lewy body dementia, amyotrophic lateral sclerosis/frontotemporal dementia, and multiple system atrophy are age-related, neurodegenerative syndromes that are poorly understood. Delineating the genetic risk that is driving the pathophysiology of these neurological diseases is fundamental for understanding disease mechanisms and for developing disease-modifying treatments.
\\n\\n\\n\\n In version 1 of the study/dbGaP deposition, we performed a whole-genome sequencing study consisting of 7,403 total samples, including 2,633 genomes from patients with Lewy body dementia, 2,641 frontotemporal dementia patients, and 1,980 neurologically healthy controls. Of these, 6,907 were uploaded to dbGaP as the basis of the DementiaSeq, phs001963 dataset. The data relating to these samples are available on dbGaP.\\n\\n\\n\\n In version 2 of this study/dbGaP deposition, we made much of these data available on Anvil. More specifically, data for 6,254 of these samples were also uploaded to the ALS Compute platform on AnVIL. The data for the remaining 653 samples are only available on dbGaP. The dbGaP/AnVIL Table lists the availability of dbGaP and AnVIL for each individual sample: phd008475.\\n\\nIn version 3 of the study/dbGaP deposition, we added whole-genome sequence data generated using DNA samples obtained from 683 patients diagnosed with multiple system atrophy.\\n +24 25 sponsor display National Institute on Aging +25 20 additional information Cure SCi Metadata Catalog \. -- --- Data for Name: facet; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: facet; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.facet (facet_id, facet_category_id, name, display, description, parent_id) FROM stdin; -1 1 bch BCH Boston Childrens Hospital \N -2 1 narnia Narnia Narnia \N -3 2 imaging Imaging Data derived from an image \N -4 2 questionnaire questionnaire Data derived from a questionnaire \N -5 2 lab_test Lab Test Data derived from a lab test \N +20 2 LOINC LOINC \N \N +21 2 PhenX PhenX \N \N +22 1 1 GIC \N \N +23 1 2 National Health and Nutrition Examination Survey \N \N +24 1 3 1000 Genomes Project \N \N +25 1 phs002715 NSRR CFS \N \N +26 1 phs000284 CFS \N \N +27 1 phs000007 FHS \N \N +28 1 phs002385 HCT_for_SCD \N \N +29 1 phs003463 RECOVER_Adult \N \N +30 1 phs003543 NSRR_HSHC \N \N +31 1 phs002808 nuMoM2b \N \N +32 1 phs003566 SPRINT \N \N +33 1 phs001963 DEMENTIA-SEQ \N \N +19 2 gad_7 Generalized Anxiety Disorder Assessment (GAD-7) \N \N +18 2 taps_tool NIDA CTN Common Data Elements = TAPS Tool \N \N \. -- --- Data for Name: facet__concept_node; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: facet__concept_node; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.facet__concept_node (facet__concept_node_id, facet_id, concept_node_id) FROM stdin; -5 1 44 -6 1 45 -7 1 46 -8 1 47 -9 1 48 -10 1 49 -11 1 50 -12 2 51 -13 2 52 -14 2 53 -15 2 54 -16 2 55 -17 2 56 -18 2 57 -19 2 58 -20 3 47 -21 3 48 -22 4 49 -23 4 50 -24 5 54 -25 5 55 -26 3 56 -27 3 57 -28 3 58 +1 22 180 +2 22 181 +3 22 182 +4 22 183 +5 22 184 +6 22 185 +7 22 186 +8 22 187 +9 22 188 +10 22 189 +11 22 190 +12 22 191 +13 22 192 +14 22 193 +15 22 194 +16 22 195 +17 22 196 +18 22 197 +19 22 198 +20 22 199 +21 22 200 +22 22 201 +23 22 202 +24 22 203 +25 22 204 +26 22 205 +27 22 206 +28 22 207 +29 22 208 +30 22 209 +31 22 210 +32 22 211 +33 22 212 +34 22 213 +35 22 214 +36 22 215 +37 22 216 +38 22 217 +39 22 218 +40 23 219 +41 23 220 +42 23 221 +43 23 222 +44 23 223 +45 23 224 +46 23 225 +47 27 226 +48 27 227 +49 27 228 +50 27 229 +51 27 230 +52 27 231 +53 27 232 +54 27 233 +55 27 234 +56 27 235 +57 26 236 +58 26 237 +59 26 238 +60 26 239 +61 26 240 +62 26 241 +63 26 242 +64 28 243 +65 28 244 +66 28 245 +67 28 246 +68 25 247 +69 25 248 +70 25 249 +71 31 250 +72 31 251 +73 31 252 +74 31 253 +75 31 254 +76 31 255 +77 31 256 +78 31 257 +79 31 258 +80 29 259 +81 29 260 +82 29 261 +83 32 262 +84 32 263 +85 32 264 +86 22 265 +87 22 266 +88 22 267 +89 22 268 +90 22 269 +91 18 261 +92 20 229 +93 21 229 \. -- --- Data for Name: facet_category; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: facet_category; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.facet_category (facet_category_id, name, display, description) FROM stdin; -1 site Site Filter variables by site -2 data_source Data Source What does this data relate to (image, questionnaire...) +1 study_ids_dataset_ids Study IDs/Dataset IDs +2 nsrr_harmonized Common Data Element Collection +3 cde NSRR Harmonized \. -- --- Data for Name: facet_category_meta; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: facet_category_meta; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.facet_category_meta (facet_category_meta_id, facet_category_id, key, value) FROM stdin; @@ -449,87 +734,85 @@ COPY public.facet_category_meta (facet_category_meta_id, facet_category_id, key, -- --- Data for Name: facet_meta; Type: TABLE DATA; Schema: public; Owner: picsure +-- Data for Name: facet_meta; Type: TABLE DATA; Schema: dict; Owner: picsure -- COPY public.facet_meta (facet_meta_id, facet_id, key, value) FROM stdin; -1 1 spicy TRUE -2 2 spicy FALSE \. -- --- Name: concept_node_concept_node_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: concept_node_concept_node_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.concept_node_concept_node_id_seq', 58, true); +SELECT pg_catalog.setval('public.concept_node_concept_node_id_seq', 269, true); -- --- Name: concept_node_meta_concept_node_meta_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: concept_node_meta_concept_node_meta_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.concept_node_meta_concept_node_meta_id_seq', 83, true); +SELECT pg_catalog.setval('public.concept_node_meta_concept_node_meta_id_seq', 133, true); -- --- Name: consent_consent_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: consent_consent_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.consent_consent_id_seq', 1, false); +SELECT pg_catalog.setval('public.consent_consent_id_seq', 13, true); -- --- Name: dataset_dataset_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: dataset_dataset_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.dataset_dataset_id_seq', 2, true); +SELECT pg_catalog.setval('public.dataset_dataset_id_seq', 25, true); -- --- Name: dataset_meta_dataset_meta_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: dataset_meta_dataset_meta_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.dataset_meta_dataset_meta_id_seq', 6, true); +SELECT pg_catalog.setval('public.dataset_meta_dataset_meta_id_seq', 25, true); -- --- Name: facet__concept_node_facet__concept_node_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: facet__concept_node_facet__concept_node_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.facet__concept_node_facet__concept_node_id_seq', 28, true); +SELECT pg_catalog.setval('public.facet__concept_node_facet__concept_node_id_seq', 93, true); -- --- Name: facet_category_facet_category_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: facet_category_facet_category_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.facet_category_facet_category_id_seq', 2, true); +SELECT pg_catalog.setval('public.facet_category_facet_category_id_seq', 4, true); -- --- Name: facet_category_meta_facet_category_meta_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: facet_category_meta_facet_category_meta_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- SELECT pg_catalog.setval('public.facet_category_meta_facet_category_meta_id_seq', 1, false); -- --- Name: facet_facet_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: facet_facet_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.facet_facet_id_seq', 5, true); +SELECT pg_catalog.setval('public.facet_facet_id_seq', 33, true); -- --- Name: facet_meta_facet_meta_id_seq; Type: SEQUENCE SET; Schema: public; Owner: picsure +-- Name: facet_meta_facet_meta_id_seq; Type: SEQUENCE SET; Schema: dict; Owner: picsure -- -SELECT pg_catalog.setval('public.facet_meta_facet_meta_id_seq', 2, true); +SELECT pg_catalog.setval('public.facet_meta_facet_meta_id_seq', 1, false); -- --- Name: concept_node_meta concept_node_meta_key_concept_node_id_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: concept_node_meta concept_node_meta_key_concept_node_id_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.concept_node_meta @@ -537,7 +820,7 @@ ALTER TABLE ONLY public.concept_node_meta -- --- Name: concept_node_meta concept_node_meta_pkey; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: concept_node_meta concept_node_meta_pkey; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.concept_node_meta @@ -545,7 +828,7 @@ ALTER TABLE ONLY public.concept_node_meta -- --- Name: concept_node concept_node_pkey; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: concept_node concept_node_pkey; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.concept_node @@ -553,7 +836,7 @@ ALTER TABLE ONLY public.concept_node -- --- Name: consent consent_consent_code_dataset_id_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: consent consent_consent_code_dataset_id_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.consent @@ -561,7 +844,7 @@ ALTER TABLE ONLY public.consent -- --- Name: consent consent_pkey; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: consent consent_pkey; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.consent @@ -569,7 +852,7 @@ ALTER TABLE ONLY public.consent -- --- Name: dataset_meta dataset_meta_key_dataset_id_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: dataset_meta dataset_meta_key_dataset_id_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.dataset_meta @@ -577,7 +860,7 @@ ALTER TABLE ONLY public.dataset_meta -- --- Name: dataset dataset_pkey; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: dataset dataset_pkey; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.dataset @@ -585,7 +868,7 @@ ALTER TABLE ONLY public.dataset -- --- Name: dataset dataset_ref_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: dataset dataset_ref_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.dataset @@ -593,7 +876,7 @@ ALTER TABLE ONLY public.dataset -- --- Name: facet__concept_node facet__concept_node_facet_id_concept_node_id_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet__concept_node facet__concept_node_facet_id_concept_node_id_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet__concept_node @@ -601,7 +884,7 @@ ALTER TABLE ONLY public.facet__concept_node -- --- Name: facet__concept_node facet__concept_node_pkey; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet__concept_node facet__concept_node_pkey; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet__concept_node @@ -609,7 +892,7 @@ ALTER TABLE ONLY public.facet__concept_node -- --- Name: facet_category_meta facet_category_meta_key_facet_category_id_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet_category_meta facet_category_meta_key_facet_category_id_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet_category_meta @@ -617,7 +900,7 @@ ALTER TABLE ONLY public.facet_category_meta -- --- Name: facet_category facet_category_name_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet_category facet_category_name_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet_category @@ -625,7 +908,7 @@ ALTER TABLE ONLY public.facet_category -- --- Name: facet_category facet_category_pkey; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet_category facet_category_pkey; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet_category @@ -633,7 +916,7 @@ ALTER TABLE ONLY public.facet_category -- --- Name: facet_meta facet_meta_key_facet_id_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet_meta facet_meta_key_facet_id_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet_meta @@ -641,7 +924,7 @@ ALTER TABLE ONLY public.facet_meta -- --- Name: facet facet_name_facet_category_id_key; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet facet_name_facet_category_id_key; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet @@ -649,7 +932,7 @@ ALTER TABLE ONLY public.facet -- --- Name: facet facet_pkey; Type: CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet facet_pkey; Type: CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet @@ -657,14 +940,14 @@ ALTER TABLE ONLY public.facet -- --- Name: concept_node_concept_path_idx; Type: INDEX; Schema: public; Owner: picsure +-- Name: concept_node_concept_path_idx; Type: INDEX; Schema: dict; Owner: picsure -- CREATE UNIQUE INDEX concept_node_concept_path_idx ON public.concept_node USING btree (md5((concept_path)::text)); -- --- Name: facet fk_category; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet fk_category; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet @@ -672,7 +955,7 @@ ALTER TABLE ONLY public.facet -- --- Name: concept_node_meta fk_concept_node; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: concept_node_meta fk_concept_node; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.concept_node_meta @@ -680,7 +963,7 @@ ALTER TABLE ONLY public.concept_node_meta -- --- Name: facet__concept_node fk_concept_node; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet__concept_node fk_concept_node; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- ALTER TABLE ONLY public.facet__concept_node @@ -688,59 +971,59 @@ ALTER TABLE ONLY public.facet__concept_node -- --- Name: facet__concept_node fk_facet; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet_meta fk_facet; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- -ALTER TABLE ONLY public.facet__concept_node +ALTER TABLE ONLY public.facet_meta ADD CONSTRAINT fk_facet FOREIGN KEY (facet_id) REFERENCES public.facet(facet_id); -- --- Name: concept_node fk_parent; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet__concept_node fk_facet; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- -ALTER TABLE ONLY public.concept_node - ADD CONSTRAINT fk_parent FOREIGN KEY (parent_id) REFERENCES public.concept_node(concept_node_id); +ALTER TABLE ONLY public.facet__concept_node + ADD CONSTRAINT fk_facet FOREIGN KEY (facet_id) REFERENCES public.facet(facet_id); -- --- Name: facet fk_parent; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet_category_meta fk_facet_category; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- -ALTER TABLE ONLY public.facet - ADD CONSTRAINT fk_parent FOREIGN KEY (parent_id) REFERENCES public.facet(facet_id); +ALTER TABLE ONLY public.facet_category_meta + ADD CONSTRAINT fk_facet_category FOREIGN KEY (facet_category_id) REFERENCES public.facet_category(facet_category_id); -- --- Name: dataset_meta fk_study; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: concept_node fk_parent; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- -ALTER TABLE ONLY public.dataset_meta - ADD CONSTRAINT fk_study FOREIGN KEY (dataset_id) REFERENCES public.dataset(dataset_id); +ALTER TABLE ONLY public.concept_node + ADD CONSTRAINT fk_parent FOREIGN KEY (parent_id) REFERENCES public.concept_node(concept_node_id); -- --- Name: concept_node fk_study; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: facet fk_parent; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- -ALTER TABLE ONLY public.concept_node - ADD CONSTRAINT fk_study FOREIGN KEY (dataset_id) REFERENCES public.dataset(dataset_id); +ALTER TABLE ONLY public.facet + ADD CONSTRAINT fk_parent FOREIGN KEY (parent_id) REFERENCES public.facet(facet_id); -- --- Name: facet_meta fk_study; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: dataset_meta fk_study; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- -ALTER TABLE ONLY public.facet_meta - ADD CONSTRAINT fk_study FOREIGN KEY (facet_id) REFERENCES public.facet(facet_id); +ALTER TABLE ONLY public.dataset_meta + ADD CONSTRAINT fk_study FOREIGN KEY (dataset_id) REFERENCES public.dataset(dataset_id); -- --- Name: facet_category_meta fk_study; Type: FK CONSTRAINT; Schema: public; Owner: picsure +-- Name: concept_node fk_study; Type: FK CONSTRAINT; Schema: dict; Owner: picsure -- -ALTER TABLE ONLY public.facet_category_meta - ADD CONSTRAINT fk_study FOREIGN KEY (facet_category_id) REFERENCES public.facet_category(facet_category_id); +ALTER TABLE ONLY public.concept_node + ADD CONSTRAINT fk_study FOREIGN KEY (dataset_id) REFERENCES public.dataset(dataset_id); --