forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
346 lines (318 loc) · 12.8 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import multiprocessing
import numpy as np
import os
import sys
from functools import partial
import paddle
import paddle.fluid as fluid
import reader
from config import *
from desc import *
from model import fast_decode as fast_decoder
from train import pad_batch_data, pad_phoneme_data, prepare_data_generator
def parse_args():
parser = argparse.ArgumentParser("Training for Transformer.")
parser.add_argument(
"--src_vocab_fpath",
type=str,
required=True,
help="The path of vocabulary file of source language.")
parser.add_argument(
"--trg_vocab_fpath",
type=str,
required=True,
help="The path of vocabulary file of target language.")
parser.add_argument(
"--phoneme_vocab_fpath",
type=str,
required=True,
help="The path of vocabulary file of phonemes.")
parser.add_argument(
"--lexicon_fpath",
type=str,
required=True,
help="The path of lexicon of source language.")
parser.add_argument(
"--test_file_pattern",
type=str,
required=True,
help="The pattern to match test data files.")
parser.add_argument(
"--batch_size",
type=int,
default=50,
help="The number of examples in one run for sequence generation.")
parser.add_argument(
"--pool_size",
type=int,
default=10000,
help="The buffer size to pool data.")
parser.add_argument(
"--special_token",
type=str,
default=["<s>", "<e>", "<unk>"],
nargs=3,
help="The <bos>, <eos> and <unk> tokens in the dictionary.")
parser.add_argument(
"--token_delimiter",
type=lambda x: str(x.encode().decode("unicode-escape")),
default=" ",
help="The delimiter used to split tokens in source or target sentences. "
"For EN-DE BPE data we provided, use spaces as token delimiter. ")
parser.add_argument(
"--use_py_reader",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to use py_reader.")
parser.add_argument(
"--use_parallel_exe",
type=ast.literal_eval,
default=False,
help="The flag indicating whether to use ParallelExecutor.")
parser.add_argument(
'opts',
help='See config.py for all options',
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
# Append args related to dict
src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
phone_dict = reader.DataReader.load_dict(args.phoneme_vocab_fpath)
dict_args = [
"src_vocab_size", str(len(src_dict)), "trg_vocab_size",
str(len(trg_dict)), "phone_vocab_size", str(len(phone_dict)), "bos_idx",
str(src_dict[args.special_token[0]]), "eos_idx",
str(src_dict[args.special_token[1]]), "unk_idx",
str(src_dict[args.special_token[2]])
]
merge_cfg_from_list(args.opts + dict_args,
[InferTaskConfig, ModelHyperParams])
return args
def post_process_seq(seq,
bos_idx=ModelHyperParams.bos_idx,
eos_idx=ModelHyperParams.eos_idx,
output_bos=InferTaskConfig.output_bos,
output_eos=InferTaskConfig.output_eos):
"""
Post-process the beam-search decoded sequence. Truncate from the first
<eos> and remove the <bos> and <eos> tokens currently.
"""
eos_pos = len(seq) - 1
for i, idx in enumerate(seq):
if idx == eos_idx:
eos_pos = i
break
seq = [
idx for idx in seq[:eos_pos + 1]
if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)
]
return seq
def prepare_batch_input(insts, data_input_names, src_pad_idx, phone_pad_idx,
bos_idx, n_head, d_model, place):
"""
Put all padded data needed by beam search decoder into a dict.
"""
src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
[inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
src_word = src_word.reshape(-1, src_max_len, 1)
src_pos = src_pos.reshape(-1, src_max_len, 1)
src_phone, src_phone_mask, max_phone_len = pad_phoneme_data(
[inst[1] for inst in insts], phone_pad_idx, src_max_len)
# start tokens
trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64")
trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
[1, 1, 1, 1]).astype("float32")
trg_word = trg_word.reshape(-1, 1, 1)
def to_lodtensor(data, place, lod=None):
data_tensor = fluid.LoDTensor()
data_tensor.set(data, place)
if lod is not None:
data_tensor.set_lod(lod)
return data_tensor
# beamsearch_op must use tensors with lod
init_score = to_lodtensor(
np.zeros_like(
trg_word, dtype="float32").reshape(-1, 1),
place, [range(trg_word.shape[0] + 1)] * 2)
trg_word = to_lodtensor(trg_word, place, [range(trg_word.shape[0] + 1)] * 2)
init_idx = np.asarray(range(len(insts)), dtype="int32")
data_input_dict = dict(
zip(data_input_names, [
src_word, src_pos, src_slf_attn_bias, src_phone, src_phone_mask,
trg_word, init_score, init_idx, trg_src_attn_bias
]))
return data_input_dict
def prepare_feed_dict_list(data_generator, count, place):
"""
Prepare the list of feed dict for multi-devices.
"""
feed_dict_list = []
if data_generator is not None: # use_py_reader == False
data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
data = next(data_generator)
for idx, data_buffer in enumerate(data):
data_input_dict = prepare_batch_input(
data_buffer, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.phone_pad_idx, ModelHyperParams.bos_idx,
ModelHyperParams.n_head, ModelHyperParams.d_model, place)
feed_dict_list.append(data_input_dict)
return feed_dict_list if len(feed_dict_list) == count else None
def py_reader_provider_wrapper(data_reader, place):
"""
Data provider needed by fluid.layers.py_reader.
"""
def py_reader_provider():
data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
for batch_id, data in enumerate(data_reader()):
data_input_dict = prepare_batch_input(
data, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.phone_pad_idx, ModelHyperParams.bos_idx,
ModelHyperParams.n_head, ModelHyperParams.d_model, place)
yield [data_input_dict[item] for item in data_input_names]
return py_reader_provider
def fast_infer(args):
"""
Inference by beam search decoder based solely on Fluid operators.
"""
out_ids, out_scores, pyreader = fast_decoder(
ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size,
ModelHyperParams.phone_vocab_size,
ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer,
ModelHyperParams.n_head,
ModelHyperParams.d_key,
ModelHyperParams.d_value,
ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid,
ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout,
ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd,
ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing,
InferTaskConfig.beam_size,
InferTaskConfig.max_out_len,
ModelHyperParams.bos_idx,
ModelHyperParams.eos_idx,
beta=ModelHyperParams.beta,
use_py_reader=args.use_py_reader)
# This is used here to set dropout to the test mode.
infer_program = fluid.default_main_program().clone(for_test=True)
if InferTaskConfig.use_gpu:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
fluid.io.load_vars(
exe,
InferTaskConfig.model_path,
vars=[
var for var in infer_program.list_vars()
if isinstance(var, fluid.framework.Parameter)
])
exec_strategy = fluid.ExecutionStrategy()
# For faster executor
exec_strategy.use_experimental_executor = True
exec_strategy.num_threads = 1
build_strategy = fluid.BuildStrategy()
infer_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu,
main_program=infer_program,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
# data reader settings for inference
args.train_file_pattern = args.test_file_pattern
args.use_token_batch = False
args.sort_type = reader.SortType.NONE
args.shuffle = False
args.shuffle_batch = False
test_data = prepare_data_generator(
args,
is_test=False,
count=dev_count,
pyreader=pyreader,
py_reader_provider_wrapper=py_reader_provider_wrapper,
place=place)
if args.use_py_reader:
pyreader.start()
data_generator = None
else:
data_generator = test_data()
trg_idx2word = reader.DataReader.load_dict(
dict_path=args.trg_vocab_fpath, reverse=True)
while True:
try:
feed_dict_list = prepare_feed_dict_list(data_generator, dev_count,
place)
if args.use_parallel_exe:
seq_ids, seq_scores = infer_exe.run(
fetch_list=[out_ids.name, out_scores.name],
feed=feed_dict_list,
return_numpy=False)
else:
seq_ids, seq_scores = exe.run(
program=infer_program,
fetch_list=[out_ids.name, out_scores.name],
feed=feed_dict_list[0]
if feed_dict_list is not None else None,
return_numpy=False,
use_program_cache=True)
seq_ids_list, seq_scores_list = [
seq_ids
], [seq_scores] if isinstance(
seq_ids, paddle.fluid.LoDTensor) else (seq_ids, seq_scores)
for seq_ids, seq_scores in zip(seq_ids_list, seq_scores_list):
# How to parse the results:
# Suppose the lod of seq_ids is:
# [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
# then from lod[0]:
# there are 2 source sentences, beam width is 3.
# from lod[1]:
# the first source sentence has 3 hyps; the lengths are 12, 12, 16
# the second source sentence has 3 hyps; the lengths are 14, 13, 15
hyps = [[] for i in range(len(seq_ids.lod()[0]) - 1)]
scores = [[] for i in range(len(seq_scores.lod()[0]) - 1)]
for i in range(len(seq_ids.lod()[0]) -
1): # for each source sentence
start = seq_ids.lod()[0][i]
end = seq_ids.lod()[0][i + 1]
for j in range(end - start): # for each candidate
sub_start = seq_ids.lod()[1][start + j]
sub_end = seq_ids.lod()[1][start + j + 1]
hyps[i].append(" ".join([
trg_idx2word[idx]
for idx in post_process_seq(
np.array(seq_ids)[sub_start:sub_end])
]))
scores[i].append(np.array(seq_scores)[sub_end - 1])
print(hyps[i][-1])
if len(hyps[i]) >= InferTaskConfig.n_best:
break
except (StopIteration, fluid.core.EOFException):
# The data pass is over.
if args.use_py_reader:
pyreader.reset()
break
if __name__ == "__main__":
args = parse_args()
fast_infer(args)