-
-
Notifications
You must be signed in to change notification settings - Fork 29
/
uart.vhd
938 lines (855 loc) · 27.3 KB
/
uart.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
-- FILE: uart.vhd
-- BRIEF: UART TX/RX module
-- LICENSE: MIT
-- COPYRIGHT: Richard James Howe (2019)
--
-- The UART (Universal Asynchronous Receiver/Transmitter) is one of the simplest
-- serial communication methods available. It is often used for debugging, for
-- issuing commands to embedded devices and sometimes even for uploading firmware
-- to devices. The data format and speed are configurable but there is no method
-- for automatically configuring a UART, both sides must have agreed on the
-- settings before hand. Configurable options include; baud, use of an
-- even of odd parity bit, number of data bits and number of stop bits.
--
-- The clock is not transmitted as part of the signal (which is why baud
-- must be agreed upon before hand), a single packet starts with a 'start bit',
-- where the line goes low. The receiver must synchronize to this start bit (it
-- resets the clock that generates pulse at the sample rate and baud when it
-- encounters a start bit).
--
-- A transmission with 8 data bits, 1 parity bit and 1 stop bit looks like
-- this:
-- ____ ______________________________ ________________
-- \_/|0|1|2|3|4|5|6|7|P|S| \_/
-- Start Data Parity Stop |--- More data --->
--
-- Start bits are always low, stop bits high. The most common format is
-- 8 data bits, no parity bit, and 1 stop bit at either 9600 or 115200 baud.
--
-- For the receiver a clock that is a multiple of the baud is used so the
-- bits can be sampled with a higher frequency than the bit rate.
--
-- Some notes:
-- * We can transmit from an 8-bit UART to a less than 8-bit UART fine, so
-- long as parity is not used, as
-- * Certain UARTs have the ability to transmit a BREAK signal by holding
-- the line low for a period greater than the packet length. We can transmit
-- that by lowering the baud rate and transmitting all zeroes. Receiving a
-- break (correctly) would require changing the receiver.
--
--
-- See:
-- * <https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter>
--
-- NOTE: We could replace this entire package with an entirely software driven
-- solution. The only hardware we would need two timers driven at the sample
-- rate (one for RX, one for TX) and a deglitched RX signal. An interrupt
-- would be generated on the timers expiry.
library ieee, work;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.util.common_generics;
package uart_pkg is
constant uart_8N1: std_ulogic_vector(7 downto 0) := "10000100";
component uart_tx is
generic (g: common_generics; N: positive; format: std_ulogic_vector(7 downto 0) := uart_8N1);
port (
clk: in std_ulogic;
rst: in std_ulogic;
cr: out std_ulogic;
baud: in std_ulogic; -- Pulse at baud
tx: out std_ulogic;
ok: out std_ulogic;
ctr: in std_ulogic_vector(format'range);
ctr_we: in std_ulogic;
we: in std_ulogic; -- di write enable
di: in std_ulogic_vector(N - 1 downto 0));
end component;
component uart_rx is
generic (g: common_generics; N: positive; D: positive; format: std_ulogic_vector(7 downto 0) := uart_8N1);
port (
clk: in std_ulogic;
rst: in std_ulogic;
cr: out std_ulogic;
baud, sample: in std_ulogic;
failed: out std_ulogic_vector(1 downto 0);
ctr: in std_ulogic_vector(7 downto 0);
ctr_we: in std_ulogic;
rx: in std_ulogic;
we: out std_ulogic;
do: out std_ulogic_vector(N - 1 downto 0));
end component;
component uart_baud is -- Generates a pulse at the sample rate and baud
generic (g: common_generics; init: integer; N: positive := 16; D: positive := 3);
port (
clk: in std_ulogic;
rst: in std_ulogic;
we: in std_ulogic;
cnt: in std_ulogic_vector(N - 1 downto 0);
cr: in std_ulogic := '0';
sample: out std_ulogic;
baud: out std_ulogic);
end component;
component uart_core is
generic (g: common_generics; baud: positive := 115200; format: std_ulogic_vector(7 downto 0) := uart_8N1);
port (
clk: in std_ulogic;
rst: in std_ulogic;
tx: out std_ulogic;
tx_ok: out std_ulogic;
tx_we: in std_ulogic;
tx_di: in std_ulogic_vector(7 downto 0);
rx: in std_ulogic;
rx_ok: out std_ulogic;
rx_nd: out std_ulogic;
rx_re: in std_ulogic;
rx_do: out std_ulogic_vector(7 downto 0);
reg: in std_ulogic_vector(15 downto 0);
clock_reg_tx_we: in std_ulogic;
clock_reg_rx_we: in std_ulogic;
control_reg_we: in std_ulogic);
end component;
component uart_top is
generic (
g: common_generics;
baud: positive := 115200;
format: std_ulogic_vector(7 downto 0) := uart_8N1;
use_fifo: boolean := false);
port (
clk: in std_ulogic;
rst: in std_ulogic;
tx: out std_ulogic;
tx_fifo_full: out std_ulogic;
tx_fifo_empty: out std_ulogic;
tx_fifo_we: in std_ulogic;
tx_fifo_data: in std_ulogic_vector(7 downto 0);
rx: in std_ulogic;
rx_fifo_full: out std_ulogic;
rx_fifo_empty: out std_ulogic;
rx_fifo_re: in std_ulogic;
rx_fifo_data: out std_ulogic_vector(7 downto 0);
reg: in std_ulogic_vector(15 downto 0);
clock_reg_tx_we: in std_ulogic;
clock_reg_rx_we: in std_ulogic;
control_reg_we: in std_ulogic);
end component;
component uart_tb is
generic(g: common_generics);
end component;
constant ctr_use_parity: integer := 0;
constant ctr_even_parity: integer := 1;
function ctr_stop_bits(ctr: std_ulogic_vector(7 downto 0)) return integer;
function ctr_data_bits(ctr: std_ulogic_vector(7 downto 0)) return integer;
end package;
package body uart_pkg is
function ctr_stop_bits(ctr: std_ulogic_vector(7 downto 0)) return integer is
variable ii: std_ulogic_vector(1 downto 0);
begin
ii := ctr(3 downto 2);
return to_integer(unsigned(ii));
end function;
function ctr_data_bits(ctr: std_ulogic_vector(7 downto 0)) return integer is
variable ii: std_ulogic_vector(3 downto 0);
begin
ii := ctr(7 downto 4);
return to_integer(unsigned(ii));
end function;
end;
library ieee, work;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.uart_pkg.all;
use work.util.common_generics;
entity uart_top is
generic (
g: common_generics;
baud: positive := 115200;
format: std_ulogic_vector(7 downto 0) := uart_8N1;
use_fifo: boolean := false);
port (
clk: in std_ulogic;
rst: in std_ulogic;
tx: out std_ulogic;
tx_fifo_full: out std_ulogic;
tx_fifo_empty: out std_ulogic;
tx_fifo_we: in std_ulogic;
tx_fifo_data: in std_ulogic_vector(7 downto 0);
rx: in std_ulogic;
rx_fifo_full: out std_ulogic;
rx_fifo_empty: out std_ulogic;
rx_fifo_re: in std_ulogic;
rx_fifo_data: out std_ulogic_vector(7 downto 0);
reg: in std_ulogic_vector(15 downto 0);
clock_reg_tx_we: in std_ulogic;
clock_reg_rx_we: in std_ulogic;
control_reg_we: in std_ulogic);
end entity;
architecture structural of uart_top is
constant fifo_depth: positive := 8;
signal rx_ok, rx_nd, rx_push, rx_re: std_ulogic;
signal rx_pushed: std_ulogic_vector(rx_fifo_data'range);
signal tx_pop, tx_ok: std_ulogic;
signal tx_popped: std_ulogic_vector(tx_fifo_data'range);
signal tx_fifo_empty_b, rx_fifo_full_b: std_ulogic;
begin
uart_core_0: work.uart_pkg.uart_core
generic map(g => g, baud => baud, format => format)
port map(
clk => clk,
rst => rst,
tx => tx,
tx_we => tx_pop,
tx_di => tx_popped,
tx_ok => tx_ok,
rx => rx,
rx_nd => rx_nd,
rx_ok => rx_ok,
rx_do => rx_pushed,
rx_re => rx_push,
reg => reg,
clock_reg_rx_we => clock_reg_rx_we,
clock_reg_tx_we => clock_reg_tx_we,
control_reg_we => control_reg_we);
ugen0: if not use_fifo generate
tx_pop <= tx_fifo_we;
tx_popped <= tx_fifo_data;
tx_fifo_full <= not tx_ok;
tx_fifo_empty <= tx_ok;
rx_push <= rx_fifo_re;
rx_fifo_data <= rx_pushed;
rx_fifo_full <= rx_nd;
rx_fifo_empty <= not rx_nd;
end generate;
ugen1: if use_fifo generate
tx_fifo_empty <= tx_fifo_empty_b;
tx_pop <= tx_ok and not tx_fifo_empty_b;
uart_fifo_tx_0: work.util.fifo
generic map(g => g,
data_width => tx_fifo_data'length,
fifo_depth => fifo_depth)
port map (clk => clk, rst => rst,
di => tx_fifo_data,
we => tx_fifo_we,
re => tx_pop,
do => tx_popped,
full => tx_fifo_full, empty => tx_fifo_empty_b);
rx_fifo_full <= rx_fifo_full_b;
rx_push <= rx_nd and rx_ok and not rx_fifo_full_b;
uart_fifo_rx_0: work.util.fifo
generic map(g => g,
data_width => rx_fifo_data'length,
fifo_depth => fifo_depth,
read_first => false)
port map (clk => clk, rst => rst,
di => rx_pushed,
we => rx_push,
re => rx_fifo_re,
do => rx_fifo_data,
full => rx_fifo_full_b, empty => rx_fifo_empty);
end generate;
end architecture;
library ieee, work;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.uart_pkg.all;
use work.util.common_generics;
entity uart_core is
generic (
g: common_generics;
baud: positive := 115200;
format: std_ulogic_vector(7 downto 0) := uart_8N1);
port (
clk: in std_ulogic;
rst: in std_ulogic;
tx: out std_ulogic; -- physical UART TX signal
tx_ok: out std_ulogic; -- not busy
tx_we: in std_ulogic; -- write data
tx_di: in std_ulogic_vector(7 downto 0);
rx: in std_ulogic; -- physical UART RX signal
rx_ok: out std_ulogic; -- data has no errors (parity or frame)
rx_re: in std_ulogic; -- read data
rx_nd: out std_ulogic; -- new data available
rx_do: out std_ulogic_vector(7 downto 0);
reg: in std_ulogic_vector(15 downto 0);
clock_reg_tx_we: in std_ulogic;
clock_reg_rx_we: in std_ulogic;
control_reg_we: in std_ulogic);
end entity;
architecture structural of uart_core is
constant tx_init: integer := g.clock_frequency / (baud * 16); -- 54 = 115200 @ 100 MHz
constant rx_init: positive := tx_init - 1; -- 50 = 115200 @ 100 MHz + Fudge Factor
constant N: positive := 8;
signal tx_sample, tx_baud, tx_cr: std_ulogic;
signal rx_sample, rx_baud, rx_cr, rx_we: std_ulogic;
signal rx_fail: std_ulogic_vector(1 downto 0);
signal rx_ok_buf: std_ulogic;
signal do, do_c, do_n: std_ulogic_vector(rx_do'range);
signal fail_c, fail_n: std_ulogic_vector(1 downto 0);
signal nd_c, nd_n: std_ulogic; -- new data
begin
rx_ok_buf <= not (fail_c(0) or fail_c(1)) after g.delay;
rx_ok <= rx_ok_buf;
rx_do <= do after g.delay;
rx_nd <= nd_c and rx_ok_buf after g.delay; -- no new data if there are errors
process (clk, rst)
begin
if rst = '1' and g.asynchronous_reset then
do_c <= (others => '0') after g.delay;
fail_c <= (others => '0') after g.delay;
nd_c <= '0' after g.delay;
elsif rising_edge(clk) then
if rst = '1' and not g.asynchronous_reset then
do_c <= (others => '0') after g.delay;
fail_c <= (others => '0') after g.delay;
nd_c <= '0' after g.delay;
else
do_c <= do_n after g.delay;
nd_c <= nd_n after g.delay;
fail_c <= fail_n after g.delay;
end if;
end if;
end process;
process (do_c, do, nd_c, rx_we, rx_re, fail_c, rx_fail)
begin
do_n <= do_c after g.delay;
nd_n <= nd_c after g.delay;
fail_n <= fail_c after g.delay;
if rx_we = '1' then
nd_n <= '1' after g.delay;
do_n <= do after g.delay;
fail_n <= rx_fail after g.delay;
elsif rx_re = '1' then
nd_n <= '0' after g.delay;
end if;
end process;
baud_tx: work.uart_pkg.uart_baud
generic map(g => g, init => tx_init, N => reg'length, D => 3)
port map(
clk => clk,
rst => rst,
we => clock_reg_tx_we,
cnt => reg, -- 0x32/50 is 152000 @ 100MHz clk
cr => tx_cr,
sample => tx_sample,
baud => tx_baud);
baud_rx: work.uart_pkg.uart_baud
generic map(g => g, init => rx_init, N => reg'length, D => 3)
port map(
clk => clk,
rst => rst,
we => clock_reg_rx_we,
cnt => reg,
cr => rx_cr,
sample => rx_sample,
baud => rx_baud);
tx_0: work.uart_pkg.uart_tx
generic map(g => g, N => N, format => format)
port map(
clk => clk,
rst => rst,
cr => tx_cr,
baud => tx_baud,
ok => tx_ok,
we => tx_we,
ctr => reg(reg'high downto reg'high - 7),
ctr_we => control_reg_we,
di => tx_di,
tx => tx);
rx_0: work.uart_pkg.uart_rx
generic map(g => g, N => N, D => 3, format => format)
port map(
clk => clk,
rst => rst,
baud => rx_baud,
sample => rx_sample,
cr => rx_cr,
failed => rx_fail,
ctr => reg(reg'low + 7 downto reg'low),
ctr_we => control_reg_we,
we => rx_we,
do => do,
rx => rx);
end architecture;
-- This module generates a sample pulse and a baud pulse. The sample rate
-- can be controlled by setting 'cnt'. This sample rate is then divided by
-- 2^(D+1) to get the baud.
library ieee, work;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.uart_pkg.all;
use work.util.common_generics;
entity uart_baud is
generic (g: common_generics; init: integer; N: positive := 16; D: positive := 3);
port (
clk: in std_ulogic;
rst: in std_ulogic;
we: in std_ulogic;
cnt: in std_ulogic_vector(N - 1 downto 0);
cr: in std_ulogic := '0';
sample: out std_ulogic; -- sample pulse
baud: out std_ulogic); -- baud (sample rate / 2^(D+1))
end entity;
architecture behaviour of uart_baud is
constant cmp_init: std_ulogic_vector := std_ulogic_vector(to_unsigned(init, cnt'length));
signal cmp_c, cmp_n: std_ulogic_vector(cnt'range) := cmp_init;
signal cnt_c, cnt_n: std_ulogic_vector(cnt'range) := (others => '0');
signal div_c, div_n: std_ulogic_vector(D downto 0) := (others => '0');
signal pul_c, pul_n: std_ulogic := '0';
signal pulse: std_ulogic := '0';
begin
pulse <= (not cr) and pul_n and (pul_c xor pul_n) after g.delay; -- rising edge detector
baud <= (not cr) and div_n(div_n'high) and (div_c(div_c'high) xor div_n(div_n'high)) after g.delay;
sample <= pulse;
process (clk, rst)
begin
if rst = '1' and g.asynchronous_reset then
cmp_c <= cmp_init after g.delay;
cnt_c <= (others => '0') after g.delay;
div_c <= (others => '0') after g.delay;
pul_c <= '0' after g.delay;
elsif rising_edge(clk) then
if rst = '1' and not g.asynchronous_reset then
cmp_c <= cmp_init after g.delay;
cnt_c <= (others => '0') after g.delay;
div_c <= (others => '0') after g.delay;
pul_c <= '0' after g.delay;
else
cmp_c <= cmp_n after g.delay;
cnt_c <= cnt_n after g.delay;
div_c <= div_n after g.delay;
pul_c <= pul_n after g.delay;
end if;
end if;
end process;
process (pulse, div_c, cr, we)
begin
div_n <= div_c after g.delay;
if cr = '1' or we = '1' then
div_n <= (others => '0') after g.delay;
div_n(div_n'high) <= '1' after g.delay;
elsif pulse = '1' then
div_n <= std_ulogic_vector(unsigned(div_c) + 1) after g.delay;
end if;
end process;
process (cmp_c, cnt_c, we, cnt, cr)
begin
cmp_n <= cmp_c after g.delay;
cnt_n <= cnt_c after g.delay;
if we = '1' then
cmp_n <= cnt after g.delay;
cnt_n <= (others => '0') after g.delay;
pul_n <= '0' after g.delay;
elsif cr = '1' then
cnt_n <= (others => '0') after g.delay;
pul_n <= '0' after g.delay;
elsif cnt_c = cmp_c then
cnt_n <= (others => '0') after g.delay;
pul_n <= '1' after g.delay;
else
cnt_n <= std_ulogic_vector(unsigned(cnt_c) + 1) after g.delay;
pul_n <= '0' after g.delay;
end if;
end process;
end architecture;
library ieee, work;
use ieee.std_logic_1164.all;
use work.uart_pkg.all;
use work.util.common_generics;
use work.util.parity;
entity uart_rx is
generic (
g: common_generics;
N: positive;
D: positive;
format: std_ulogic_vector(7 downto 0) := uart_8N1);
port (
clk: in std_ulogic;
rst: in std_ulogic;
cr: out std_ulogic; -- reset sample/baud clock when start bit detected
baud, sample: in std_ulogic; -- pulses at baud and sample rate
failed: out std_ulogic_vector(1 downto 0);
ctr: in std_ulogic_vector(7 downto 0);
ctr_we: in std_ulogic;
rx: in std_ulogic; -- physical RX signal
we: out std_ulogic; -- write 'do' to output register
do: out std_ulogic_vector(N - 1 downto 0));
end entity;
architecture behaviour of uart_rx is
type state is (reset, idle, start, data, parity, stop, done);
signal state_c, state_n: state;
signal ctr_c, ctr_n: std_ulogic_vector(ctr'range);
signal rx_c, rx_n: std_ulogic_vector(do'range);
signal sr_c, sr_n: std_ulogic_vector(D - 1 downto 0);
signal rx_sync: std_ulogic;
signal count_c, count_n: integer range 0 to N - 1;
signal majority: std_ulogic;
signal fail_c, fail_n: std_ulogic_vector(1 downto 0);
begin
do <= rx_c after g.delay;
failed <= fail_c after g.delay;
assert D < 4 severity failure;
majority_1: if D = 1 generate
majority <= sr_c(0) after g.delay;
end generate;
majority_2: if D = 2 generate
majority <= sr_c(0) and sr_c(1) after g.delay; -- even wins is 'sr_c(0) or sr_c(1)'
end generate;
majority_3: if D = 3 generate
majority <= (sr_c(0) and sr_c(1)) or (sr_c(1) and sr_c(2)) or (sr_c(0) and sr_c(2)) after g.delay;
end generate;
process (clk, rst)
procedure reset is
begin
rx_c <= (others => '0') after g.delay;
sr_c <= (others => '0') after g.delay;
fail_c <= (others => '0') after g.delay;
ctr_c <= (others => '0') after g.delay;
state_c <= reset after g.delay;
count_c <= 0 after g.delay;
rx_sync <= '0' after g.delay;
end procedure;
begin
if rst = '1' and g.asynchronous_reset then
reset;
elsif rising_edge(clk) then
if rst = '1' and not g.asynchronous_reset then
reset;
else
rx_c <= rx_n after g.delay;
sr_c <= sr_n after g.delay;
state_c <= state_n after g.delay;
count_c <= count_n after g.delay;
fail_c <= fail_n after g.delay;
ctr_c <= ctr_n after g.delay;
rx_sync <= rx after g.delay;
end if;
end if;
end process;
process (rx_c, sr_c, ctr_c, ctr_we, ctr, state_c, rx_sync, baud, sample, count_c, fail_c, majority)
begin
fail_n <= fail_c after g.delay;
rx_n <= rx_c after g.delay;
sr_n <= sr_c after g.delay;
ctr_n <= ctr_c after g.delay;
state_n <= state_c after g.delay;
we <= '0' after g.delay;
cr <= '0' after g.delay;
count_n <= count_c after g.delay;
if sample = '1' then
sr_n <= sr_c(sr_c'high - 1 downto sr_c'low) & rx_sync after g.delay;
end if;
case state_c is
when reset =>
rx_n <= (others => '0') after g.delay;
sr_n <= (others => '0') after g.delay;
fail_n <= (others => '0') after g.delay;
ctr_n <= format after g.delay; -- 8 bits, 1 stop bit, parity off
state_n <= idle after g.delay;
when idle =>
count_n <= 0 after g.delay;
if rx_sync = '0' then -- and majority = '1' then
state_n <= start after g.delay;
cr <= '1' after g.delay;
sr_n <= (others => '0') after g.delay;
fail_n <= (others => '0') after g.delay;
end if;
when start =>
if baud = '1' then
if majority /= '0' then
state_n <= done after g.delay; -- frame error
fail_n(0) <= '1' after g.delay;
else
state_n <= data after g.delay;
end if;
sr_n <= (others => '0') after g.delay;
end if;
when data =>
rx_n(count_c) <= majority after g.delay;
if baud = '1' then
if count_c = (ctr_data_bits(ctr_c) - 1) then
count_n <= 0 after g.delay;
if ctr_c(ctr_use_parity) = '1' then
state_n <= parity after g.delay;
else
state_n <= stop after g.delay;
end if;
else
count_n <= count_c + 1 after g.delay;
end if;
sr_n <= (others => '0') after g.delay;
end if;
when parity =>
if baud = '1' then
if (ctr_c(ctr_use_parity) = '1') and (majority /= parity(rx_c, ctr_c(ctr_even_parity))) then
fail_n(1) <= '1' after g.delay; -- parity error, still process stop bits
end if;
state_n <= stop after g.delay;
sr_n <= (others => '0') after g.delay;
end if;
when stop =>
if baud = '1' then
if majority /= '1' then
state_n <= done after g.delay; -- frame error
fail_n(0) <= '1' after g.delay;
elsif count_c = ctr_stop_bits(ctr_c) then
state_n <= done after g.delay;
else
count_n <= count_c + 1 after g.delay;
end if;
end if;
when done => -- The consuming module needs to store rx_c/fail_c immediately
we <= '1' after g.delay;
state_n <= idle after g.delay;
--rx_n <= (others => '0') after g.delay;
--sr_n <= (others => '0') after g.delay;
--fail_n <= (others => '0') after g.delay;
end case;
if ctr_we = '1' then
if not (state_c = idle or state_c = done or state_c = reset) then
rx_n <= (others => '0') after g.delay;
state_n <= idle after g.delay;
we <= '1' after g.delay;
fail_n(0) <= '1' after g.delay; -- frame error!
end if;
ctr_n <= ctr after g.delay;
end if;
end process;
end architecture;
library ieee, work;
use ieee.std_logic_1164.all;
use work.uart_pkg.all;
use work.util.common_generics;
use work.util.parity;
entity uart_tx is
generic (g: common_generics; N: positive; format: std_ulogic_vector(7 downto 0) := uart_8N1);
port (
clk: in std_ulogic;
rst: in std_ulogic;
cr: out std_ulogic;
baud: in std_ulogic; -- Pulse at baud
tx: out std_ulogic;
ok: out std_ulogic;
ctr: in std_ulogic_vector(format'range);
ctr_we: in std_ulogic;
we: in std_ulogic; -- di write enable
di: in std_ulogic_vector(N - 1 downto 0));
end entity;
architecture behaviour of uart_tx is
type state is (reset, idle, start, data, parity, stop);
signal state_c, state_n: state;
signal di_c, di_n: std_ulogic_vector(di'range);
signal ctr_c, ctr_n: std_ulogic_vector(ctr'range);
signal busy: std_ulogic;
signal parity_c, parity_n: std_ulogic;
signal count_c, count_n: integer range 0 to 15;
begin
busy <= '0' when state_c = idle else '1' after g.delay;
ok <= not busy after g.delay;
process (clk, rst)
procedure reset is
begin
di_c <= (others => '0') after g.delay;
ctr_c <= (others => '0') after g.delay;
state_c <= reset after g.delay;
parity_c <= '0' after g.delay;
count_c <= 0 after g.delay;
end procedure;
begin
if rst = '1' and g.asynchronous_reset then
reset;
elsif rising_edge(clk) then
if rst = '1' and not g.asynchronous_reset then
reset;
else
di_c <= di_n after g.delay;
ctr_c <= ctr_n after g.delay;
state_c <= state_n after g.delay;
parity_c <= parity_n after g.delay;
count_c <= count_n after g.delay;
end if;
end if;
end process;
process (di_c, di, ctr_c, ctr_we, ctr, state_c, we, baud, parity_c, count_c)
begin
count_n <= count_c after g.delay;
state_n <= state_c after g.delay;
di_n <= di_c after g.delay;
ctr_n <= ctr_c after g.delay;
tx <= '1' after g.delay;
cr <= '0';
if ctr_c(ctr_use_parity) = '1' then
parity_n <= parity(di_c, ctr_c(ctr_even_parity)) after g.delay;
else
parity_n <= '0' after g.delay;
end if;
case state_c is
when reset =>
state_n <= idle after g.delay;
ctr_n <= format after g.delay; -- 8 bits, 1 stop bit, parity off
count_n <= 0 after g.delay;
parity_n <= '0' after g.delay;
di_n <= (others => '0') after g.delay;
when idle =>
count_n <= 0 after g.delay;
if ctr_we = '1' then -- NB. We can either lose data, or control writes
ctr_n <= ctr after g.delay;
elsif we = '1' then
di_n <= di after g.delay;
cr <= '1';
state_n <= start after g.delay;
end if;
when start =>
tx <= '0' after g.delay;
if baud = '1' then
state_n <= data after g.delay;
end if;
when data =>
tx <= di_c(count_c) after g.delay;
if baud = '1' then
if count_c = (ctr_data_bits(ctr_c) - 1) then
count_n <= 0 after g.delay;
if ctr_c(ctr_use_parity) = '1' then
state_n <= parity after g.delay;
else
state_n <= stop after g.delay;
end if;
else
count_n <= count_c + 1 after g.delay;
end if;
end if;
when parity =>
tx <= parity_c after g.delay;
if baud = '1' then
state_n <= stop after g.delay;
end if;
when stop =>
tx <= '1' after g.delay;
if baud = '1' then
if count_c = ctr_stop_bits(ctr_c) then
count_n <= 0 after g.delay;
state_n <= idle after g.delay;
else
count_n <= count_c + 1 after g.delay;
end if;
end if;
end case;
end process;
end architecture;
library ieee, work;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.uart_pkg.all;
use work.util.common_generics;
entity uart_tb is
generic(g: common_generics);
end entity;
architecture testing of uart_tb is
constant clock_period: time := 1000 ms / g.clock_frequency;
constant use_fifo: boolean := true;
signal rst, clk: std_ulogic := '1';
signal stop: boolean := false;
signal loopback: boolean := true;
signal tx, rx: std_ulogic;
signal di, do: std_ulogic_vector(7 downto 0);
signal reg: std_ulogic_vector(15 downto 0);
signal clock_reg_tx_we: std_ulogic;
signal clock_reg_rx_we: std_ulogic;
signal control_reg_we: std_ulogic;
signal tx_fifo_full: std_ulogic;
signal tx_fifo_empty: std_ulogic;
signal tx_fifo_we: std_ulogic := '0';
signal rx_fifo_full: std_ulogic;
signal rx_fifo_empty: std_ulogic;
signal rx_fifo_re: std_ulogic := '0';
begin
-- duration: process begin wait for 20000 us; stop <= true; wait; end process;
clk_process: process
begin
rst <= '1';
wait for clock_period * 5;
rst <= '0';
while not stop loop
clk <= '1';
wait for clock_period / 2;
clk <= '0';
wait for clock_period / 2;
end loop;
wait;
end process;
stimulus: process
procedure write(data: std_ulogic_vector(di'range)) is
begin
wait for clock_period * 1;
while tx_fifo_full = '1' loop
wait for clock_period;
end loop;
di <= data;
tx_fifo_we <= '1';
wait for clock_period;
tx_fifo_we <= '0';
end procedure;
begin
di <= x"00";
wait until rst = '0';
wait for clock_period;
reg <= x"8080";
control_reg_we <= '1';
wait for clock_period;
control_reg_we <= '0';
reg <= x"0036";
clock_reg_tx_we <= '1';
wait for clock_period;
clock_reg_tx_we <= '0';
clock_reg_rx_we <= '1';
reg <= x"0035";
wait for clock_period;
clock_reg_rx_we <= '0';
wait for clock_period;
write(x"AA");
write(x"BB");
write(x"CC");
write(x"DD");
write(x"EE");
write(x"FF");
wait for clock_period;
while tx_fifo_empty = '0' loop
wait for clock_period;
end loop;
loopback <= false;
wait for clock_period * 50000;
stop <= true;
wait;
end process;
ack: process
begin
while not stop loop
if rx_fifo_empty = '0' then
rx_fifo_re <= '1';
else
rx_fifo_re <= '0';
end if;
wait for clock_period;
end loop;
wait;
end process;
rx <= tx when loopback else '0'; -- loop back test
uut: work.uart_pkg.uart_top
generic map (g => g, baud => 115200, format => uart_8N1, use_fifo => use_fifo)
port map (
clk => clk,
rst => rst,
tx => tx,
tx_fifo_full => tx_fifo_full,
tx_fifo_empty => tx_fifo_empty,
tx_fifo_we => tx_fifo_we,
tx_fifo_data => di,
rx => rx,
rx_fifo_full => rx_fifo_full,
rx_fifo_empty => rx_fifo_empty,
rx_fifo_re => rx_fifo_re,
rx_fifo_data => do,
reg => reg,
clock_reg_tx_we => clock_reg_tx_we,
clock_reg_rx_we => clock_reg_rx_we,
control_reg_we => control_reg_we);
end architecture;