-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscore_symbolic_classification.py
86 lines (76 loc) · 3.19 KB
/
score_symbolic_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
#from common import find_mxnet
import mxnet as mx
import time
import os
import logging
import sys
def score(model_prefix, epoch, data_val, metrics, gpus, batch_size, rgb_mean,
image_shape='3,224,224', data_nthreads=4):
# create data iterator
rgb_mean = [float(i) for i in rgb_mean.split(',')]
data_shape = tuple([int(i) for i in image_shape.split(',')])
data = mx.io.ImageRecordIter(
path_imgrec = data_val,
label_width = 1,
mean_r = rgb_mean[0],
mean_g = rgb_mean[1],
mean_b = rgb_mean[2],
preprocess_threads = data_nthreads,
batch_size = batch_size,
data_shape = data_shape,
rand_crop = False,
rand_mirror = False)
# create module
sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, epoch)
if gpus == '':
devs = mx.cpu()
else:
devs = [mx.gpu(int(i)) for i in gpus.split(',')]
#Note: we have to do this because the converted model from gluon without this argument.
if not 'softmax_label' in sym.list_arguments():
logging.info(sym.list_arguments())
sym = mx.symbol.SoftmaxOutput(data=sym, name='softmax')
logging.info(sym.list_arguments())
mod = mx.mod.Module(symbol=sym, context=devs)
mod.bind(for_training=False,
data_shapes=data.provide_data,
label_shapes=data.provide_label)
mod.set_params(arg_params, aux_params)
if not isinstance(metrics, list):
metrics = [metrics,]
logging.info('Info: model scoring started...')
total_bat = 0
num = 0
tic = time.time()
for batch in data:
mod.forward(batch, is_train=False)
for m in metrics:
mod.update_metric(m, batch.label)
num += batch_size
#if num >= 1000:
# total_bat = time.time() - tic
# logging.info('%f second per image, total time: %f', total_bat/num, total_bat)
# break
return (num / (time.time() - tic), )
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='score a smybolic model on imagenet')
parser.add_argument('--model-prefix', type=str, required=True, help = 'the model prefix')
parser.add_argument('--gpus', type=str, default='0')
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--rgb-mean', type=str, default='123.68,116.779,103.939')
parser.add_argument('--data-val', type=str, required=True)
parser.add_argument('--image-shape', type=str, default='3,224,224')
parser.add_argument('--data-nthreads', type=int, default=4,
help='number of threads for data decoding')
parser.add_argument('--epoch', type=int, default=0,
help='epoch of the model')
args = parser.parse_args()
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
metrics = [mx.metric.create('acc'),
mx.metric.create('top_k_accuracy', top_k = 5)]
(speed,) = score(metrics = metrics, **vars(args))
logging.info('Finished with %f images per second', speed)
for m in metrics:
logging.info(m.get())