forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.cpp
177 lines (160 loc) · 5.77 KB
/
Utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/mkldnn/Utils.h>
#include <ATen/native/Pool.h>
#include <c10/util/irange.h>
namespace at { namespace native {
std::vector<int64_t> pool_output_sizes(
IntArrayRef input_size,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding_l,
IntArrayRef padding_r,
IntArrayRef dilation,
bool ceil_mode) {
std::vector<int64_t> output_size(input_size.size());
// copy N and C
output_size[0] = input_size[0];
output_size[1] = input_size[1];
for (const auto i : c10::irange(2, input_size.size())) {
output_size[i] = pooling_output_shape_pad_lr<int64_t>(
input_size[i],
kernel_size[i - 2],
padding_l[i - 2],
padding_r[i - 2],
stride[i - 2],
dilation[i - 2],
ceil_mode
);
}
return output_size;
}
void check_mkldnn_binary_fusion_inputs(
const Tensor& input,
const Tensor& other,
const Tensor& weight,
const Tensor& bias) {
if (!weight.is_mkldnn()) {
TORCH_CHECK(
input.options().type_equal(weight.options()),
"Input type (",
input.toString(),
") and weight type (",
weight.toString(),
") should be the same");
} else {
TORCH_CHECK(
input.scalar_type() == input.scalar_type(),
"mkldnn pointwise binary: input dtype and weight dtype should be the same");
}
TORCH_CHECK(
input.options().type_equal(other.options()),
"Input type (",
input.toString(),
") and other type (",
other.toString(),
") should be the same");
TORCH_CHECK(
!bias.defined() || (input.options().type_equal(bias.options())),
"Input type (",
input.toString(),
") and bias type (",
bias.toString(),
") should be the same");
TORCH_CHECK(
input.device().is_cpu(),
"mkldnn pointwise binary fusion: input's device should be CPU");
TORCH_CHECK(
input.scalar_type() == ScalarType::Float ||
input.scalar_type() == ScalarType::BFloat16 ||
input.scalar_type() == ScalarType::Half,
"mkldnn pointwise binary: input's dtype should be float, bfloat16 or half");
mkldnn_check_low_precision(input.scalar_type(), "mkldnn pointwise binary");
}
#if AT_MKLDNN_ENABLED()
#define ATTR_FUNC(NAME) \
[](torch::List<std::optional<at::Scalar>> scalars, \
std::optional<c10::string_view> algorithm) { \
return ideep::attr_t::fuse_##NAME(); \
}
AttrFunction attr_func_leaky_relu =
[](torch::List<std::optional<at::Scalar>> scalars,
std::optional<c10::string_view> algorithm) {
TORCH_CHECK(
scalars.size() == 1 &&
scalars[0].get().toOptional<at::Scalar>().has_value(),
"leaky_relu is expected to have one scalar input: negative_slope");
auto alpha_value =
scalars[0].get().toOptional<at::Scalar>().value().to<float>();
return ideep::attr_t::fuse_relu(1.0, alpha_value);
};
AttrFunction attr_func_hardtanh =
[](torch::List<std::optional<at::Scalar>> scalars,
std::optional<c10::string_view> algorithm) {
TORCH_CHECK(
scalars.size() == 2 &&
scalars[0].get().toOptional<at::Scalar>().has_value() &&
scalars[1].get().toOptional<at::Scalar>().has_value(),
"hardtanh is expected to have two scalar input: min_val and max_val");
auto lower_bound_value =
scalars[0].get().toOptional<at::Scalar>().value().to<float>();
auto upper_bound_value =
scalars[1].get().toOptional<at::Scalar>().value().to<float>();
return ideep::attr_t::fuse_clamp(lower_bound_value, upper_bound_value);
};
AttrFunction attr_func_gelu = [](torch::List<std::optional<at::Scalar>> scalars,
std::optional<c10::string_view> algorithm) {
TORCH_CHECK(
algorithm.has_value(),
"gelu is expected to have one str input: algorithm");
dnnl::algorithm gelu_type;
if (algorithm.value() == "none") {
gelu_type = dnnl::algorithm::eltwise_gelu_erf;
} else if (algorithm.value() == "tanh") {
gelu_type = dnnl::algorithm::eltwise_gelu_tanh;
} else {
TORCH_INTERNAL_ASSERT(
false, "Unsupported gelu algorithm: ", algorithm.value());
}
return ideep::attr_t::fuse_gelu(1.0, 0.f, 0.f, gelu_type);
};
AttrFunction attr_func_hardsigmoid =
[](torch::List<std::optional<at::Scalar>> scalars,
std::optional<c10::string_view> algorithm) {
ideep::attr_t attr;
ideep::post_ops po;
po.append_eltwise(
ideep::algorithm::eltwise_hardsigmoid, 1.0f / 6.0f, 0.5f);
attr.set_post_ops(po);
return attr;
};
const std::map<c10::string_view, AttrFunction>& fusion_unary_attr_map() {
static const std::map<c10::string_view, AttrFunction> fusion_attr_map{
{"relu", ATTR_FUNC(relu)},
{"sigmoid", ATTR_FUNC(sigmoid)},
{"tanh", ATTR_FUNC(tanh)},
{"swish", ATTR_FUNC(swish)},
{"hardswish", ATTR_FUNC(hardswish)},
{"hardsigmoid", attr_func_hardsigmoid},
{"leaky_relu", attr_func_leaky_relu},
{"hardtanh", attr_func_hardtanh},
{"gelu", attr_func_gelu},
};
return fusion_attr_map;
};
const std::map<c10::string_view, ideep::algorithm>& fusion_unary_alg_map() {
static const std::map<c10::string_view, ideep::algorithm> fusion_attr_map{
{"relu", {ideep::algorithm::eltwise_relu}},
};
return fusion_attr_map;
};
const std::map<c10::string_view, ideep::algorithm>& fusion_binary_alg_map() {
static const std::map<c10::string_view, ideep::algorithm> fusion_attr_map{
{"add", {ideep::algorithm::binary_add}},
{"sub", {ideep::algorithm::binary_sub}},
{"mul", {ideep::algorithm::binary_mul}},
{"div", {ideep::algorithm::binary_div}},
};
return fusion_attr_map;
};
#endif // AT_MKLDNN_ENABLED()
}}