Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update ft07 #60

Open
OsbertWang opened this issue Oct 11, 2019 · 1 comment
Open

Update ft07 #60

OsbertWang opened this issue Oct 11, 2019 · 1 comment

Comments

@OsbertWang
Copy link
Contributor

OsbertWang commented Oct 11, 2019

I use FEniCS installed in WSL of Windows 10.
The version is 2019.01.
Then I update demo files in the tutorial.
I delete the plot code because WSL cannot use it.

"""
FEniCS tutorial demo program: Incompressible Navier-Stokes equations
for channel flow (Poisseuille) on the unit square using the
Incremental Pressure Correction Scheme (IPCS).

  u' + u . nabla(u)) - div(sigma(u, p)) = f
                                 div(u) = 0
"""

from __future__ import print_function
from dolfin import *
import numpy as np

T = 10.0           # final time
num_steps = 500    # number of time steps
dt = T / num_steps # time step size
mu = 1             # kinematic viscosity
rho = 1            # density

# Create mesh and define function spaces
mesh = UnitSquareMesh(16, 16)
V = VectorFunctionSpace(mesh, 'P', 2)
Q = FunctionSpace(mesh, 'P', 1)

# Define boundaries
inflow  = 'near(x[0], 0)'
outflow = 'near(x[0], 1)'
walls   = 'near(x[1], 0) || near(x[1], 1)'

# Define boundary conditions
bcu_noslip  = DirichletBC(V, Constant((0, 0)), walls)
bcp_inflow  = DirichletBC(Q, Constant(8), inflow)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_noslip]
bcp = [bcp_inflow, bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_  = Function(V)
p_n = Function(Q)
p_  = Function(Q)

# Define expressions used in variational forms
U   = 0.5*(u_n + u)
n   = FacetNormal(mesh)
f   = Constant((0, 0))
k   = Constant(dt)
mu  = Constant(mu)
rho = Constant(rho)

# Define strain-rate tensor
def epsilon(u):
    return sym(nabla_grad(u))

# Define stress tensor
def sigma(u, p):
    return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx + \
     rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
   + inner(sigma(U, p_n), epsilon(v))*dx \
   + dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
   - dot(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx

# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Time-stepping
t = 0
for n in range(num_steps):

    # Update current time
    t += dt

    # Step 1: Tentative velocity step
    b1 = assemble(L1)
    [bc.apply(b1) for bc in bcu]
    solve(A1, u_.vector(), b1)

    # Step 2: Pressure correction step
    b2 = assemble(L2)
    [bc.apply(b2) for bc in bcp]
    solve(A2, p_.vector(), b2)

    # Step 3: Velocity correction step
    b3 = assemble(L3)
    solve(A3, u_.vector(), b3)

    # Plot solution
    # plot(u_)

    # Compute error
    u_e = Expression(('4*x[1]*(1.0 - x[1])', '0'), degree=2)
    u_e = interpolate(u_e, V)
    error = np.abs(u_e.vector().get_local() - u_.vector().get_local()).max()
    print('t = %.2f: error = %.3g' % (t, error))
    print('max u:', u_.vector().get_local().max())

    # Update previous solution
    u_n.assign(u_)
    p_n.assign(p_)

# Hold plot
# interactive()
@JDS19
Copy link

JDS19 commented Aug 4, 2020

I am trying to learn FEniCS, and I am confused on the values for a2, L2, a3, and L3. For a1 and L1 we can use lhs and rhs, but how do we know the expressions for them in the second and third steps? Thank you.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants