NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks, e.g., code summarization, code retrieval, code completion, code clone detection and type inference. Our vision is to bridge the gap between programming language and natural language through machine learning techniques.
- A collection of code corpus with data preprocessing
- Performance benchmark
- Mixed precision training
- Nvidia APEX
- Automatic Mixed Precision
- Multi-GPU training
- Better logging output
- Various Implementations:
- tensorflow gradient clipping
- optimizers or learning schedulers
- baseline models
- binary data formats
- PyTorch version >= 1.6.0
- Python version >= 3.6
- GCC/G++ > 5.0
- For training new models, you'll also need an NVIDIA GPU and NCCL
- (optional) For faster training, you need to install NVIDIA's apex library.
git clone https://github.com/xcodemind/naturalcc && cd naturalcc
pip install -r requirements.txt
Once you installed prerequisite libraries, you can check them via
python -m env_test
Export your NaturalCC cache directory (data and models will be saved in this directory) to user
variables(~/.bashrc
or ~/.zshrc
).
echo "export NCC=/data/ncc_data" >> ~/.bashrc
Note: PyCharm cannot get environment variables and, therefore, we recommend you to register your NCC variable at
ncc/__init__.py
.
Compile Cython files to accelerate programs and register NaturalCC into your pip list
# compile for debug
# python setup.py build_ext --inplace
# install
pip install --editable ./
NaturalCC supports half precision training.
- If your
Pytorch.__version__ < 1.6.0
andnvcc -V
is runnable, please install apex. - Otherwise, use Automatic Mixed Precision (AMP). Available Now (set
amp: 1
in yaml file, An example).
Since NCC is build via Cython, your GCC/G++ version should be greater than 4.9. If you have the root permission, update GCC/G++; otherwise, install GCC/G++ with conda.
# install GCC/G++ with conda
conda install -c anaconda gxx_linux-64
conda install -c conda-forge gcc_linux-64
cd ~/anaconda/envs/XXX/bin
ln -s x86_64-conda_cos6-linux-gnu-gcc gcc
ln -s x86_64-conda_cos6-linux-gnu-g++ g++
# check
conda deactivate
conda activate XXX
>> type "gcc/g++ -v" in terminals
Currently, we have processed the following datasets:
- Python (Wan et al.)
- CodeSearchNet (Husain et al.)
- CodeXGlue (Feng et al.)
- Py150 (official processed) (raw)
- OpenCL (Grewe et al.)
- Java (Hu et, al.)
- Stack Overflow
- DeepCS (Gu et al.)
- AVATAR (Ahmad et al.)
- StackOverflow (Iyer et al.)
- Naive Copy
- CodeNN
- DeepCom
- Seq2Seeq + Attention
- Nary-/ChildSum-Tree2Seq
- Code2Seq
- Transformer + (Sinusoidal/Relative/Learned Position Encoding)
- CodeBERT
- GraphCodeBERT
- PLBART
Dataset: Python (Wan et al.)
BLEU-4 | METEOR | ROUGE-L | Cost | Logs | |
---|---|---|---|---|---|
Seq2Seq+Attn | 25.57 | 14.40 | 39.41 | 0.09s/b | click here |
Tree2Seq+Attn | 23.35 | 12.59 | 36.49 | 0.48s/b | click here |
Transformer | 30.64 | 17.65 | 44.59 | 0.26s/b | click here |
Transformer+RPE | 31.57 | 17.74 | 45.18 | 0.27s/b | click here |
PLBART | 32.71 | 18.13 | 46.05 | 0.80s/b | TBC |
Dataset: CodeSearchNet (Husain et al.)
MRR | Go | Java | JS | PHP | Python | Ruby | Cost | Logs |
---|---|---|---|---|---|---|---|---|
NBOW | 66.59 | 59.92 | 47.15 | 54.75 | 63.33 | 42.86 | 0.16s/b | click here |
ConV1d | 70.87 | 60.49 | 38.81 | 61.92 | 67.29 | 36.53 | 0.30s/b | click here |
BiRNN | 65.80 | 48.60 | 23.23 | 51.36 | 48.28 | 19.35 | 0.74s/b | click here |
SelfAttn | 78.45 | 66.55 | 50.38 | 65.78 | 79.09 | 47.96 | 0.25s/b | click here |
Dataset: Py150 (official processed) (raw)
MRR | Attr | Num | Name | Param | Tokens | Cost | Logs |
---|---|---|---|---|---|---|---|
LSTM | 51.67 | 47.45 | 46.52 | 66.06 | 73.73 | 0.31s/b | click here |
GTP-2 | 70.37 | 62.20 | 63.84 | 73.54 | 82.17 | 0.43s/b | click here |
TravTrans | 72.08 | 68.55 | 76.33 | 71.08 | 83.17 | 0.43s/b | click here |
Dataset: CodeSearchNet-Java (Husain et al.)
Acc@1 (All types) | Acc@5 (All types) | Acc@1 (Any types) | Acc@5 (Any types) | Cost | Logs | |
---|---|---|---|---|---|---|
DeepTyper | 0.52 | 0.67 | 0.43 | 0.67 | 0.42s/b | TBC |
Transformer | 0.32 | 0.64 | 0.37 | 0.75 | 0.85s/b | TBC |
Dataset: OpenCL (Grewe et al.)
Accuracy | AMD | NVIDIA |
---|---|---|
Static mapping | 58.82 | 56.91 |
Decision tree | 70.29 | 74.56 |
Inst2vec | 82.79 | 81.76 |
DeepTune | 83.24 | 80.15 |
All the running commands here should be executed in the root of project folder (the path of your
naturalcc
). For example, in my environment I will stay at/data/wanyao/Dropbox/ghproj-v100/naturalcc
.We also have more detailed READMEs to start your tutorial of NaturalCC.
Step 1: Download and process a dataset from datasets
, and follow the instructions from the README.md file.
# ref: dataset/python_wan/README.md
# download dataset
bash dataset/python_wan/download.sh
# clean data
python -m dataset.python_wan.clean
# cast data attributes into different files
python -m dataset.python_wan.attributes_cast
# ref: dataset/python_wan/summarization/README.md
# save code tokens and docstirng tokens into MMAP format
python -m dataset.python_wan.summarization.preprocess
-
If you want to create a new model, please add your model at
ncc/models
andncc/modules
. -
If your training policy are more complex than we thought, you should update your criterions and training procedure at
ncc/criterions
andncc/trainers
, respectively.Do not forget to update your self defined module at
ncc/XX/__init__.py
.
- Select a task and a model from task list and follow the instructions in its README.md to start your learning.
# ref: run/summarization/transformer/README.md
# train
CUDA_VISIBLE_DEVICES=0,1,2,3 nohup python -m run.summarization.transformer.train -f config/python_wan/python > run/summarization/transformer/config/python_wan/python.log 2>&1 &
# inference
CUDA_VISIBLE_DEVICES=0 python -m run.summarization.transformer.eval -f config/python_wan/python -o run/summarization/transformer/config/python_wan/python.txt
Please fell free to contact me if you have any troubles.
NaturalCC is MIT-licensed. The license applies to the pre-trained models as well. This project is also highly inspired by Fairseq and AllenNLP.
NaturalCC-demo
About us: XCodeMind
Please cite as:
under reviewing