forked from kohler/masstree-beta
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kvrandom.hh
150 lines (137 loc) · 4 KB
/
kvrandom.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/* Masstree
* Eddie Kohler, Yandong Mao, Robert Morris
* Copyright (c) 2012-2013 President and Fellows of Harvard College
* Copyright (c) 2012-2013 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, subject to the conditions
* listed in the Masstree LICENSE file. These conditions include: you must
* preserve this copyright notice, and you cannot mention the copyright
* holders in advertising related to the Software without their permission.
* The Software is provided WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This
* notice is a summary of the Masstree LICENSE file; the license in that file
* is legally binding.
*/
#ifndef KVRANDOM_HH
#define KVRANDOM_HH 1
#include <inttypes.h>
#include <stdlib.h>
#include <random>
// A simple LCG with parameters from Numerical Recipes.
class kvrandom_lcg_nr_simple {
public:
using result_type = uint32_t;
using seed_type = uint32_t;
static constexpr result_type min() {
return 0;
}
static constexpr result_type max() {
return 0xFFFFFFFFU;
}
kvrandom_lcg_nr_simple()
: seed_(default_seed) {
}
explicit kvrandom_lcg_nr_simple(seed_type s)
: seed_(s) {
}
void seed(seed_type s) {
seed_ = s;
}
result_type operator()() {
seed_ = seed_ * a + c;
return (seed_ = seed_ * a + c);
}
private:
uint32_t seed_;
enum { default_seed = 819234718U, a = 1664525U, c = 1013904223U };
};
// A combination version of the NR LCG that uses only its higher order
// digits. (In the default NR LCG the lowest bits have less randomness; e.g.,
// the low bit flips between 0 and 1 with every call.)
class kvrandom_lcg_nr : public kvrandom_lcg_nr_simple {
public:
static constexpr result_type max() {
return 0x7FFFFFFFU;
}
result_type operator()() {
uint32_t x0 = kvrandom_lcg_nr_simple::operator()();
uint32_t x1 = kvrandom_lcg_nr_simple::operator()();
return (x0 >> 15) | ((x1 & 0x7FFE) << 16);
}
};
// A random number generator taken from NR's ran4. Based on hashing.
class kvrandom_psdes_nr {
public:
using result_type = uint32_t;
using seed_type = uint32_t;
static constexpr result_type min() {
return 0;
}
static constexpr result_type max() {
return 0xFFFFFFFFU;
}
kvrandom_psdes_nr() {
seed(1);
}
explicit kvrandom_psdes_nr(seed_type s) {
seed(s);
}
void seed(seed_type s) {
seed_ = s;
next_ = 1;
}
result_type operator()() {
uint32_t value = psdes(seed_, next_);
++next_;
return value;
}
result_type operator[](uint32_t index) const {
return psdes(seed_, index);
}
private:
uint32_t seed_;
uint32_t next_;
enum { niter = 4 };
static const uint32_t c1[niter], c2[niter];
static uint32_t psdes(uint32_t lword, uint32_t irword);
};
// a wrapper around random(), for backwards compatibility
class kvrandom_random {
public:
using result_type = uint32_t;
static constexpr result_type min() {
return 0;
}
static constexpr result_type max() {
return 0x7FFFFFFFU;
}
kvrandom_random() {
}
void seed(uint32_t s) {
srandom(s);
}
result_type operator()() {
return random();
}
};
// a modulus-based, i.e. incorrect, version of uniform_int_distribution
// that is faster than the standard
template <typename T = int>
class kvrandom_uniform_int_distribution {
public:
using result_type = T;
kvrandom_uniform_int_distribution(T a, T b)
: a_(a), n_(b - a + 1) {
}
template <typename G>
result_type operator()(G& g) const {
return a_ + g() % n_;
}
private:
result_type a_;
result_type n_;
};
// the std::bernoulli_distribution is fast enough
using kvrandom_bernoulli_distribution = std::bernoulli_distribution;
#endif