-
Notifications
You must be signed in to change notification settings - Fork 0
/
plnn_tutorial.py
142 lines (115 loc) · 5.79 KB
/
plnn_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from data_loader import MyCustomDataset
from plot_data import paint_tensor, write_tensor_to_file
from plot_data import paint_from_tensors
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(2, 4)
self.fc2 = nn.Linear(4, 16)
self.fc3 = nn.Linear(16, 2)
self.fc4 = nn.Linear(2, 2)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# data = data.view(-1, 2) # maybe should use this line for multiple dimension data
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
# print('########', batch_idx, len(data), len(train_loader.dataset), len(train_loader))
print('Train Epoch: {} [{}/{} ({:.0f}%)]\t Loss: {:.6f}'.format(
epoch, batch_idx*len(data), len(train_loader.dataset), 100.*batch_idx/len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
# data = data.view(-1, 2)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
# plot and write test result into a file
write_tensor_to_file(data, pred, './data/predicted_result.csv')
# paint_from_tensors(data, pred, './data/predicted_result.csv', 'Test results')
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64,
metavar='N', help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=2,
metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01,
metavar='LR', help='learning rate default(: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5,
metavar='M', help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=True, help='desables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=50,
metavar='N', help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False, help='For saving the current model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_avaiable()
torch.manual_seed(args.seed)
device = torch.device('cuda' if use_cuda else 'cpu')
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# loading training data
train_loader = torch.utils.data.DataLoader(
MyCustomDataset('./data/dataset.csv',
transform=transforms.Compose([
transforms.ToTensor()])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
MyCustomDataset('./data/dataset.csv',
transform=transforms.Compose([
transforms.ToTensor()])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
# print('length of test loader', len(test_loader))
# print('length of test loader dataset', len(test_loader.dataset))
# train_loader = torch.utils.data.DataLoader(
# datasets.MNIST('../data', train=True, download=True,
# transform=transforms.Compose([
# transforms.ToTensor()
# ])),
# batch_size=args.batch_size, shuffle=True, **kwargs)
# test_loader = torch.utils.data.DataLoader(
# datasets.MNIST('../data', train=False,
# transform=transforms.Compose([
# transforms.ToTensor()
# ])),
# batch_size=args.test_batch_size, shuffle=True,**kwargs)
# training the model
model = Net().to(device)
print(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum)
for epoch in range(1, args.epochs+1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
if (args.save_model):
torch.save(model.state_dict(), 'mnist_cnn.pt')
if __name__ == '__main__':
main()