-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnotion_streamlit.py
188 lines (141 loc) · 6.15 KB
/
notion_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import requests
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.vectorstores.qdrant import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http import models
from typing import List
import streamlit as st
import tiktoken
from streamlit_chat import message
BASE_URL = "https://api.notion.com"
def notion_get_blocks(page_id: str, headers: dict):
res = requests.get(f"{BASE_URL}/v1/blocks/{page_id}/children?page_size=100", headers=headers)
return res.json()
def notion_search(query: dict, headers: dict):
res = requests.post(f"{BASE_URL}/v1/search", headers=headers, data=query)
return res.json()
def get_page_text(page_id: str, headers: dict):
page_text = []
blocks = notion_get_blocks(page_id, headers)
for item in blocks['results']:
item_type = item.get('type')
content = item.get(item_type)
if content.get('rich_text'):
for text in content.get('rich_text'):
plain_text = text.get('plain_text')
page_text.append(plain_text)
return page_text
def load_notion(headers: dict) -> list:
documents = []
all_notion_documents = notion_search({}, headers)
items = all_notion_documents.get('results')
for item in items:
object_type = item.get('object')
object_id = item.get('id')
url = item.get('url')
title = ""
page_text = []
if object_type == 'page':
title_content = item.get('properties').get('title')
if title_content:
title = title_content.get('title')[0].get('text').get('content')
elif item.get('properties').get('Name'):
if len(item.get('properties').get('Name').get('title')) > 0:
title = item.get('properties').get('Name').get('title')[0].get('text').get('content')
page_text.append([title])
page_content = get_page_text(object_id, headers)
page_text.append(page_content)
flat_list = [item for sublist in page_text for item in sublist]
text_per_page = ". ".join(flat_list)
if len(text_per_page) > 0:
documents.append(text_per_page)
return documents
def chunk_tokens(text: str, token_limit: int) -> list:
tokenizer = tiktoken.get_encoding(
"cl100k_base"
)
chunks = []
tokens = tokenizer.encode(text, disallowed_special=())
while tokens:
chunk = tokens[:token_limit]
chunk_text = tokenizer.decode(chunk)
last_punctuation = max(
chunk_text.rfind("."),
chunk_text.rfind("?"),
chunk_text.rfind("!"),
chunk_text.rfind("\n"),
)
if last_punctuation != -1:
chunk_text = chunk_text[: last_punctuation + 1]
cleaned_text = chunk_text.replace("\n", " ").strip()
if cleaned_text and (not cleaned_text.isspace()):
chunks.append(cleaned_text)
tokens = tokens[len(tokenizer.encode(chunk_text, disallowed_special=())):]
return chunks
def load_data_into_vectorstore(client, docs: List[str]):
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
qdrant_client = Qdrant(client=client, collection_name="notion_streamlit", embedding_function=embeddings.embed_query)
ids = qdrant_client.add_texts(docs)
return ids
@st.cache_resource
def connect_to_vectorstore():
client = QdrantClient(host="localhost", port=6333, path="/path/to/qdrant/qdrant_storage")
try:
client.get_collection("notion_streamlit")
except Exception as e:
client.recreate_collection(
collection_name="notion_streamlit",
vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE),
)
return client
@st.cache_data
def cache_headers(notion_api_key: str):
headers = {"Authorization": f"Bearer {notion_api_key}", "Content-Type": "application/json",
"Notion-Version": "2022-06-28"}
return headers
@st.cache_resource
def load_chain(_client, api_key: str):
if len(api_key) == 0:
api_key = "temp value"
embeddings = OpenAIEmbeddings(openai_api_key=api_key)
vectorstore = Qdrant(client=_client, collection_name="notion_streamlit", embedding_function=embeddings.embed_query)
chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(temperature=0.0, model_name='gpt-3.5-turbo',
openai_api_key=api_key),
retriever=vectorstore.as_retriever()
)
return chain
st.title('Chat With Your Notion Documents!')
vector_store = connect_to_vectorstore()
with st.sidebar:
openai_api_key = st.text_input(label='#### Your OpenAI API Key', placeholder="Paste your OpenAI API key here", type="password")
notion_api_key = st.text_input(label='#### Your Notion API Key', placeholder="Paste your Notion API key here",
type="password")
notion_headers = cache_headers(notion_api_key)
load_data = st.button('Load Data')
if load_data:
documents = load_notion(notion_headers)
chunks = []
for doc in documents:
chunks.extend(chunk_tokens(doc, 100))
for chunk in chunks:
print(chunk)
load_data_into_vectorstore(vector_store, chunks)
print("Documents loaded.")
chain = load_chain(vector_store, openai_api_key)
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
user_input = st.text_input("You: ", placeholder="Chat with your notion docs here 👇", key="input")
if user_input:
result = chain({"question": user_input, "chat_history": st.session_state["generated"]})
response = result['answer']
st.session_state['past'].append(user_input)
st.session_state['generated'].append((user_input, result["answer"]))
if st.session_state['generated']:
for i in range(len(st.session_state['generated']) - 1, -1, -1):
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
message(st.session_state["generated"][i][1], key=str(i))