-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
315 lines (278 loc) · 10.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import tensorflow as tf
import math
import numpy as np
from tensorflow.python.framework import ops
from flow_transformer import transformer
#import hyperparams as hyp
def print_shape(t):
print(t.name, t.get_shape().as_list())
def split_rt(rt):
r = tf.slice(rt,[0,0,0],[-1,3,3])
t = tf.reshape(tf.slice(rt,[0,0,3],[-1,3,1]),[hyp.bs,3])
return r, t
def merge_rt(r,t):
bottom_row = tf.tile(tf.reshape(tf.pack([0.,0.,0.,1.]),[1,1,4]),
[hyp.bs,1,1],name="bottom_row")
rt = tf.concat(2,[r,tf.expand_dims(t,2)],name="rt_3x4")
rt = tf.concat(1,[rt,bottom_row],name="rt_4x4")
return rt
def random_crop(t,crop_h,crop_w,h,w):
def off_h(): return tf.random_uniform([], minval=0, maxval=h-crop_h, dtype=tf.int32)
def off_w(): return tf.random_uniform([], minval=0, maxval=w-crop_w, dtype=tf.int32)
def z(): return tf.constant(0)
offset_h = tf.cond(tf.less(crop_h, h), off_h, z)
offset_w = tf.cond(tf.less(crop_w, w), off_w, z)
t_crop = tf.slice(t,[offset_h,offset_w,0],[crop_h,crop_w,-1],name="cropped_tensor")
return t_crop, offset_h, offset_w
def compute_distance(transform):
"""
Compute the distance of the translational component of a 4x4 homogeneous matrix.
"""
# return numpy.linalg.norm(transform[0:3,3])
# t = tf.reshape(tf.slice(transform,[0,0,3],[-1,3,1]),[-1,3])
t = tf.reshape(tf.slice(transform,[0,0,3],[-1,3,1]),[-1,3])
# t should now be bs x 3
return tf.sqrt(tf.reduce_sum(tf.square(t),axis=1))
def compute_angle(transform):
"""
Compute the rotation angle from a 4x4 homogeneous matrix.
"""
# an invitation to 3-d vision, p 27
# return numpy.arccos( min(1,max(-1, (numpy.trace(transform[0:3,0:3]) - 1)/2) ))
r = tf.slice(transform,[0,0,0],[-1,3,3])
return tf.acos(tf.minimum(1.,tf.maximum(-1.,(tf.trace(r)-1.)/2.)))
def compute_t_diff(rt1, rt2):
"""
Compute the difference between the magnitudes of the translational components of the two transformations.
"""
t1 = tf.reshape(tf.slice(rt1,[0,0,3],[-1,3,1]),[-1,3])
t2 = tf.reshape(tf.slice(rt2,[0,0,3],[-1,3,1]),[-1,3])
# each t should now be bs x 3
mag_t1 = tf.sqrt(tf.reduce_sum(tf.square(t1),axis=1))
mag_t2 = tf.sqrt(tf.reduce_sum(tf.square(t2),axis=1))
return tf.abs(mag_t1-mag_t2)
def compute_t_ang(rt1, rt2):
"""
Compute the angle between the translational components of two transformations.
"""
t1 = tf.reshape(tf.slice(rt1,[0,0,3],[-1,3,1]),[-1,3])
t2 = tf.reshape(tf.slice(rt2,[0,0,3],[-1,3,1]),[-1,3])
# each t should now be bs x 3
mag_t1 = tf.sqrt(tf.reduce_sum(tf.square(t1),axis=1))
mag_t2 = tf.sqrt(tf.reduce_sum(tf.square(t2),axis=1))
dot = tf.reduce_sum(t1*t2,axis=1)
return tf.acos(dot/(mag_t1*mag_t2 + hyp.eps))
def safe_inverse(a):
"""
safe inverse for rigid transformations
should be equivalent to
a_inv = tf.matrix_inverse(a)
for well-behaved matrices
"""
shape = a.get_shape()
bs = int(shape[0])
Ra = tf.slice(a,[0,0,0],[-1,3,3])
Ta = tf.reshape(tf.slice(a,[0,0,3],[-1,3,1]),[bs,3])
Ra_t = tf.transpose(Ra,[0,2,1])
bottom_row = tf.tile(tf.reshape(tf.pack([0.,0.,0.,1.]),[1,1,4]),[bs,1,1])
a_inv = tf.concat(2,[Ra_t,-tf.batch_matmul(Ra_t, tf.expand_dims(Ta,2))])
a_inv = tf.concat(1,[a_inv,bottom_row])
return a_inv
def ominus(a,b):
"""
Compute the relative 3D transformation between a and b.
Input:
a -- first pose (homogeneous 4x4 matrix)
b -- second pose (homogeneous 4x4 matrix)
Output:
Relative 3D transformation from a to b.
https://github.com/liruihao/tools-for-rgbd-SLAM-evaluation/blob/master/evaluate_rpe.py
"""
with tf.name_scope("ominus"):
a_inv = safe_inverse(a)
return tf.batch_matmul(a_inv,b)
def sinabg2r(sina,sinb,sing):
shape = sina.get_shape()
bs = int(shape[0])
one = tf.ones([bs],name="one")
zero = tf.zeros([bs],name="zero")
cosa = tf.sqrt(1 - tf.square(sina))
cosb = tf.sqrt(1 - tf.square(sinb))
cosg = tf.sqrt(1 - tf.square(sing))
Rz = tf.reshape(tf.pack([cosa, -sina, zero,
sina, cosa, zero,
zero, zero, one],
axis=1),[bs, 3, 3])
Ry = tf.reshape(tf.pack([cosb, zero, sinb,
zero, one, zero,
-sinb, zero, cosb],
axis=1),[bs, 3, 3])
Rx = tf.reshape(tf.pack([one, zero, zero,
zero, cosg, -sing,
zero, sing, cosg],
axis=1),[bs, 3, 3])
Rcam=tf.batch_matmul(tf.batch_matmul(Rx,Ry),Rz,name="Rcam")
return Rcam
def sinabg2r_fc(sina,sinb,sing):
shape = sina.get_shape()
bs = int(shape[0])
hw = int(shape[1])
one = tf.ones([bs,hw],name="one")
zero = tf.zeros([bs,hw],name="zero")
cosa = tf.sqrt(1 - tf.square(sina))
cosb = tf.sqrt(1 - tf.square(sinb))
cosg = tf.sqrt(1 - tf.square(sing))
Rz = tf.reshape(tf.pack([cosa, -sina, zero,
sina, cosa, zero,
zero, zero, one],
axis=2),[bs, hw, 3, 3])
Ry = tf.reshape(tf.pack([cosb, zero, sinb,
zero, one, zero,
-sinb, zero, cosb],
axis=2),[bs, hw, 3, 3])
Rx = tf.reshape(tf.pack([one, zero, zero,
zero, cosg, -sing,
zero, sing, cosg],
axis=2),[bs, hw, 3, 3])
Rcam=tf.batch_matmul(tf.batch_matmul(Rx,Ry),Rz,name="Rcam")
Rcam = tf.reshape(tf.pack([one, zero, zero,
zero, one, zero,
zero, zero, one],
axis=2),[bs, hw, 3, 3])
return Rcam
def abg2r(a,b,g,bs):
one = tf.ones([bs],name="one")
zero = tf.zeros([bs],name="zero")
sina = tf.sin(a)
sinb = tf.sin(b)
sing = tf.sin(g)
cosa = tf.cos(a)
cosb = tf.cos(b)
cosg = tf.cos(g)
Rz = tf.reshape(tf.pack([cosa, -sina, zero,
sina, cosa, zero,
zero, zero, one],
axis=1),[bs, 3, 3])
Ry = tf.reshape(tf.pack([cosb, zero, sinb,
zero, one, zero,
-sinb, zero, cosb],
axis=1),[bs, 3, 3])
Rx = tf.reshape(tf.pack([one, zero, zero,
zero, cosg, -sing,
zero, sing, cosg],
axis=1),[bs, 3, 3])
Rcam=tf.batch_matmul(tf.batch_matmul(Rx,Ry),Rz,name="Rcam")
return Rcam
def r2abg(r):
# r is 3x3. i want to get out alpha, beta, and gamma
# a = atan2(R(3,2), R(3,3));
# b = atan2(-R(3,1), sqrt(R(3,2)*R(3,2) + R(3,3)*R(3,3)));
# g = atan2(R(2,1), R(1,1));
# x = atan2(R.at<double>(2,1) , R.at<double>(2,2));
# y = atan2(-R.at<double>(2,0), sy);
# z = atan2(R.at<double>(1,0), R.at<double>(0,0));
r11 = r[:,0,0]
r21 = r[:,1,0]
r31 = r[:,2,0]
r32 = r[:,2,1]
r33 = r[:,2,2]
a = atan2(r32,r33)
b = atan2(-r31,tf.sqrt(r32*r32+r33*r33))
g = atan2(r21,r11)
return a, b, g
def zrt2flow_helper(Z1, rt12, fy, fx, y0, x0):
r12, t12 = split_rt(rt12)
if hyp.dataset_name == 'KITTI':
flow = zrt2flow_kitti(Z1, r12, t12, fy, fx, y0, x0)
else:
flow = zrt2flow(Z1, r12, t12, fy, fx, y0, x0)
return flow
def zrt2flow_kitti(Z, R, T, oh, ow, fy, fx, y0, x0):
if hyp.do_debug:
Z = tf.check_numerics(Z, 'util 195')
R = tf.check_numerics(R, 'util 196')
T = tf.check_numerics(T, 'util 197')
fx = tf.check_numerics(fx, 'util 200')
fy = tf.check_numerics(fy, 'util 201')
x0 = tf.check_numerics(x0, 'util 202')
y0 = tf.check_numerics(y0, 'util 203')
print('*'*100)
print(Z)
print(R)
print(T)
print(oh)
print(ow)
print(fx)
print(fy)
print(x0)
print(y0)
print('*'*100)
ed = lambda x : tf.expand_dims(x, axis = 0)
upk = lambda x : tf.unstack(x, axis = 0)
upked = lambda x : map(ed,upk(x))
Zu = upked(Z)
Ru = upked(R)
Tu = upked(T)
ohu = upked(oh)
owu = upked(ow)
fxu = upk(fx)
fyu = upk(fy)
x0u = upked(x0)
y0u = upked(y0)
result1 = []
result2 = []
for i in range(hyp.bs):
Zs = Zu[i]
Rs = Ru[i]
Ts = Tu[i]
ohs = ohu[i]
ows = owu[i]
fxs = fxu[i]
fys = fyu[i]
x0s = x0u[i]
y0s = y0u[i]
r1, r2 = zrt2flow(Zs, Rs, Ts, ohs, ows, fys, fxs, y0s, x0s)
result1.append(r1)
result2.append(r2)
flow = tf.concat(0, result1)
XYZ2 = tf.concat(0, result2)
if hyp.do_debug:
flow = tf.check_numerics(flow, 'util 240')
XYZ2 = tf.check_numerics(XYZ2, 'util 241')
print(flow)
# print XYZ2
return flow
def zrt2flow(Z, r, t, fy, fx, y0, x0):
with tf.variable_scope("zrt2flow"):
shape = Z.get_shape()
bs = int(shape[0])
h = int(shape[1])
w = int(shape[2])
# get pointcloud1
[grid_x1,grid_y1] = meshgrid2D(bs, h, w)
Z = tf.reshape(Z,[bs,h,w],name="Z")
XYZ = Camera2World(grid_x1,grid_y1,Z,fx,fy,x0,y0)
# transform pointcloud1 using r and t, to estimate pointcloud2
t_tiled = tf.tile(tf.expand_dims(t,dim=1),[1,h*w,1],name="t_tiled")
XYZ_t = tf.transpose(XYZ,perm=[0,2,1],name="XYZ_t")
XYZ_mm = tf.batch_matmul(r,XYZ_t,name="XYZ_mm")
XYZ_rot = tf.transpose(XYZ_mm,perm=[0,2,1],name="XYZ_rot")
XYZ2 = tf.add(XYZ_rot,t_tiled,name="XYZ2")
# project pointcloud2 down, so that we get the 2D location of all of these pixels
[X2,Y2,Z2] = tf.split(2, 3, XYZ2, name="splitXYZ")
x2y2_flat = World2Camera(X2,Y2,Z2,fx,fy,x0,y0)
[x2_flat,y2_flat]=tf.split(2,2,x2y2_flat,name="splitxyz_flat")
# subtract the new 2D locations from the old ones to get optical flow
x1_flat = tf.reshape(grid_x1,[bs,-1,1],name="x1")
y1_flat = tf.reshape(grid_y1,[bs,-1,1],name="y1")
flow_flat = tf.concat(2,[x2_flat-x1_flat,y2_flat-y1_flat],name="flow_flat")
flow = tf.reshape(flow_flat,[bs,h,w,2],name="flow")
return flow
def warper(frame, flow, name="warper", is_train=True, reuse=False):
with tf.variable_scope(name):
shape = flow.get_shape()
bs, h, w, c = shape
if reuse:
tf.get_variable_scope().reuse_variables()
warp, occ = transformer(frame, flow, (int(h), int(w)))
return warp, occ