forked from magicleap/SuperGluePretrainedNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
executable file
·291 lines (227 loc) · 9.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import cv2
import torch
import numpy as np
from collections import defaultdict
import torch.nn.functional as F
import matplotlib.cm as cm
from models.utils import make_matching_plot_fast
def preprocess_image(image):
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
return image
def create_kpts_image(img, kpts, color=(255,255,255)):
for k in kpts:
img = cv2.circle(img, (int(k[0]), int(k[1])), 3, color, 2)
return img
def create_matches_image(img0, img1, kpts0, kpts1, matches, scores):
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = scores[valid]
color = cm.jet(mconf)
text = ['SuperGlue',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Matches: {}'.format(len(mkpts0)),]
img = make_matching_plot_fast(img0, img1, kpts0, kpts1,
mkpts0, mkpts1, color, text,
show_keypoints=True)
return img
def pad_data(data, max_kpts, img_shape, device):
_, _, width, _ = img_shape
for k in data:
if isinstance(data[k], (list, tuple)):
new_data = []
if(k.startswith('keypoints')):
#padding keypoints
for kpt in data[k]:
#random_values = torch.Tensor(max_kpts - kpt.shape[0], 2).uniform_(0, width)
random_values = torch.randint(0, width, (max_kpts - kpt.shape[0], 2))
new_data += [torch.cat((kpt, random_values.to(device)), 0)]
if(k.startswith('descriptor')):
#padding descriptors
for desc in data[k]:
new_data += [F.pad(desc,
(0, max_kpts - desc.shape[1]))]
if(k.startswith('score')):
#padding scores
for score in data[k]:
new_data += [F.pad(score,
(0, max_kpts - score.shape[0]))]
data[k] = torch.stack(new_data)
return data
def replace_ignored(data, ignore, img_shape, device):
_, _, width, _ = img_shape
for img_id in ['0', '1']:
for k in data:
batch_size = data[k].size(0)
if(k.startswith('keypoints'+img_id)):
for i in range(batch_size):
for id in ignore['ignored'+img_id][i]:
new_row = torch.randint(0, width, (1, 2))
data[k][i][id] = new_row
if(k.startswith('score'+img_id)):
for i in range(batch_size):
for id in ignore['ignored'+img_id][i]:
data[k][i][id] = 0
return data
def arange_like(x, dim: int):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1
def min_row_col(tensor):
i = 0
smallest, min_i, min_j = None, None, None
for row in tensor:
min_value = torch.min(row)
if(smallest == None or min_value < smallest):
smallest = min_value
min_i = i
min_j = torch.argmin(row).item()
i += 1
return min_i, min_j
def get_only_balanced(data, gt, max_kpts):
new_data = defaultdict(lambda: None)
new_gt = None
for i in range(gt.size(0)):
valid_ids = (gt[i] != -1).nonzero(as_tuple=True)
filtered_target = gt[i][valid_ids]
pos_ids = (filtered_target < max_kpts).nonzero(as_tuple=True)
neg_ids = (filtered_target == max_kpts).nonzero(as_tuple=True)
total_size = len(pos_ids[0])+len(neg_ids[0])
if(len(pos_ids[0])/total_size > 0.5):
if(new_gt == None):
new_gt = torch.unsqueeze(gt[i], dim=0)
else:
new_gt = torch.cat((new_gt, torch.unsqueeze(gt[i], dim=0)), dim=0)
for k in data:
if(new_data[k] == None):
new_data[k] = torch.unsqueeze(data[k][i], dim=0)
else:
new_data[k] = torch.cat((new_data[k], torch.unsqueeze(data[k][i], dim=0)), dim=0)
return new_data, new_gt
def fill_dustbins(matches):
rows = torch.count_nonzero(matches, dim=1)
cols = torch.count_nonzero(matches, dim=0)
dust_col = rows.clone()
dust_row = cols.clone()
dust_col[rows == 0] = 1
dust_col[rows != 0] = 0
dust_row[cols == 0] = 1
dust_row[cols != 0] = 0
matches[:,-1] = dust_col
matches[-1,:] = dust_row
return matches
def ohe_to_le(ohe_tensor):
'''
Function to convert one hot encoding to label encoding. Notice that if all elements in a row/cols are zero, the keypoint has no match,
thus its label is assigned to n_rows/n_cols. MOreover, if the keypoint is ignored its label is assigned to -1
'''
le_tensor = torch.full((ohe_tensor.size(0), ohe_tensor.size(-1)), ohe_tensor.size(-1))
match_ids = (ohe_tensor == 1).nonzero(as_tuple=True)
ignored_ids = (ohe_tensor == -1).nonzero(as_tuple=True)
le_tensor[match_ids[:2]] = match_ids[2]
le_tensor[ignored_ids[:2]] = -1
return le_tensor
def save_model(path, model, optimizer, step, epoch, loss):
torch.save({'epoch': epoch,
'step': step,
'kenc': model.kenc.state_dict(),
'gnn': model.gnn.state_dict(),
'final_proj': model.final_proj.state_dict(),
'optimizer': optimizer.state_dict(),
'loss': loss},
path)
print(f'Model {path} saved!')
def load_model(model, path):
print('Loading model ', path)
ckpt = torch.load(str(path))
model.load_state_dict(ckpt)
return model
def load_model_weights(model, path, recover_state=False, modules=['gnn', 'final_proj']):
print('Loading model ', path)
ckpt = torch.load(str(path))
if('kenc' in modules):
model.kenc.load_state_dict(ckpt['kenc'])
if('gnn' in modules):
model.gnn.load_state_dict(ckpt['gnn'])
if('final_proj' in modules):
model.final_proj.load_state_dict(ckpt['final_proj'])
if(recover_state):
return model, ckpt['epoch'], ckpt['step'], ckpt['optimizer'], ckpt['loss']
return model
def scores_to_matches(scores, threshold=0.5):
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
indices0, indices1 = max0.indices, max1.indices
mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
zero = scores.new_tensor(0)
mscores0 = torch.where(mutual0, max0.values.exp(), zero)
valid0 = mutual0 & (mscores0 > threshold)
indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
return indices0, mscores0
def interpolate_depth(pos, depth):
device = pos.device
ids = torch.arange(0, pos.size(1), device=device)
h, w = depth.size()
i = pos[1, :]
j = pos[0, :]
# Valid corners
i_top_left = torch.floor(i).long()
j_top_left = torch.floor(j).long()
valid_top_left = torch.min(i_top_left >= 0, j_top_left >= 0)
i_top_right = torch.floor(i).long()
j_top_right = torch.ceil(j).long()
valid_top_right = torch.min(i_top_right >= 0, j_top_right < w)
i_bottom_left = torch.ceil(i).long()
j_bottom_left = torch.floor(j).long()
valid_bottom_left = torch.min(i_bottom_left < h, j_bottom_left >= 0)
i_bottom_right = torch.ceil(i).long()
j_bottom_right = torch.ceil(j).long()
valid_bottom_right = torch.min(i_bottom_right < h, j_bottom_right < w)
valid_corners = torch.min(
torch.min(valid_top_left, valid_top_right),
torch.min(valid_bottom_left, valid_bottom_right)
)
i_top_left = i_top_left[valid_corners]
j_top_left = j_top_left[valid_corners]
i_top_right = i_top_right[valid_corners]
j_top_right = j_top_right[valid_corners]
i_bottom_left = i_bottom_left[valid_corners]
j_bottom_left = j_bottom_left[valid_corners]
i_bottom_right = i_bottom_right[valid_corners]
j_bottom_right = j_bottom_right[valid_corners]
ids = ids[valid_corners]
# Valid depth
valid_depth = torch.min(
torch.min(
depth[i_top_left, j_top_left] > 0,
depth[i_top_right, j_top_right] > 0
),
torch.min(
depth[i_bottom_left, j_bottom_left] > 0,
depth[i_bottom_right, j_bottom_right] > 0
)
)
i_top_left = i_top_left[valid_depth]
j_top_left = j_top_left[valid_depth]
i_top_right = i_top_right[valid_depth]
j_top_right = j_top_right[valid_depth]
i_bottom_left = i_bottom_left[valid_depth]
j_bottom_left = j_bottom_left[valid_depth]
i_bottom_right = i_bottom_right[valid_depth]
j_bottom_right = j_bottom_right[valid_depth]
ids = ids[valid_depth]
# Interpolation
i = i[ids]
j = j[ids]
dist_i_top_left = i - i_top_left.float()
dist_j_top_left = j - j_top_left.float()
w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
w_top_right = (1 - dist_i_top_left) * dist_j_top_left
w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
w_bottom_right = dist_i_top_left * dist_j_top_left
interpolated_depth = (
w_top_left * depth[i_top_left, j_top_left] +
w_top_right * depth[i_top_right, j_top_right] +
w_bottom_left * depth[i_bottom_left, j_bottom_left] +
w_bottom_right * depth[i_bottom_right, j_bottom_right]
)
pos = torch.cat([j.view(1, -1), i.view(1, -1)], dim=0)
return [interpolated_depth, pos, ids]