|
| 1 | +""" |
| 2 | +This script requires you to build `LAVIS` from source, since the pip version doesn't have BLIP Diffusion. Follow instructions here: https://github.com/salesforce/LAVIS/tree/main. |
| 3 | +""" |
| 4 | + |
| 5 | +import argparse |
| 6 | +import os |
| 7 | +import tempfile |
| 8 | + |
| 9 | +import torch |
| 10 | +from lavis.models import load_model_and_preprocess |
| 11 | +from transformers import CLIPTokenizer |
| 12 | +from transformers.models.blip_2.configuration_blip_2 import Blip2Config |
| 13 | + |
| 14 | +from diffusers import ( |
| 15 | + AutoencoderKL, |
| 16 | + PNDMScheduler, |
| 17 | + UNet2DConditionModel, |
| 18 | +) |
| 19 | +from diffusers.pipelines import BlipDiffusionPipeline |
| 20 | +from diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor |
| 21 | +from diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel |
| 22 | +from diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel |
| 23 | + |
| 24 | + |
| 25 | +BLIP2_CONFIG = { |
| 26 | + "vision_config": { |
| 27 | + "hidden_size": 1024, |
| 28 | + "num_hidden_layers": 23, |
| 29 | + "num_attention_heads": 16, |
| 30 | + "image_size": 224, |
| 31 | + "patch_size": 14, |
| 32 | + "intermediate_size": 4096, |
| 33 | + "hidden_act": "quick_gelu", |
| 34 | + }, |
| 35 | + "qformer_config": { |
| 36 | + "cross_attention_frequency": 1, |
| 37 | + "encoder_hidden_size": 1024, |
| 38 | + "vocab_size": 30523, |
| 39 | + }, |
| 40 | + "num_query_tokens": 16, |
| 41 | +} |
| 42 | +blip2config = Blip2Config(**BLIP2_CONFIG) |
| 43 | + |
| 44 | + |
| 45 | +def qformer_model_from_original_config(): |
| 46 | + qformer = Blip2QFormerModel(blip2config) |
| 47 | + return qformer |
| 48 | + |
| 49 | + |
| 50 | +def embeddings_from_original_checkpoint(model, diffuser_embeddings_prefix, original_embeddings_prefix): |
| 51 | + embeddings = {} |
| 52 | + embeddings.update( |
| 53 | + { |
| 54 | + f"{diffuser_embeddings_prefix}.word_embeddings.weight": model[ |
| 55 | + f"{original_embeddings_prefix}.word_embeddings.weight" |
| 56 | + ] |
| 57 | + } |
| 58 | + ) |
| 59 | + embeddings.update( |
| 60 | + { |
| 61 | + f"{diffuser_embeddings_prefix}.position_embeddings.weight": model[ |
| 62 | + f"{original_embeddings_prefix}.position_embeddings.weight" |
| 63 | + ] |
| 64 | + } |
| 65 | + ) |
| 66 | + embeddings.update( |
| 67 | + {f"{diffuser_embeddings_prefix}.LayerNorm.weight": model[f"{original_embeddings_prefix}.LayerNorm.weight"]} |
| 68 | + ) |
| 69 | + embeddings.update( |
| 70 | + {f"{diffuser_embeddings_prefix}.LayerNorm.bias": model[f"{original_embeddings_prefix}.LayerNorm.bias"]} |
| 71 | + ) |
| 72 | + return embeddings |
| 73 | + |
| 74 | + |
| 75 | +def proj_layer_from_original_checkpoint(model, diffuser_proj_prefix, original_proj_prefix): |
| 76 | + proj_layer = {} |
| 77 | + proj_layer.update({f"{diffuser_proj_prefix}.dense1.weight": model[f"{original_proj_prefix}.dense1.weight"]}) |
| 78 | + proj_layer.update({f"{diffuser_proj_prefix}.dense1.bias": model[f"{original_proj_prefix}.dense1.bias"]}) |
| 79 | + proj_layer.update({f"{diffuser_proj_prefix}.dense2.weight": model[f"{original_proj_prefix}.dense2.weight"]}) |
| 80 | + proj_layer.update({f"{diffuser_proj_prefix}.dense2.bias": model[f"{original_proj_prefix}.dense2.bias"]}) |
| 81 | + proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.weight": model[f"{original_proj_prefix}.LayerNorm.weight"]}) |
| 82 | + proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.bias": model[f"{original_proj_prefix}.LayerNorm.bias"]}) |
| 83 | + return proj_layer |
| 84 | + |
| 85 | + |
| 86 | +def attention_from_original_checkpoint(model, diffuser_attention_prefix, original_attention_prefix): |
| 87 | + attention = {} |
| 88 | + attention.update( |
| 89 | + { |
| 90 | + f"{diffuser_attention_prefix}.attention.query.weight": model[ |
| 91 | + f"{original_attention_prefix}.self.query.weight" |
| 92 | + ] |
| 93 | + } |
| 94 | + ) |
| 95 | + attention.update( |
| 96 | + {f"{diffuser_attention_prefix}.attention.query.bias": model[f"{original_attention_prefix}.self.query.bias"]} |
| 97 | + ) |
| 98 | + attention.update( |
| 99 | + {f"{diffuser_attention_prefix}.attention.key.weight": model[f"{original_attention_prefix}.self.key.weight"]} |
| 100 | + ) |
| 101 | + attention.update( |
| 102 | + {f"{diffuser_attention_prefix}.attention.key.bias": model[f"{original_attention_prefix}.self.key.bias"]} |
| 103 | + ) |
| 104 | + attention.update( |
| 105 | + { |
| 106 | + f"{diffuser_attention_prefix}.attention.value.weight": model[ |
| 107 | + f"{original_attention_prefix}.self.value.weight" |
| 108 | + ] |
| 109 | + } |
| 110 | + ) |
| 111 | + attention.update( |
| 112 | + {f"{diffuser_attention_prefix}.attention.value.bias": model[f"{original_attention_prefix}.self.value.bias"]} |
| 113 | + ) |
| 114 | + attention.update( |
| 115 | + {f"{diffuser_attention_prefix}.output.dense.weight": model[f"{original_attention_prefix}.output.dense.weight"]} |
| 116 | + ) |
| 117 | + attention.update( |
| 118 | + {f"{diffuser_attention_prefix}.output.dense.bias": model[f"{original_attention_prefix}.output.dense.bias"]} |
| 119 | + ) |
| 120 | + attention.update( |
| 121 | + { |
| 122 | + f"{diffuser_attention_prefix}.output.LayerNorm.weight": model[ |
| 123 | + f"{original_attention_prefix}.output.LayerNorm.weight" |
| 124 | + ] |
| 125 | + } |
| 126 | + ) |
| 127 | + attention.update( |
| 128 | + { |
| 129 | + f"{diffuser_attention_prefix}.output.LayerNorm.bias": model[ |
| 130 | + f"{original_attention_prefix}.output.LayerNorm.bias" |
| 131 | + ] |
| 132 | + } |
| 133 | + ) |
| 134 | + return attention |
| 135 | + |
| 136 | + |
| 137 | +def output_layers_from_original_checkpoint(model, diffuser_output_prefix, original_output_prefix): |
| 138 | + output_layers = {} |
| 139 | + output_layers.update({f"{diffuser_output_prefix}.dense.weight": model[f"{original_output_prefix}.dense.weight"]}) |
| 140 | + output_layers.update({f"{diffuser_output_prefix}.dense.bias": model[f"{original_output_prefix}.dense.bias"]}) |
| 141 | + output_layers.update( |
| 142 | + {f"{diffuser_output_prefix}.LayerNorm.weight": model[f"{original_output_prefix}.LayerNorm.weight"]} |
| 143 | + ) |
| 144 | + output_layers.update( |
| 145 | + {f"{diffuser_output_prefix}.LayerNorm.bias": model[f"{original_output_prefix}.LayerNorm.bias"]} |
| 146 | + ) |
| 147 | + return output_layers |
| 148 | + |
| 149 | + |
| 150 | +def encoder_from_original_checkpoint(model, diffuser_encoder_prefix, original_encoder_prefix): |
| 151 | + encoder = {} |
| 152 | + for i in range(blip2config.qformer_config.num_hidden_layers): |
| 153 | + encoder.update( |
| 154 | + attention_from_original_checkpoint( |
| 155 | + model, f"{diffuser_encoder_prefix}.{i}.attention", f"{original_encoder_prefix}.{i}.attention" |
| 156 | + ) |
| 157 | + ) |
| 158 | + encoder.update( |
| 159 | + attention_from_original_checkpoint( |
| 160 | + model, f"{diffuser_encoder_prefix}.{i}.crossattention", f"{original_encoder_prefix}.{i}.crossattention" |
| 161 | + ) |
| 162 | + ) |
| 163 | + |
| 164 | + encoder.update( |
| 165 | + { |
| 166 | + f"{diffuser_encoder_prefix}.{i}.intermediate.dense.weight": model[ |
| 167 | + f"{original_encoder_prefix}.{i}.intermediate.dense.weight" |
| 168 | + ] |
| 169 | + } |
| 170 | + ) |
| 171 | + encoder.update( |
| 172 | + { |
| 173 | + f"{diffuser_encoder_prefix}.{i}.intermediate.dense.bias": model[ |
| 174 | + f"{original_encoder_prefix}.{i}.intermediate.dense.bias" |
| 175 | + ] |
| 176 | + } |
| 177 | + ) |
| 178 | + encoder.update( |
| 179 | + { |
| 180 | + f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.weight": model[ |
| 181 | + f"{original_encoder_prefix}.{i}.intermediate_query.dense.weight" |
| 182 | + ] |
| 183 | + } |
| 184 | + ) |
| 185 | + encoder.update( |
| 186 | + { |
| 187 | + f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.bias": model[ |
| 188 | + f"{original_encoder_prefix}.{i}.intermediate_query.dense.bias" |
| 189 | + ] |
| 190 | + } |
| 191 | + ) |
| 192 | + |
| 193 | + encoder.update( |
| 194 | + output_layers_from_original_checkpoint( |
| 195 | + model, f"{diffuser_encoder_prefix}.{i}.output", f"{original_encoder_prefix}.{i}.output" |
| 196 | + ) |
| 197 | + ) |
| 198 | + encoder.update( |
| 199 | + output_layers_from_original_checkpoint( |
| 200 | + model, f"{diffuser_encoder_prefix}.{i}.output_query", f"{original_encoder_prefix}.{i}.output_query" |
| 201 | + ) |
| 202 | + ) |
| 203 | + return encoder |
| 204 | + |
| 205 | + |
| 206 | +def visual_encoder_layer_from_original_checkpoint(model, diffuser_prefix, original_prefix): |
| 207 | + visual_encoder_layer = {} |
| 208 | + |
| 209 | + visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.weight": model[f"{original_prefix}.ln_1.weight"]}) |
| 210 | + visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.bias": model[f"{original_prefix}.ln_1.bias"]}) |
| 211 | + visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.weight": model[f"{original_prefix}.ln_2.weight"]}) |
| 212 | + visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.bias": model[f"{original_prefix}.ln_2.bias"]}) |
| 213 | + visual_encoder_layer.update( |
| 214 | + {f"{diffuser_prefix}.self_attn.qkv.weight": model[f"{original_prefix}.attn.in_proj_weight"]} |
| 215 | + ) |
| 216 | + visual_encoder_layer.update( |
| 217 | + {f"{diffuser_prefix}.self_attn.qkv.bias": model[f"{original_prefix}.attn.in_proj_bias"]} |
| 218 | + ) |
| 219 | + visual_encoder_layer.update( |
| 220 | + {f"{diffuser_prefix}.self_attn.projection.weight": model[f"{original_prefix}.attn.out_proj.weight"]} |
| 221 | + ) |
| 222 | + visual_encoder_layer.update( |
| 223 | + {f"{diffuser_prefix}.self_attn.projection.bias": model[f"{original_prefix}.attn.out_proj.bias"]} |
| 224 | + ) |
| 225 | + visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.weight": model[f"{original_prefix}.mlp.c_fc.weight"]}) |
| 226 | + visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.bias": model[f"{original_prefix}.mlp.c_fc.bias"]}) |
| 227 | + visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.weight": model[f"{original_prefix}.mlp.c_proj.weight"]}) |
| 228 | + visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.bias": model[f"{original_prefix}.mlp.c_proj.bias"]}) |
| 229 | + |
| 230 | + return visual_encoder_layer |
| 231 | + |
| 232 | + |
| 233 | +def visual_encoder_from_original_checkpoint(model, diffuser_prefix, original_prefix): |
| 234 | + visual_encoder = {} |
| 235 | + |
| 236 | + visual_encoder.update( |
| 237 | + { |
| 238 | + f"{diffuser_prefix}.embeddings.class_embedding": model[f"{original_prefix}.class_embedding"] |
| 239 | + .unsqueeze(0) |
| 240 | + .unsqueeze(0) |
| 241 | + } |
| 242 | + ) |
| 243 | + visual_encoder.update( |
| 244 | + { |
| 245 | + f"{diffuser_prefix}.embeddings.position_embedding": model[ |
| 246 | + f"{original_prefix}.positional_embedding" |
| 247 | + ].unsqueeze(0) |
| 248 | + } |
| 249 | + ) |
| 250 | + visual_encoder.update( |
| 251 | + {f"{diffuser_prefix}.embeddings.patch_embedding.weight": model[f"{original_prefix}.conv1.weight"]} |
| 252 | + ) |
| 253 | + visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.weight": model[f"{original_prefix}.ln_pre.weight"]}) |
| 254 | + visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.bias": model[f"{original_prefix}.ln_pre.bias"]}) |
| 255 | + |
| 256 | + for i in range(blip2config.vision_config.num_hidden_layers): |
| 257 | + visual_encoder.update( |
| 258 | + visual_encoder_layer_from_original_checkpoint( |
| 259 | + model, f"{diffuser_prefix}.encoder.layers.{i}", f"{original_prefix}.transformer.resblocks.{i}" |
| 260 | + ) |
| 261 | + ) |
| 262 | + |
| 263 | + visual_encoder.update({f"{diffuser_prefix}.post_layernorm.weight": model["blip.ln_vision.weight"]}) |
| 264 | + visual_encoder.update({f"{diffuser_prefix}.post_layernorm.bias": model["blip.ln_vision.bias"]}) |
| 265 | + |
| 266 | + return visual_encoder |
| 267 | + |
| 268 | + |
| 269 | +def qformer_original_checkpoint_to_diffusers_checkpoint(model): |
| 270 | + qformer_checkpoint = {} |
| 271 | + qformer_checkpoint.update(embeddings_from_original_checkpoint(model, "embeddings", "blip.Qformer.bert.embeddings")) |
| 272 | + qformer_checkpoint.update({"query_tokens": model["blip.query_tokens"]}) |
| 273 | + qformer_checkpoint.update(proj_layer_from_original_checkpoint(model, "proj_layer", "proj_layer")) |
| 274 | + qformer_checkpoint.update( |
| 275 | + encoder_from_original_checkpoint(model, "encoder.layer", "blip.Qformer.bert.encoder.layer") |
| 276 | + ) |
| 277 | + qformer_checkpoint.update(visual_encoder_from_original_checkpoint(model, "visual_encoder", "blip.visual_encoder")) |
| 278 | + return qformer_checkpoint |
| 279 | + |
| 280 | + |
| 281 | +def get_qformer(model): |
| 282 | + print("loading qformer") |
| 283 | + |
| 284 | + qformer = qformer_model_from_original_config() |
| 285 | + qformer_diffusers_checkpoint = qformer_original_checkpoint_to_diffusers_checkpoint(model) |
| 286 | + |
| 287 | + load_checkpoint_to_model(qformer_diffusers_checkpoint, qformer) |
| 288 | + |
| 289 | + print("done loading qformer") |
| 290 | + return qformer |
| 291 | + |
| 292 | + |
| 293 | +def load_checkpoint_to_model(checkpoint, model): |
| 294 | + with tempfile.NamedTemporaryFile(delete=False) as file: |
| 295 | + torch.save(checkpoint, file.name) |
| 296 | + del checkpoint |
| 297 | + model.load_state_dict(torch.load(file.name), strict=False) |
| 298 | + |
| 299 | + os.remove(file.name) |
| 300 | + |
| 301 | + |
| 302 | +def save_blip_diffusion_model(model, args): |
| 303 | + qformer = get_qformer(model) |
| 304 | + qformer.eval() |
| 305 | + |
| 306 | + text_encoder = ContextCLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder") |
| 307 | + vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae") |
| 308 | + |
| 309 | + unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") |
| 310 | + vae.eval() |
| 311 | + text_encoder.eval() |
| 312 | + scheduler = PNDMScheduler( |
| 313 | + beta_start=0.00085, |
| 314 | + beta_end=0.012, |
| 315 | + beta_schedule="scaled_linear", |
| 316 | + set_alpha_to_one=False, |
| 317 | + skip_prk_steps=True, |
| 318 | + ) |
| 319 | + tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer") |
| 320 | + image_processor = BlipImageProcessor() |
| 321 | + blip_diffusion = BlipDiffusionPipeline( |
| 322 | + tokenizer=tokenizer, |
| 323 | + text_encoder=text_encoder, |
| 324 | + vae=vae, |
| 325 | + unet=unet, |
| 326 | + scheduler=scheduler, |
| 327 | + qformer=qformer, |
| 328 | + image_processor=image_processor, |
| 329 | + ) |
| 330 | + blip_diffusion.save_pretrained(args.checkpoint_path) |
| 331 | + |
| 332 | + |
| 333 | +def main(args): |
| 334 | + model, _, _ = load_model_and_preprocess("blip_diffusion", "base", device="cpu", is_eval=True) |
| 335 | + save_blip_diffusion_model(model.state_dict(), args) |
| 336 | + |
| 337 | + |
| 338 | +if __name__ == "__main__": |
| 339 | + parser = argparse.ArgumentParser() |
| 340 | + parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") |
| 341 | + args = parser.parse_args() |
| 342 | + |
| 343 | + main(args) |
0 commit comments