diff --git a/examples/model_configs/quantized_model.yaml b/examples/model_configs/quantized_model.yaml index 0647379f9..47cf4a089 100644 --- a/examples/model_configs/quantized_model.yaml +++ b/examples/model_configs/quantized_model.yaml @@ -3,7 +3,7 @@ model: model_args: "pretrained=HuggingFaceH4/zephyr-7b-beta,revision=main" # pretrained=model_name,trust_remote_code=boolean,revision=revision_to_use,model_parallel=True. To see the full list of parameters, please see here: https://huggingface.co/docs/lighteval/main/en/quicktour#model-arguments . dtype: "4bit" # Specifying the model to be loaded in 4 bit uses BitsAndBytesConfig. The other option is to use "8bit" quantization. compile: true - merged_weights: # Ignore this section if you are not using PEFT models . + merged_weights: # Ignore this section if you are not using PEFT models. delta_weights: false # set to True of your model should be merged with a base model, also need to provide the base model name adapter_weights: false # set to True of your model has been trained with peft, also need to provide the base model name base_model: null # path to the base_model - needs to be specified only if delta_weights or adapter_weights is set to True diff --git a/examples/model_configs/serverless_model.yaml b/examples/model_configs/serverless_model.yaml index 214b43319..3c1250644 100644 --- a/examples/model_configs/serverless_model.yaml +++ b/examples/model_configs/serverless_model.yaml @@ -1,3 +1,3 @@ model: base_params: - model_name: "meta-llama/Llama-3.1-8B-Instruct" #Qwen/Qwen2.5-14B" #Qwen/Qwen2.5-7B". #To see the full list of parameters, please see here: https://huggingface.co/docs/lighteval/package_reference/models#endpoints-based-models . + model_name: "meta-llama/Llama-3.1-8B-Instruct" #Qwen/Qwen2.5-14B" #Qwen/Qwen2.5-7B". #To see the full list of parameters, please see here: https://huggingface.co/docs/lighteval/package_reference/models#endpoints-based-models