-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathdemo.py
166 lines (143 loc) · 6.03 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import logging
import time
from typing import Optional, Tuple
import albumentations as A
import cv2
import mediapipe as mp
import numpy as np
import torch
from albumentations.pytorch import ToTensorV2
from omegaconf import DictConfig, OmegaConf
from torch import Tensor
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
from constants import targets
from custom_utils.utils import build_model
logging.basicConfig(format="[LINE:%(lineno)d] %(levelname)-8s [%(asctime)s] %(message)s", level=logging.INFO)
COLOR = (0, 255, 0)
FONT = cv2.FONT_HERSHEY_SIMPLEX
class Demo:
@staticmethod
def preprocess(img: np.ndarray, transform) -> Tuple[Tensor, Tuple[int, int], Tuple[int, int]]:
"""
Preproc image for model input
Parameters
----------
img: np.ndarray
input image
transform :
albumentation transforms
"""
height, width = img.shape[0], img.shape[1]
transformed_image = transform(image=img)
processed_image = transformed_image["image"] / 255.0
return processed_image, (width, height)
@staticmethod
def get_transform_for_inf(transform_config: DictConfig):
"""
Create list of transforms from config
Parameters
----------
transform_config: DictConfig
config with test transforms
"""
transforms_list = [getattr(A, key)(**params) for key, params in transform_config.items()]
transforms_list.append(ToTensorV2())
return A.Compose(transforms_list)
@staticmethod
def run(
detector, transform, conf: DictConfig, num_hands: int = 2, threshold: float = 0.5, landmarks: bool = False
) -> None:
"""
Run detection model and draw bounding boxes on frame
Parameters
----------
detector : TorchVisionModel
Detection model
transform :
albumentation transforms
transform_config: DictConfig
config with test transforms
num_hands:
Min hands to detect
threshold : float
Confidence threshold
landmarks : bool
Detect landmarks
"""
if landmarks:
hands = mp.solutions.hands.Hands(
model_complexity=0, static_image_mode=False, max_num_hands=2, min_detection_confidence=0.8
)
cap = cv2.VideoCapture(0)
t1 = cnt = 0
while cap.isOpened():
delta = time.time() - t1
t1 = time.time()
ret, frame = cap.read()
if ret:
processed_image, size = Demo.preprocess(frame, transform)
with torch.no_grad():
output = detector([processed_image])[0]
boxes = output["boxes"][:num_hands]
scores = output["scores"][:num_hands]
labels = output["labels"][:num_hands]
if landmarks:
results = hands.process(frame[:, :, ::-1])
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
frame,
hand_landmarks,
mp.solutions.hands.HAND_CONNECTIONS,
mp_drawing_styles.DrawingSpec(color=[0, 255, 0], thickness=2, circle_radius=1),
mp_drawing_styles.DrawingSpec(color=[255, 255, 255], thickness=1, circle_radius=1),
)
for i in range(min(num_hands, len(boxes))):
if scores[i] > threshold:
width, height = size
scale = max(width, height) / conf.LongestMaxSize.max_size
padding_w = abs(conf.PadIfNeeded.min_width - width // scale) // 2
padding_h = abs(conf.PadIfNeeded.min_height - height // scale) // 2
x1 = int((boxes[i][0] - padding_w) * scale)
y1 = int((boxes[i][1] - padding_h) * scale)
x2 = int((boxes[i][2] - padding_w) * scale)
y2 = int((boxes[i][3] - padding_h) * scale)
cv2.rectangle(frame, (x1, y1), (x2, y2), COLOR, thickness=3)
cv2.putText(
frame,
targets[int(labels[i])],
(x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 255),
thickness=3,
)
fps = 1 / delta
cv2.putText(frame, f"FPS: {fps :02.1f}, Frame: {cnt}", (30, 30), FONT, 1, COLOR, 2)
cnt += 1
cv2.imshow("Frame", frame)
key = cv2.waitKey(1)
if key == ord("q"):
return
else:
cap.release()
cv2.destroyAllWindows()
def parse_arguments(params: Optional[Tuple] = None) -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Demo detection...")
parser.add_argument("-p", "--path_to_config", required=True, type=str, help="Path to config")
parser.add_argument("-lm", "--landmarks", required=False, action="store_true", help="Use landmarks")
known_args, _ = parser.parse_known_args(params)
return known_args
if __name__ == "__main__":
args = parse_arguments()
conf = OmegaConf.load(args.path_to_config)
model = build_model(conf)
transform = Demo.get_transform_for_inf(conf.test_transforms)
if conf.model.checkpoint is not None:
snapshot = torch.load(conf.model.checkpoint, map_location=torch.device("cpu"))
model.load_state_dict(snapshot["MODEL_STATE"])
model.eval()
if model is not None:
Demo.run(model, transform, conf.test_transforms, num_hands=100, threshold=0.8, landmarks=args.landmarks)