forked from thainq107/llms_qlora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
249 lines (221 loc) · 9.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import json
import argparse
import logging
import sys
from functools import partial
import numpy as np
import datasets
from datasets import DatasetDict
import evaluate
import bitsandbytes as bnb
import transformers
from transformers import (
DataCollatorForSeq2Seq,
GenerationConfig,
AutoTokenizer,
LlamaTokenizer,
Seq2SeqTrainer,
set_seed,
)
from utils import (
get_last_checkpoint,
smart_tokenizer_and_embedding_resize,
print_trainable_parameters,
get_gpu_utilization,
)
from model.dataloader import load_dataset_from_path, preprocess_function
from model.model import get_accelerate_model
from model.metric import load_metric, seq2seq_compute_metrics
from model.callback import SavePeftModelCallback
from huggingface_hub import login, create_repo, delete_repo
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
logger = logging.getLogger(__name__)
DEFAULT_PAD_TOKEN = "[PAD]"
def find_all_linear_names(args, model):
cls = bnb.nn.Linear4bit if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def train(model_args, data_args, training_args, generation_args):
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
training_args.generation_config = GenerationConfig(**vars(generation_args))
args = argparse.Namespace(
**vars(model_args), **vars(data_args), **vars(training_args)
)
print(args)
set_seed(args.seed)
# login hub
if training_args.push_to_hub:
login(
token=training_args.hub_token
)
try:
create_repo(training_args.hub_model_id, private=False)
except:
delete_repo(training_args.hub_model_id)
create_repo(training_args.hub_model_id, private=False)
checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir)
if completed_training:
print('Detected that training was already completed!')
# load dataset
raw_dataset = load_dataset_from_path(
data_args.save_data_dir,
data_args.dataset_name,
data_args.train_file,
data_args.validation_file,
data_args.test_file
)
raw_dataset = DatasetDict(raw_dataset)
logger.info(f"Dataset loaded: {raw_dataset}")
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
padding_side="right",
use_fast=False, # Fast tokenizer giving issues.
tokenizer_type='llama' if 'llama' in args.model_name_or_path else None, # Needed for HF name change
)
model = get_accelerate_model(args, checkpoint_dir)
if tokenizer._pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
if 'llama' in args.model_name_or_path or isinstance(tokenizer, LlamaTokenizer):
# LLaMA tokenizer may not have correct special tokens set.
# Check and add them if missing to prevent them from being parsed into different tokens.
# Note that these are present in the vocabulary.
# Note also that `model.config.pad_token_id` is 0 which corresponds to `<unk>` token.
print('Adding special tokens.')
tokenizer.add_special_tokens({
"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
"unk_token": tokenizer.convert_ids_to_tokens(
model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id
),
})
model.config.use_cache = False
print('loaded model')
# prepare metric
metric = load_metric(data_args.metric_name)
compute_metrics = seq2seq_compute_metrics(tokenizer, metric)
# Running the preprocessing pipeline on all the datasets
with training_args.main_process_first(desc="Dataset map pre-processing"):
processed_dataset = raw_dataset.map(
partial(
preprocess_function,
data_args=data_args,
tokenizer=tokenizer
),
batched=True,
load_from_cache_file=False,
remove_columns=['sentence', 'label'],
desc="Running tokenizer on dataset",
)
# ignore tokenizer pad token in the loss
label_pad_token_id = -100
# Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8
)
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
data_collator=data_collator,
train_dataset=processed_dataset["test"],
eval_dataset=processed_dataset["validation"],
compute_metrics=compute_metrics,
)
# Callbacks
if not args.full_finetune:
trainer.add_callback(SavePeftModelCallback)
# Verifying the datatypes and parameter counts before training.
print_trainable_parameters(args, model)
dtypes = {}
for _, p in model.named_parameters():
dtype = p.dtype
if dtype not in dtypes: dtypes[dtype] = 0
dtypes[dtype] += p.numel()
total = 0
for k, v in dtypes.items(): total+= v
for k, v in dtypes.items():
print(k, v, v/total)
all_metrics = {"run_name": args.run_name}
# Training
if args.do_train:
logger.info("*** Train ***")
# Note: `resume_from_checkpoint` not supported for adapter checkpoints by HF.
# Currently adapter checkpoint is reloaded as expected but optimizer/scheduler states are not.
train_result = trainer.train()
metrics = train_result.metrics
metrics["train_samples"] = len(processed_dataset["train"])
metrics["gpu_memory"] = get_gpu_utilization()
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
all_metrics.update(metrics)
# Evaluation
if args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
eval_dataset=processed_dataset["validation"],
metric_key_prefix="eval"
)
metrics["eval_samples"] = len(processed_dataset["validation"])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
all_metrics.update(metrics)
# Prediction
if args.do_predict:
logger.info("*** Predict ***")
if "labels" in processed_dataset["test"].features:
metrics = trainer.evaluate(eval_dataset=processed_dataset["test"])
metrics["test_samples"] = len(processed_dataset["test"])
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
all_metrics.update(metrics)
predictions = trainer.predict(processed_dataset["test"], metric_key_prefix="predict").predictions
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True)
predictions = [str(pred).strip() for pred in predictions]
output_predict_file = os.path.join(training_args.output_dir, "predict_results.txt")
with open(output_predict_file, "w") as writer:
writer.write("\n".join(predictions))
logger.info("Predict results saved at {}".format(output_predict_file))
if (args.do_train or args.do_eval or args.do_predict):
with open(os.path.join(args.output_dir, "metrics.json"), "w") as fout:
fout.write(json.dumps(all_metrics))
# Save processor and create model card
tokenizer.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
trainer.create_model_card()
trainer.push_to_hub()