-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
executable file
·514 lines (438 loc) · 16.4 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os, sys, argparse, glob
# Misc. libraries
from six.moves import map, zip, range
from natsort import natsorted
# Array and image processing toolboxes
import numpy as np
import skimage
import skimage.io
import skimage.transform
import skimage.segmentation
# Tensorpack toolbox
import tensorpack.tfutils.symbolic_functions as symbf
from tensorpack import *
from tensorpack.utils.viz import *
from tensorpack.utils.gpu import get_nr_gpu
from tensorpack.utils.utils import get_rng
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
# Tensorflow 1
import tensorflow as tf
from tensorflow import layers
# from tensorflow.contrib.layers.python import layers
###############################################################################
SHAPE = 256
BATCH = 1
TEST_BATCH = 100
EPOCH_SIZE = 100
NB_FILTERS = 64 # channel size
DIMX = 256
DIMY = 256
DIMZ = 2
DIMC = 1
###############################################################################
def INReLU(x, name=None):
x = InstanceNorm('inorm', x)
return tf.nn.relu(x, name=name)
###############################################################################
def INLReLU(x, name=None):
x = InstanceNorm('inorm', x)
return tf.nn.leaky_relu(x, name=name)
def BNLReLU(x, name=None):
x = BatchNorm('bn', x)
return tf.nn.leaky_relu(x, name=name)
###############################################################################
# Utility function for scaling
def cvt2tanh(x, name='ToRangeTanh'):
with tf.variable_scope(name):
return (x / 255.0 - 0.5) * 2.0
###############################################################################
def cvt2imag(x, name='ToRangeImag'):
with tf.variable_scope(name):
return (x / 2.0 + 0.5) * 255.0
###############################################################################
def cvt2sigm(x, name='ToRangeSigm'):
with tf.variable_scope(name):
return (x / 1.0 + 1.0) / 2.0
###############################################################################
def tf_complex(data, name='tf_channel'):
with tf.variable_scope(name+'_scope'):
real = data[:,0:1,...]
imag = data[:,1:2,...]
del data
data = tf.complex(real, imag)
data = tf.identity(data, name=name)
return data
###############################################################################
def tf_channel(data, name='tf_complex'):
with tf.variable_scope(name+'_scope'):
real = tf.real(data)
imag = tf.imag(data)
real = real[:,0:1,...]
imag = imag[:,0:1,...]
del data
data = tf.concat([real, imag], axis=1)
data = tf.identity(data, name=name)
return data
###############################################################################
def np_complex(data):
real = data[0,...]
imag = data[1,...]
del data
data = real + 1j*imag
return data
###############################################################################
def np_channel(data):
real = np.real(data)
imag = np.imag(data)
del data
data = np.concatenate([real, imag], axis=1)
return data
###############################################################################
# tfutils.symbolic_functions.psnr(prediction, ground_truth, maxp=None, name='psnr')
def psnr(prediction, ground_truth, maxp=None, name='psnr'):
"""`Peek Signal to Noise Ratio <https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio>`_.
.. math::
PSNR = 20 \cdot \log_{10}(MAX_p) - 10 \cdot \log_{10}(MSE)
Args:
prediction: a :class:`tf.Tensor` representing the prediction signal.
ground_truth: another :class:`tf.Tensor` with the same shape.
maxp: maximum possible pixel value of the image (255 in in 8bit images)
Returns:
A scalar tensor representing the PSNR.
"""
prediction = tf.abs(prediction)
ground_truth = tf.abs(ground_truth)
def log10(x):
with tf.name_scope("log10"):
numerator = tf.log(x)
denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
mse = tf.reduce_mean(tf.square(prediction - ground_truth))
if maxp is None:
psnr = tf.multiply(log10(mse), -10., name=name)
else:
maxp = float(maxp)
psnr = tf.multiply(log10(mse+1e-6), -10.)
psnr = tf.add(tf.multiply(20., log10(maxp)), psnr, name=name)
add_moving_summary(psnr)
return psnr
###############################################################################
def RF(image, mask, name="RF"):
# This op perform undersampling
with tf.variable_scope(name+'_scope'):
# Convert from 2 channel to complex number
image = tf_complex(image)
mask = tf_complex(mask)
# Forward Fourier Transform
freq_full = tf.fft2d(image, name='Ff')
freq_zero = tf.zeros_like(freq_full)
condition = tf.cast(tf.real(mask)>0.9, tf.bool)
freq_dest = tf.where(condition, freq_full, freq_zero, name='RfFf')
# Convert from complex number to 2 channel
freq_dest = tf_channel(freq_dest)
return tf.identity(freq_dest, name=name)
###############################################################################
def FhRh(freq, mask, name='FhRh', is_normalized=False):
with tf.variable_scope(name+'_scope'):
# Convert from 2 channel to complex number
freq = tf_complex(freq)
mask = tf_complex(mask)
# Under sample
condition = tf.cast(tf.real(mask)>0.9, tf.bool)
freq_full = freq
freq_zero = tf.zeros_like(freq_full)
freq_dest = tf.where(condition, freq_full, freq_zero, name='RfFf')
# Inverse Fourier Transform
image = tf.ifft2d(freq_dest, name='FtRt')
if is_normalized:
image = tf.div(image, ((DIMX-1)*(DIMY-1)))
# Convert from complex number to 2 channel
image = tf_channel(image)
return tf.identity(image, name)
###############################################################################
def update(recon, image, mask, name='update'):
"""
Update the reconstruction with undersample k-space measurement
"""
with tf.variable_scope(name+'_scope'):
k_recon = RF(recon, tf.ones_like(mask), name='k_recon')
k_image = RF(image, tf.ones_like(mask), name='k_image')
m_real = mask[:,0:1,...]
m_imag = mask[:,0:1,...]
m_mask = tf.concat([m_real, m_imag], axis=1)
print mask, k_recon, k_image
condition = tf.cast(tf.real(m_mask)>0.9, tf.bool)
# where(
# condition,
# x=None,
# y=None,
# name=None
# )
#Return the elements, either from x or y, depending on the condition.
k_return = tf.where(condition, k_image, k_recon, name='k_return')
updated = FhRh(k_return, tf.ones_like(mask), name=name)
return tf.identity(updated, name=name)
###############################################################################
# FusionNet
@layer_register(log_shape=True)
def residual(x, chan, first=False):
with argscope([Conv2D], stride=1, kernel_shape=3):
input = x
return (LinearWrap(x)
.Conv2D('conv0', chan, padding='SAME')
# .Dropout('drop', 0.5)
.Conv2D('conv1', chan/2, padding='SAME')
.Conv2D('conv2', chan, padding='SAME', nl=tf.identity)
# .Dropout('drop', 0.5)
# .InstanceNorm('inorm')
()) + input
###############################################################################
@layer_register(log_shape=True)
def Subpix2D(inputs, chan, scale=1, stride=1):
with argscope([Conv2D], stride=stride, kernel_shape=3):
results = Conv2D('conv0', inputs, chan* scale**2, padding='SAME')
old_shape = inputs.get_shape().as_list()
results = tf.reshape(results, [-1, chan, old_shape[2]*scale, old_shape[3]*scale])
return results
###############################################################################
@layer_register(log_shape=True)
def residual_enc(x, chan, first=False):
with argscope([Conv2D, Deconv2D], stride=1, kernel_shape=3):
x = (LinearWrap(x)
# .Dropout('drop', 0.9)
.Conv2D('conv_i', chan, stride=2)
.residual('res_enc', chan, first=True)
.Conv2D('conv_o', chan, stride=1)
# .InstanceNorm('inorm')
())
return x
###############################################################################
@layer_register(log_shape=True)
def residual_dec(x, chan, first=False):
with argscope([Conv2D, Deconv2D], stride=1, kernel_shape=3):
x = (LinearWrap(x)
.Deconv2D('deconv_i', chan, stride=1)
.residual('res_dec', chan, first=True)
.Deconv2D('deconv_o', chan, stride=2)
# .InstanceNorm('inorm')
# .Dropout('drop', 0.9)
())
return x
###############################################################################
@auto_reuse_variable_scope
def arch_generator(img):
assert img is not None
# img = tf_complex(img)
with argscope([Conv2D, Deconv2D], nl=BNLReLU, kernel_shape=4, stride=2, padding='SAME'):
e0 = residual_enc('e0', img, NB_FILTERS*1)
# e0 = Dropout('dr', e0, 0.9)
e1 = residual_enc('e1', e0, NB_FILTERS*2)
e2 = residual_enc('e2', e1, NB_FILTERS*4)
e3 = residual_enc('e3', e2, NB_FILTERS*8)
# e3 = Dropout('dr', e3, 0.9)
d3 = residual_dec('d3', e3, NB_FILTERS*4)
d2 = residual_dec('d2', d3+e2, NB_FILTERS*2)
d1 = residual_dec('d1', d2+e1, NB_FILTERS*1)
d0 = residual_dec('d0', d1+e0, NB_FILTERS*1)
dd = (LinearWrap(d0)
.Conv2D('convlast', 2, kernel_shape=3, stride=1, padding='SAME', nl=tf.tanh, use_bias=True) ())
l = (dd)
return l
###############################################################################
# @auto_reuse_variable_scope
def arch_discriminator(img):
assert img is not None
# img = tf_complex(img)
with argscope([Conv2D, Deconv2D], nl=BNLReLU, kernel_shape=4, stride=2, padding='SAME'):
img = Conv2D('conv0', img, NB_FILTERS, nl=tf.nn.leaky_relu)
# img = Dropout('dr', img, 0.9)
e0 = residual_enc('e0', img, NB_FILTERS*1)
e1 = residual_enc('e1', e0, NB_FILTERS*2)
e2 = residual_enc('e2', e1, NB_FILTERS*4)
e3 = residual_enc('e3', e2, NB_FILTERS*8)
ret = Conv2D('convlast', e3, 1, stride=1, padding='SAME', nl=tf.identity, use_bias=True)
return ret
###############################################################################
class ClipCallback(Callback):
def _setup_graph(self):
vars = tf.trainable_variables()
ops = []
for v in vars:
n = v.op.name
if not n.startswith('discrim/'):
continue
logger.info("Clip {}".format(n))
ops.append(tf.assign(v, tf.clip_by_value(v, -0.01, 0.01)))
self._op = tf.group(*ops, name='clip')
def _trigger_step(self):
self._op.run()
###############################################################################
class ImageDataFlow(RNGDataFlow):
def __init__(self, imageDir, maskDir, labelDir, size, ratio = 0.1, dtype='float32', is_training=False):
"""
Args:
shapes (list): a list of lists/tuples. Shapes of each component.
size (int): size of this DataFlow.
random (bool): whether to randomly generate data every iteration.
Note that merely generating the data could sometimes be time-consuming!
dtype (str): data type.
"""
# super(FakeData, self).__init__()
self.dtype = dtype
self.imageDir = imageDir
self.maskDir = maskDir
self.labelDir = labelDir
self.ratio = ratio
self._size = size
self.is_training = is_training
def size(self):
return self._size
def reset_state(self):
self.rng = get_rng(self)
print self.is_training
def random_flip(self, image, seed=None):
assert ((image.ndim == 2) | (image.ndim == 3))
if seed:
np.random.seed(seed)
random_flip = np.random.randint(1,5)
if random_flip==1:
flipped = image[...,::1,::-1]
image = flipped
elif random_flip==2:
flipped = image[...,::-1,::1]
image = flipped
elif random_flip==3:
flipped = image[...,::-1,::-1]
image = flipped
elif random_flip==4:
flipped = image
image = flipped
return image
def random_reverse(self, image, seed=None):
assert ((image.ndim == 2) | (image.ndim == 3))
if seed:
np.random.seed(seed)
random_reverse = np.random.randint(1,3)
if random_reverse==1:
reverse = image[::1,...]
elif random_reverse==2:
reverse = image[::-1,...]
return reverse
def random_rotate(self, image, seed=None):
assert ((image.ndim == 2) | (image.ndim == 3))
if seed:
np.random.seed(seed)
random_rotatedeg = np.random.randint(-90,90)
rotated = image.copy()
from scipy.ndimage.interpolation import rotate
rotated = rotate(image, random_rotatedeg, axes=(1,2), reshape=False)
image = rotated
return image
def random_square_rotate(self, image, seed=None):
assert ((image.ndim == 2) | (image.ndim == 3))
if seed:
np.random.seed(seed)
random_rotatedeg = 90*np.random.randint(0,4)
rotated = image.copy()
from scipy.ndimage.interpolation import rotate
if image.ndim==2:
rotated = rotate(image, random_rotatedeg, axes=(0,1))
elif image.ndim==3:
rotated = rotate(image, random_rotatedeg, axes=(1,2))
image = rotated
return image
def random_crop(self, image, seed=None):
assert ((image.ndim == 2) | (image.ndim == 3))
if seed:
np.random.seed(seed)
limit = np.random.randint(1, 12) # Crop pixel
randy = np.random.randint(0, limit)
randx = np.random.randint(0, limit)
cropped = image[:, randy:-(limit-randy), randx:-(limit-randx)]
return cropped
##################################################################
def get_data(self, shuffle=True):
# self.reset_state()
images = glob.glob(self.imageDir + '/*.*')
# print "images: ", images
if self.maskDir:
masks = glob.glob(self.maskDir + '/*.*')
# print "masks: ", masks
labels = glob.glob(self.labelDir + '/*.*')
# print "labels: ", labels
from natsort import natsorted
images = natsorted(images)
if self.maskDir:
masks = natsorted(masks)
labels = natsorted(labels)
# print images
# print labels
for k in range(self._size):
if self.is_training:
from random import randrange
rand_index_image = randrange(0, len(images))
if self.maskDir:
rand_index_mask = randrange(0, len(masks))
rand_index_label = randrange(0, len(labels))
# rand_index = randrange(0, len(images))
else:
rand_index_image = k
rand_index_mask = 0
rand_index_label = k
image = skimage.io.imread(images[rand_index_image])
if self.maskDir:
mask = skimage.io.imread(masks[rand_index_mask])
else:
mask = 255*self.generateMask(DIMZ, DIMY, DIMX, sampling_rate=self.ratio)
label = skimage.io.imread(labels[rand_index_label])
# print images[rand_index_image], masks[rand_index_mask], labels[rand_index_label]
# print image.shape, mask.shape, label.shape
# # Process the static image, make 2 channel image identical
if image.ndim == 2:
image = np.stack((image, np.zeros_like(image)), axis=0)
if mask.ndim == 2:
mask = np.stack((mask, np.zeros_like(mask)), axis=0)
if label.ndim == 2:
label = np.stack((label, np.zeros_like(label)), axis=0)
seed_image = np.random.randint(0, 2015)
seed_mask = np.random.randint(0, 2015)
seed_label = np.random.randint(0, 2015)
if self.is_training:
# pass
#TODO: augmentation here
image = self.random_square_rotate(image, seed=seed_image)
image = self.random_flip(image, seed=seed_image)
image = self.random_crop(image, seed=seed_image)
label = self.random_square_rotate(label, seed=seed_label)
label = self.random_flip(label, seed=seed_label)
label = self.random_crop(label, seed=seed_label)
image = skimage.transform.resize(image, output_shape=(DIMZ, DIMY, DIMX),
order=1, preserve_range=True)
label = skimage.transform.resize(label, output_shape=(DIMZ, DIMY, DIMX),
order=1, preserve_range=True)
image = np.expand_dims(image, axis=0)
mask = np.expand_dims(mask, axis=0)
label = np.expand_dims(label, axis=0)
# yield [image.astype(np.complex64), mask.astype(np.complex64), label.astype(np.complex64)]
yield [image.astype(np.uint8),
mask.astype(np.uint8),
label.astype(np.uint8)]
def get_data(imageDir, maskDir, labelDir, size=EPOCH_SIZE):
ds_train = ImageDataFlow(imageDir,
maskDir,
labelDir,
size,
ratio=0.1,
is_training=True
)
ds_valid = ImageDataFlow(imageDir.replace('train', 'valid'),
maskDir,
labelDir.replace('train', 'valid'),
size,
ratio=0.1,
is_training=False
)
return ds_train, ds_valid