-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathequalising.py
495 lines (429 loc) · 23.1 KB
/
equalising.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
class EVAModel_EQ(nn.Module):
def __init__(
self,
config: EVAConfig,
parallel_output=False,
checkpoint_activations=False,
checkpoint_num_layers=1):
super(EVAModel_EQ, self).__init__()
if config.vocab_size is None:
raise RuntimeError("Should set vocab size")
self.enc_config = copy.deepcopy(config)
self.dec_config = copy.deepcopy(config)
self.parallel_output = parallel_output
self.word_embeds = mpu.VocabParallelEmbedding(config.vocab_size, config.d_model,
init_method=init_method_normal(std=0.02))
self.role_embeds = nn.Embedding(2, config.d_model)
self.lm_head = mpu.VocabParallelEmbedding(config.vocab_size, config.d_model,
init_method=init_method_normal(std=config.init_method_std))
self.encoder = mpu.ParallelTransformer(self.enc_config, word_embeds=self.word_embeds,
role_embeds=self.role_embeds, is_decoder=False,
checkpoint_activations=checkpoint_activations,
checkpoint_num_layers=checkpoint_num_layers)
self.decoder = mpu.ParallelTransformer(self.dec_config, word_embeds=self.word_embeds,
role_embeds=self.role_embeds, is_decoder=True,
checkpoint_activations=checkpoint_activations,
checkpoint_num_layers=checkpoint_num_layers)
self.debias_head = nn.functional.linear
# for model_batch, no_model_batch in train_dataloader:
# for k in model_batch:
# model_batch[k] = model_batch[k].to(device)
# for k in no_model_batch:
# no_model_batch[k] = no_model_batch[k].to(device)
def forward(
self,
enc_input_ids=None,
enc_role_ids=None,
enc_attention_mask=None,
dec_input_ids=None,
dec_role_ids=None,
dec_attention_mask=None,
cross_attention_mask=None,
enc_hidden_states=None,
past_key_values=None,
only_encoder=False,
demographic=None,
target_pair_type=None,
lm_hyp=None,
debias_hyp=None,
norm_debias_loss=None,
labels=None,
loss_mask=None
):
labels = enc_input_ids
if enc_hidden_states is None:
enc_outputs = self.encoder(
input_ids=enc_input_ids,
attention_mask=enc_attention_mask,
role_ids=enc_role_ids,
)
enc_hidden_states = enc_outputs["last_hidden_state"]
if only_encoder:
outputs = {
"encoder_last_hidden_state": enc_hidden_states,
}
return outputs
dec_outputs = self.decoder(
input_ids=dec_input_ids,
role_ids=dec_role_ids,
attention_mask=dec_attention_mask,
cross_attention_mask=cross_attention_mask,
enc_hidden_states=enc_hidden_states,
past_key_values=past_key_values,
)
############gai##
# outputs = {
# "last_hidden_state": hidden_states,
# "past_key_values": present_key_value_states,
# "hidden_states": None,
# "attentions": all_self_attention_probs,
# "cross_attentions": all_cross_attention_probs
# }
# print('hidden_states shape: ', dec_outputs)
hidden_states = dec_outputs['last_hidden_state']
# print('hidden_states: {}'.format(hidden_states))
# lm_logits = self.lm_head(hidden_states)
debias_loss_total = torch.tensor(0)
if demographic:
# print('demographic', demographic)
if embedding_type == 'input':
pass
elif embedding_type == 'output':
all_output_embeds = self.lm_head.weight.data
all_output_embeds = all_output_embeds.to(self.device)
else:
raise ValueError('Please specify valid embedding type - input or output')
if demographic == 'appearance':
target_ids_list = [[[2531, 91], [2951, 91]], [[4130, 10506], [2951, 91]],
[[4130, 4218], [2951, 91]], [[5121, 91], [148, 40]],
[[5121, 5], [148, 5]], [[2531, 5], [2951, 5]], [[4130, 5]], [[2951, 5]]]
elif demographic == 'orientation':
target_ids_list = [[[331, 102, 2444], [2047, 102, 2444]], [[691, 102, 2444], [2047, 102, 2444]],
[[1884, 852, 1679], [2047, 102, 2444]], [[331, 102, 5], [2047, 102, 5]],
[[995, 10506, 5], [955, 270, 5]], [[993, 1007, 847], [955, 270, 5]]]
elif demographic == 'age':
target_ids_list = [[[359, 38, 5], [44, 1282, 38]], [[61, 359, 44], [1566, 44, 5]],
[[359, 74, 2597], [104, 9828, 5]], [[74, 2597, 5], [104, 9828, 5]],
[[74, 564, 5], [104, 6486, 2473]], [[359, 255, 5], [104, 9828, 5]],
[[359, 239, 4218], [104, 6486, 2473]], [[359, 239, 239], [104, 6486, 2473]],
[[359, 239, 5], [104, 6486, 2473]]]
elif demographic == 'gender':
target_ids_list = [[[293, 418], [418, 91]], [[3271, 293], [270, 38]], [[293, 5], [270, 5]],
[[88, 5], [35, 5]], [[1214, 1214], [1975, 1975]], [[1214, 5], [1975, 5]],
[[1286, 1286], [1436, 1436]], [[1286, 5], [1436, 5]], [[564, 564], [1890, 1890]],
[[564, 5], [1890, 5]], [[6486, 2473], [104, 9828]], [[695, 3681], [2864, 2864]]]
else:
raise ValueError('Please specify valid demographic - religion1, religion2, orientation, gender or race')
target_ids_list = torch.LongTensor(target_ids_list)
target_ids_list = target_ids_list.to(self.device)
make_mask = labels.clone()
# print('make_mask {}'.format(make_mask))
make_mask[make_mask > 0] = 1
make_mask[make_mask < 0] = 0
# print('make_mask {}'.format(make_mask))
remove_pad_mask = make_mask.unsqueeze(-1).expand(hidden_states.size())
# print('remove_pad_mask {}'.format(remove_pad_mask))
hidden_states_no_pad_token = hidden_states * remove_pad_mask
# print('hidden_states_no_pad_token {}'.format(hidden_states_no_pad_token))
if target_pair_type == 'per_sent_targets':
for i, input_id in enumerate(dec_input_ids):
# print('input_id:', input_id)
for t_i, target in enumerate(target_ids_list[:, 0]):
# print('target', target)
# 去掉补齐target的[pad]:
# if target[-1] == 1:
# target = target[:-1]
n_5 = 0
for i in target[::-1]:
if k== 5:
n_5 += 1
else:
break
target = target[:-n_5]
# input_id_split = list(zip(*[iter(input_id)*len(target)]))
target_len = len(target)
input_id_split = []
for start in range(0, len(input_id)):
end = start + target_len
input_id_split.append(input_id[start:end])
# if target[0] in input_id:
# print('target {}'.format(target))
# print('target_ids_list:', target_ids_list[t_i])
# print('input_id_split', input_id_split)
# if target in input_id_split:
target_in_input_id = False
for input_id_s in input_id_split:
# print('input_id_s', input_id_s)
# print('target', target)
if input_id_s.equal(target):
target_in_input_id = True
break
# print('target_in_input_id', target_in_input_id)
if target_in_input_id:
if embedding_type == 'input':
target_embeds = all_input_embeds(target_ids_list[t_i])
# print('target_embeds {}'.format(target_embeds))
elif embedding_type == 'output':
target_embeds = all_output_embeds[target_ids_list[t_i]]
# print('target_embeds {}'.format(target_embeds.size()))
else:
raise ValueError('Please specify valid embedding type - input or output')
# 先判断target 的len(黑人=2,美国人=3),再使用debias_head len次(乘以target的每个字),\
# 其中将target_embeds替换成debias_logits, 当target1 != target2时,用全1向量补全短的target。
# print('hidden_states_no_pad_token[i]', hidden_states_no_pad_token[i].size())
len_target = target_embeds.size()[1]
# print('target_embeds {}'.format(target_embeds.size()))
# print('len_target {}'.format(len_target))
if len_target > 1:
target_embeds = torch.mean(target_embeds, 1)
debias_logits = self.debias_head(hidden_states_no_pad_token[i], weight=target_embeds)
softmax_layer = nn.Softmax(dim=1)
debias_softmax = softmax_layer(debias_logits)
debias_softmax = torch.squeeze(debias_softmax)
debias_softmax_1 = torch.flatten(debias_softmax[:, 0])
debias_softmax_2 = torch.flatten(debias_softmax[:, 1])
debias_loss = torch.abs(torch.log(debias_softmax_1 / debias_softmax_2))
if norm_debias_loss:
debias_loss = torch.sum(debias_loss) / torch.sum(input_id != 30000)
else:
debias_loss = torch.sum(debias_loss)
debias_loss_total = debias_loss_total + debias_loss
debias_loss_total = torch.true_divide(debias_loss_total, target_ids_list.shape[0])
# total_loss = None
# if debias_loss_total:
# total_loss = lm_hyp * lm_loss + debias_hyp * debias_loss_total
# else:
# # This loss is used for evaluation
# total_loss = lm_loss
# # print('total loss {}'.format(total_loss))
# # if not return_dict:
# output = (lm_logits,) + transformer_outputs[1:]
#
# return (total_loss,) + output
last_hidden_state_parallel = mpu.copy_to_model_parallel_region(dec_outputs["last_hidden_state"])
logits_parallel = F.linear(last_hidden_state_parallel, self.lm_head.weight)
total_loss = None
if self.parallel_output:
lm_logits = logits_parallel
else:
lm_logits = mpu.gather_from_model_parallel_region(logits_parallel)
# print('eva_modeling lm_logits {}'.format(lm_logits.size()))
# losses = mpu.vocab_parallel_cross_entropy(lm_logits.contiguous().float(), no_model_batch["labels"])
#
# loss_mask = no_model_batch["loss_mask"]
# losses = (losses * loss_mask).sum(-1) / loss_mask.sum(-1)
# lm_loss = losses.mean()
# labels = inputs["labels"]
# print('eva_modeling labels{}'.format(labels))
lm_loss = None
if labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# print('evalmodeling341 debias_loss_total', debias_loss_total.size())
if debias_loss_total:
total_loss = lm_hyp * lm_loss + debias_hyp * debias_loss_total
else:
# This loss is used for evaluation
# total_loss = lm_loss
total_loss = lm_loss
outputs = {
"total_loss": total_loss,
"lm_logits": lm_logits,
"enc_last_hidden_state": enc_hidden_states,
"dec_last_hidden_state": dec_outputs["last_hidden_state"],
"past_key_values": dec_outputs["past_key_values"],
}
return outputs
class GPT2DoubleHeadsModelHardDebiasing(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 1
self.transformer = GPT2Model(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.init_weights()
def get_output_embeddings(self):
return self.lm_head
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
}
# @add_start_docstrings_to_callable(GPT2_INPUTS_DOCSTRING)
# @replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
mc_token_ids=None,
labels=None,
mc_labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
embedding_type=None,
handle_broken_token=None,
demographic=None,
target_pair_type=None,
lm_hyp=None,
debias_hyp=None,
norm_debias_loss=None,
**kwargs,
):
r"""
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input)
Index of the classification token in each input sequence.
Selected in the range ``[0, input_ids.size(-1) - 1[``.
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`)
Labels for language modeling.
Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids``
Indices are selected in ``[-1, 0, ..., config.vocab_size]``
All labels set to ``-100`` are ignored (masked), the loss is only
computed for labels in ``[0, ..., config.vocab_size]``
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`, defaults to :obj:`None`)
Labels for computing the multiple choice classification loss.
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
of the input tensors. (see `input_ids` above)
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
"""
if "lm_labels" in kwargs:
warnings.warn(
"The `lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("lm_labels")
if "past" in kwargs:
warnings.warn(
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
FutureWarning,
)
past_key_values = kwargs.pop("past")
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
# print(input_ids[0])
hd_loss_total = torch.tensor(0)
###########gai#HD
if demographic:
if demographic == 'appearance':
target_ids_list = [[[1477, 31], [1541, 31]], [[1687, 3079], [1541, 31]],
[[1687, 773], [1541, 31]], [[1937, 31], [155, 18]],
[[1937, 1], [155, 1]], [[1477, 1], [1541, 1]], [[1687, 1], [1541, 1]]]
attribute_list = [[1696, 2599, 1], [1696, 1, 1], [745, 69, 1], [2072, 127, 485], [1729, 3451, 1],
[1729, 1, 1], [909, 2504, 1]]
else:
raise ValueError('Please specify valid demographic - religion1, religion2, orientation, gender')
target_ids_list = torch.tensor(target_ids_list)
target_ids_list = target_ids_list.to(self.device)
attribute_list = torch.tensor(attribute_list)
attribute_list = attribute_list.to(self.device)
lm_head_weights = self.lm_head.weight.data
diff_matrix = torch.zeros((target_ids_list.size(0), 768))####check if it's 768 ?
diff_matrix = diff_matrix.to(self.device)
# create matrix over union of target pair difference in embeddings
for i, target_pair in enumerate(target_ids_list):
num_pad_list = target_pair == 1
num_pad = 0
for i in num_pad_list[0]:
if i:
num_pad = num_pad + 1
# print('target_pair',target_pair)
# print('num_pad', num_pad)
target_pair = target_pair[:, :3 - num_pad]
# print('target_pair[:, :3 - num_pad]', target_pair)
target_len = len(target_pair[0])
# print('target_len', target_len)
j_w = lm_head_weights[target_pair[0]]
# print('j_w', j_w.size())
c_w = lm_head_weights[target_pair[1]]
if target_len > 1:
j_w = torch.mean(j_w, 0)
c_w = torch.mean(c_w, 0)
diff_w = (c_w - j_w) / 2
diff_matrix[i] = diff_w
u, s, v = torch.svd(diff_matrix)
s_2_sum = torch.sum(torch.square(s))
s_total = torch.tensor(0.0)
# Keep columns of V that most represent bias space
for k_i, s_i in enumerate(s):
s_total = s_total + torch.square(s_i)
if s_total > 0.5 * s_2_sum:
k = k_i + 1
break
v_k = v[:, :k]
# neutralise hidden states of attribute words
word_projection_total = torch.zeros([768])
word_projection_total = word_projection_total.to(self.device)
# hidden_state_final = torch.zeros([768])
# hidden_state_final = hidden_state_final.to(self.device)
for i_sent, sent in enumerate(input_ids):
for i, input_id in enumerate(sent):
for x, attr in enumerate(attribute_list):
if input_id in attr:
if torch.sum(attr != 1) > 1:
if all(i1 in attr for i1 in sent[i:i + torch.sum(attr != 1)]):
hidden_state = hidden_states[i_sent, i:i + torch.sum(attr != 1)]
hidden_state_final = torch.mean(hidden_state, 0)
else:
hidden_state_final = torch.zeros([768])
hidden_state_final = hidden_state_final.to(self.device)
else:
hidden_state_final = torch.squeeze(hidden_states[i_sent, i:i+1])
for b in range(v_k.shape[1]):
word_projection = torch.dot(hidden_state_final, v_k[:, b]) * v_k[:, b]
word_projection_total = word_projection_total + word_projection
hd_loss = torch.sum(torch.abs(word_projection_total))
hd_loss_total = hd_loss_total + hd_loss
lm_loss = None
if labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# print('lm loss {}'.format(lm_loss))
if hd_loss_total:
# print('Hd loss {}'.format(hd_loss_total))
lm_loss_total = lm_hyp * lm_loss + debias_hyp * hd_loss_total
else:
lm_loss_total = lm_loss
# print('lm loss in hard debias {}'.format(lm_loss_total))
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((lm_loss_total,) + output) if lm_loss is not None else output
mc_loss = None
mc_logits = None
return GPT2DoubleHeadsModelOutput(
loss=lm_loss_total,
mc_loss=mc_loss,
logits=lm_logits,
mc_logits=mc_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)