-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathtrain.py
executable file
·181 lines (138 loc) · 6.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
import time
import torch
import torchvision.utils
from fvcore.common.checkpoint import Checkpointer
from gaze_estimation import (GazeEstimationMethod, create_dataloader,
create_logger, create_loss, create_model,
create_optimizer, create_scheduler,
create_tensorboard_writer)
from gaze_estimation.utils import (AverageMeter, compute_angle_error,
create_train_output_dir, load_config,
save_config, set_seeds, setup_cudnn)
def train(epoch, model, optimizer, scheduler, loss_function, train_loader,
config, tensorboard_writer, logger):
logger.info(f'Train {epoch}')
model.train()
device = torch.device(config.device)
loss_meter = AverageMeter()
angle_error_meter = AverageMeter()
start = time.time()
for step, (images, poses, gazes) in enumerate(train_loader):
if config.tensorboard.train_images and step == 0:
image = torchvision.utils.make_grid(images,
normalize=True,
scale_each=True)
tensorboard_writer.add_image('Train/Image', image, epoch)
images = images.to(device)
poses = poses.to(device)
gazes = gazes.to(device)
optimizer.zero_grad()
if config.mode == GazeEstimationMethod.MPIIGaze.name:
outputs = model(images, poses)
elif config.mode == GazeEstimationMethod.MPIIFaceGaze.name:
outputs = model(images)
else:
raise ValueError
loss = loss_function(outputs, gazes)
loss.backward()
optimizer.step()
angle_error = compute_angle_error(outputs, gazes).mean()
num = images.size(0)
loss_meter.update(loss.item(), num)
angle_error_meter.update(angle_error.item(), num)
if step % config.train.log_period == 0:
logger.info(f'Epoch {epoch} '
f'Step {step}/{len(train_loader)} '
f'lr {scheduler.get_last_lr()[0]:.6f} '
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f}) '
f'angle error {angle_error_meter.val:.2f} '
f'({angle_error_meter.avg:.2f})')
elapsed = time.time() - start
logger.info(f'Elapsed {elapsed:.2f}')
tensorboard_writer.add_scalar('Train/Loss', loss_meter.avg, epoch)
tensorboard_writer.add_scalar('Train/lr',
scheduler.get_last_lr()[0], epoch)
tensorboard_writer.add_scalar('Train/AngleError', angle_error_meter.avg,
epoch)
tensorboard_writer.add_scalar('Train/Time', elapsed, epoch)
def validate(epoch, model, loss_function, val_loader, config,
tensorboard_writer, logger):
logger.info(f'Val {epoch}')
model.eval()
device = torch.device(config.device)
loss_meter = AverageMeter()
angle_error_meter = AverageMeter()
start = time.time()
with torch.no_grad():
for step, (images, poses, gazes) in enumerate(val_loader):
if config.tensorboard.val_images and epoch == 0 and step == 0:
image = torchvision.utils.make_grid(images,
normalize=True,
scale_each=True)
tensorboard_writer.add_image('Val/Image', image, epoch)
images = images.to(device)
poses = poses.to(device)
gazes = gazes.to(device)
if config.mode == GazeEstimationMethod.MPIIGaze.name:
outputs = model(images, poses)
elif config.mode == GazeEstimationMethod.MPIIFaceGaze.name:
outputs = model(images)
else:
raise ValueError
loss = loss_function(outputs, gazes)
angle_error = compute_angle_error(outputs, gazes).mean()
num = images.size(0)
loss_meter.update(loss.item(), num)
angle_error_meter.update(angle_error.item(), num)
logger.info(f'Epoch {epoch} '
f'loss {loss_meter.avg:.4f} '
f'angle error {angle_error_meter.avg:.2f}')
elapsed = time.time() - start
logger.info(f'Elapsed {elapsed:.2f}')
if epoch > 0:
tensorboard_writer.add_scalar('Val/Loss', loss_meter.avg, epoch)
tensorboard_writer.add_scalar('Val/AngleError', angle_error_meter.avg,
epoch)
tensorboard_writer.add_scalar('Val/Time', elapsed, epoch)
if config.tensorboard.model_params:
for name, param in model.named_parameters():
tensorboard_writer.add_histogram(name, param, epoch)
def main():
config = load_config()
set_seeds(config.train.seed)
setup_cudnn(config)
output_dir = create_train_output_dir(config)
save_config(config, output_dir)
logger = create_logger(name=__name__,
output_dir=output_dir,
filename='log.txt')
logger.info(config)
train_loader, val_loader = create_dataloader(config, is_train=True)
model = create_model(config)
loss_function = create_loss(config)
optimizer = create_optimizer(config, model)
scheduler = create_scheduler(config, optimizer)
checkpointer = Checkpointer(model,
optimizer=optimizer,
scheduler=scheduler,
save_dir=output_dir.as_posix(),
save_to_disk=True)
tensorboard_writer = create_tensorboard_writer(config, output_dir)
if config.train.val_first:
validate(0, model, loss_function, val_loader, config,
tensorboard_writer, logger)
for epoch in range(1, config.scheduler.epochs + 1):
train(epoch, model, optimizer, scheduler, loss_function, train_loader,
config, tensorboard_writer, logger)
scheduler.step()
if epoch % config.train.val_period == 0:
validate(epoch, model, loss_function, val_loader, config,
tensorboard_writer, logger)
if (epoch % config.train.checkpoint_period == 0
or epoch == config.scheduler.epochs):
checkpoint_config = {'epoch': epoch, 'config': config.as_dict()}
checkpointer.save(f'checkpoint_{epoch:04d}', **checkpoint_config)
tensorboard_writer.close()
if __name__ == '__main__':
main()