-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding.py
44 lines (35 loc) · 1.36 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
'''This code is for Embedding face
author : Hyunah Oh
data : 2020.01.22
flow : Detection -> Alignment -> Normalization -> Embedding(load pretrained) -> Training Classification
'''
import numpy as np
import cv2
from data import load_metadata
from model import create_model
from align import AlignDlib
from sklearn.externals import joblib
metadata = load_metadata('images')
def load_image(path):
img = cv2.imread(path, 1)
# OpenCV loads images with color channels
# in BGR order. So we need to reverse them
return img[...,::-1]
# Initialize the OpenFace face alignment utility
alignment = AlignDlib('models/landmarks.dat')
#### Detection & Alignment & Normalization ####
def align_image(img):
return alignment.align(96, img, alignment.getLargestFaceBoundingBox(img),
landmarkIndices=AlignDlib.OUTER_EYES_AND_NOSE)
embedded = np.zeros((metadata.shape[0], 128))
nn4_small2_pretrained = create_model()
nn4_small2_pretrained.load_weights('weights/nn4.small2.v1.h5')
#### Embedding ####
for i, m in enumerate(metadata):
img = load_image(m.image_path())
img = align_image(img)
# scale RGB values to interval [0,1]
img = (img / 255.).astype(np.float32)
# obtain embedding vector for image
embedded[i] = nn4_small2_pretrained.predict(np.expand_dims(img, axis=0))[0]
joblib.dump(embedded, 'models/embedded_images.pkl')