A key property of the Ethereum platform is, of course, the Ethereum Virtual Machine, with its ability to execute programs written in its Turing complete bytecode language. Another key property is its decentralized organization through consensus on state updates. Being able to deliver EVM driven state updates on a decentralized concensus platform has a crucial underpinning: EVM execution must be totally deterministic and based only on the shared context of the Ethereum state and signed transactions. This has two particularly important consequences: the first is that there can be no instrinsic source of randomness for the EVM and smart contracts to work with; and second is that all extrinsic data can only be introduced as the data payload of a transaction. Let’s unpick those two consequences slightly more. To understand the prohibition of a rand() function in the EVM to provide randomness for smart contracts, consider the effect on attempts to achieve consensus after the execution of such a function: node A would execute the command and store 3 on behalf of the smart contract in its storage and node B, executing the same smart contract, would store 7 instead. Thus, nodes A and B would come to different conclusions about what the resulting state should be, despite having run exactly the same code in the same context. Indeed, it could easily be that a different resulting state would be achieved every time that the smart contract is evaluated. As such, there would be no way for the network, with its multitude of nodes running independently around the world, to ever come to a decentralized consensus on what the resulting state should be. In practice, it would get much worse than this example very quickly, because knock-on effects, including ether transfers, would build up exponentially. Note that pseudo-random functions, such as cryptographically secure hash functions (which are deterministic and therefore can be, and indeed are, part of the EVM), are not enough for many applications: take a gambling game that simulates coin flips to resolve bet payouts, which needs to randomize heads or tails - a miner can gain an advantage by playing the game and only including their transactions in blocks for which they will win. So how do we get around this problem? Well, all nodes can agree on the contents of signed transactions, so extrinsic information, including sources of randomness, price information, weather forecasts, etc, can be introduced as the data part of transactions sent to the network. However, such data simply can not be trusted, coming as it does from completely anonymous sources. As such, we have just deferred the problem. In this chapter we investigate the solution: oracles.
Oracles, ideally, provide a trustless (or at least near-trustless) way of getting extrinsic (i.e. "real world" or off-chain) information, such as the result of football games, the price of gold, or truely random numbers, on to the Ethereum platform for smart contracts to use. They can also be used to relay data securely to DApp front-ends directly. They can be thought of as a bridge, i.e. a mechanism for bridging the gap between the off-chain world and smart contracts. Allowing smart contracts to enforce contractual relationships based on real-world events and data broadens their scope dramatically. Note that some oracles provide data that is particular to a specific private data source, such as academic certificates or government IDs. Even though that is a fully trusted data source, it is so by definition. Such subjective data can’t be given "trustlessly" - the provider of such information, such as a university, is the sole arbitor of this information, so it only makes sense to go to the single source of this information to obtain it. As such, we include these data sources in our definitions of what counts as "oracles" because they also provide a data bridge for smart contracts with the characteristic of the data being provided. The kind of subjective data generally takes the form of certifications, such as passports or records of achievement. Certifications will become a big part of the success of blockchain platforms, particularly when the reputation problem is solved, so it is important they are included and that you understand how they can be served by blockchain platforms.
Let’s look at some more examples of data that might be provided by oracles:
-
Random numbers/entropy from physical sources (e.g. quantum/thermal phenomenon): e.g. to fairly select a winner in a lottery smart contract
-
Parametric triggers indexed to natural hazards: e.g. triggering of catastrophe bond smart contracts such as Richter scale measurement for an earthquake bond
-
Exchange rate data: e.g. for accurate pegging of stablecoins to fiat currency
-
Capital markets data: e.g. the pricing baskets of tokenized assets/securities
-
Benchmark reference data: e.g. incorporating interest rates into smart financial derivatives
-
Static/pseudo-static data: security identifiers, country codes, currency codes, etc
-
Time and interval data: for event triggers grounded in precise SI time measurement
-
Weather data: e.g. insurance premium calculations based on weather forecasts
-
Political events: for prediction market resolution
-
Sporting events: for prediction market resolution and fantasy sports contracts
-
Geo-location data: e.g. as used in supply chain tracking
-
Damage verification: for insurance contracts
-
Events occurring on other blockchains: interoperability functions
-
Ether market price: e.g. for fiat gas price oracles
-
Flight statistics: e.g. as used by groups or clubs for flight ticket pooling
-
Certifications: e.g. academic achievements or government issued rights-giving identification documents
In this section, we will examine some of the ways oracles can be implemented, including basic oracle patterns, computation oracles, decentralized oracles, and oracle client implementations in Solidity.
All oracles provide a few key functions, by definition:
-
Collecting data from an off-chain source
-
Transferring the data on-chain with a signed message
-
Making the available by putting it in a smart contract’s storage
With the data in the smart contract’s storage, it can be accessed by other smart contracts via message calls that invoke a "retrieve" function of the oracle’s smart contract; and it can also be accessed by Ethereum nodes or network enabled clients directly by "looking" into the oracle’s storage.
The three main ways to set up an oracle can be categorized as: request-response, publish-subscribe and immediate-read.
Starting with the simplest, immediate-read oracles are those that provide data which is only needed for an immediate decision, like "What is the address for mastering-ethereum.com?" or "Is this person over 18?". Those wishing to query this kind of data tend to do so on a "just-in-time" basis, i.e. the look-up is made when it is needed and possibly never again. Examples of such oracles include those that hold data about or issued by organizations, such as academic certificates, dial codes, institutional memberships, airport indentifiers, sovereign IDs, etc. This type of oracle stores data once in its contract storage, whence any other smart contract can look it up using a request call to the oracle contract. It may be updated The data in the oracle’s storage is also available for direct look-up by blockchain enabled (i.e. Ethereum client connected) applications without having to go through the palaver of incurring the gas costs of issuing a transaction. A shop wanting to check the age of a customer wishing to purchase alcohol could use an oracle in this way. This type of oracle is attractive to an organization or company that might otherwise have to run and maintain servers to answer such data requests. Once in an oracle smart contract, the Ethereum platform takes care of everything. Note that the data stored by the oracle is likely not to be the raw data that the oracle is serving, e.g. for efficiency or privacy reasons. A university may set up an oracle for the certificates of academic achievement of past students. However, storing the full details of the certificate (which may run to pages of courses taken and grades achieved) would be excessive. Instead, a hash of the certificate is sufficient. Likewise, a government might wish to put citizen IDs on to the Ethereum platform, where clearly the details included need to be kept private. Again, hashing the data (more carefully, in Merkle trees with salts) and only storing the root hash in the smart contract’s storage is an efficient way to organize such a service.
The next set up is publish-subscribe, where an oracle, that effectively provides a broadcast service for data that is expected to change (perhaps both regularly and frequently), is either polled by a smart contract on-chain, or watched by an off-chain daemon for updates. This category has a pattern similar to RRS feeds, WebSub, and the like, where the oracle is updated with new information and a flag signals that new data is available to those who consider themselves "subscribed". Interested parties must either poll the oracle to check whether the latest information has changed, or listen for updates to oracle contract and act when they occur. Examples include price feeds, weather information, economic or social statistics, traffic data, etc. Polling is very inefficient in the world of web servers, but not so in the peer-to-peer context of blockchain platforms: Ethereum clients have to keep up with all state changes, including changes to contract storage, so polling for data changes is a local call to a synced client. Ethereum event logs make it particularly easy for applications to look out for oracle updates, and so this pattern can in some ways be even considered a "push" service. However, if the polling is done from a smart contract, which might be necessary for some decentralized applications (e.g. where activation incentives are not possible), then significant gas expenditure may be incurred.
The request-response category is the most complicated: this is where the data space is too huge to be stored in a smart contract and users are expected to only need small part of the overall data set at a time. It is also an applicable model for data provider businesses. In practical terms, such an oracle might be implemented as a system of on-chain smart contracts and off-chain infrastructure used to monitor requests, retrieve and return data. A request for data from a decentralized application would typically be an asynchronous process involving a number of steps. In this pattern, firstly, an externally-controlled account would transact with a decentralized application, resulting in an interaction with a function defined in the oracle smart contract. This function initiates the request to the oracle, with the associated arguments detailing the data requested in addition to supplementary information that might include callback functions and scheduling parameters. Once this transaction has been validated, the oracle request can be observed as an EVM event emitted by the oracle contract, or as a state change; the arguments can be retrieved and used to perform the actual query from the off-chain data source. The oracle may also require payment for processing the request, gas payment for the callback, and permissions to access the requested data. Finally, the resulting data is signed by the oracle owner, essentially attesting to the value of the data at a given time, and delivered in a transaction to the decentralized application that made the request—either directly or via the oracle contract. Depending on the scheduling parameters, the oracle may broadcast further transactions updating the data at regular intervals, e.g. end of day pricing information.
The steps for a request-response oracle may be summarized as follows:
-
Receiving queries from decentralized applications
-
Parsing a query
-
Checking that payment and data access permissions are met
-
Retrieving relevant data from an off-chain source (and encrypting if necessary)
-
Signing of transaction(s) with the data included
-
Broadcasting transactions to the network
-
Scheduling of any further necessary transactions, such as notifications, etc
A range of other schemes are also possible, for example, data can be requested from and returned directly by an externally-controlled account, removing the need for an oracle smart contract. Similarly, the request and response could be made to and from an Internet of Things enabled hardware sensor. Therefore, oracles can be human, software, or hardware-based.
The request-response pattern described above is commonly seen in client-server architectures. While this is a useful messaging pattern which allows applications to have a two-way conversation, it is a relatively simple pattern and perhaps inappropriate under certain conditions. For example, a smart bond requiring an interest rate from an oracle might have to request the data on a daily basis under a request-response pattern in order to ensure the rate is always correct. Given that interest rates change infrequently, a publish-subscribe pattern may be more appropriate here—especially when taking into consideration Ethereum’s limited bandwidth.
Publish–subscribe is a pattern where publishers—here, oracles—do not send messages directly to receivers, but instead categorize published messages into distinct classes. Subscribers are able to express an interest in one or more classes and retrieve only those messages which are of interest. Under such a pattern, an oracle might write the interest rate to its own internal storage, when and only when it changes. Multiple subscribed decentralized applications can simply read it from the oracle contract, thereby reducing the impact on network bandwidth while minimizing storage costs.
In a broadcast or multicast pattern, an oracle would post all messages to a channel and subscribing contracts would listen to the channel under a variety of subscription modes. For example, an oracle might publish messages to a cryptocurrency exchange rate channel. A subscribing smart contract could request the full content of the channel if it required the time series for, e.g., a moving average calculation; another might require only the last rate for a spot price calculation. A broadcast pattern is appropriate where the oracle does not need to know the identity of the subscribing contract.
If we assume that the source of data being queried by a decentralized application is both authoritative and trustworthy (a not insignificant assumption), an outstanding question remains: given that the oracle and the request-response mechanism may be operated by distinct entities, how are we able trust this mechanism? There is a distinct possibility that data may be tampered with whilst in transit, so it is critical that off-chain methods are able to attest to the returned data’s integrity. Two common approaches to data authentication are authenticity proofs and Trusted Execution Environments (TEEs).
Authenticity proofs are cryptographic guarantees that prove that data has not been tampered with. Based on a variety of attestation techniques (e.g. digitally signed proofs), they effectively shift the trust from the data carrier to the attestor, i.e. the provider of the attestation method. By verifying the authenticity proof on-chain, smart contracts are able to verify the integrity of the data before operating upon it. Oraclize [1] is an example of an oracle service leveraging a variety of authenticity proofs. One such proof that is currently available for data queries from the Ethereum main network is the TLSNotary Proof [2]. TLSNotary Proofs allow a client to provide evidence to a third party that HTTPS web traffic occurred between the client and a server. While HTTPS is itself secure, it doesn’t support data signing. As a result, TLSNotary Proofs rely on TLSNotary (via PageSigner [3]) signatures. TLSNotary Proofs leverage the Transport Layer Security (TLS) protocol, enabling the TLS master key, which signs the data after it has been accessed, to be split between three parties: the server (the oracle), an auditee (Oraclize), and an auditor. Oraclize uses an Amazon Web Services (AWS) virtual machine instance as the auditor which can be verified as having been unmodified since instantiation [4]. This AWS instance stores the TLSNotary secret, allowing it to provide honesty proofs. Although it offers higher assurances against data tampering than a purely trusted request-response mechanism, this approach does require the assumption that Amazon itself will not tamper with the VM instance.
TownCrier [5,6] is an authenticated data feed oracle system based on the TEE approach; such methods utilize hardware-based secure enclaves to verify data integrity. TownCrier uses Intel’s SGX (Software Guard eXtensions) to ensure that responses from HTTPS queries can be verified as authentic. SGX provides guarantees of integrity, ensuring that applications running within an enclave are protected by the CPU against tampering by any other process. It also provides confidentiality, ensuring that an application’s state is opaque to other processes when running within the enclave. And finally, SGX allows attestation, by generating a digitally signed proof that an application—securely identified by a hash of its build—is actually running within an enclave. By verifying this digital signature, it is possible for a decentralized application to prove that a TownCrier instance is running securely within an SGX enclave. This, in turn, proves that the instance has not been tampered with and that the data emitted by TownCrier is therefore authentic. The confidentiality property additionally enables TownCrier to handle private data by allowing data queries to be encrypted using the TownCrier instance’s public key. By operating an oracle’s query/response mechanism within an enclave such as SGX, it can effectively be thought of as running securely on trusted third party hardware, ensuring that the requested data is returned untampered (assuming that we trust Intel/SGX).
So far, we have only discussed oracles in the context of requesting and delivering data. However, oracles can also be used to perform arbitrary computation, a function which can be especially useful given Ethereum’s inherent block gas limit and comparatively expensive computation costs; with Vitalik himself pointing out the fact that the computational cost on Ethereum is less efficient by a factor of a million when compared to existing centralized services [7]. Rather than just relaying the results of a query, computation oracles can be used to perform computation on a set of inputs and return a calculated result that may have been infeasible to calculate on-chain. For example, one might use a computation oracle to perform a computationally-intensive regression calculation in order to estimate the yield of a bond contract.
If you are willing to trust a centralized, but auditable service, you can go again to Oraclize. They provide a service that allows decentralized applications to request the output of a computation performed in a sandboxed AWS virtual machine. The AWS instance creates an executable container, from a user-configured Dockerfile packed in an archive that is uploaded to IPFS. On request, Oraclize retrieves this archive using its hash, and then initializes and executes the Docker container on AWS, passing any arguments that are provided to the application as environment variables. The containerized application performs the calculation, subject to a time constraint, and must have the result written to standard output where it can be retrieved by Oraclize and returned to the decentralized application. Oraclize currently offers this service on an auditable t2.micro AWS instance, so if the computation is of some non-trival value, it is possible to inspect that the correct Docker container was executed. Nonetheless, this is not a truely decentralized solution.
The concept of a 'cryptlet' as a standard for verifiable oracle truths has been formalized as part of Microsoft’s wider ESC Framework [8]. Cryptlets execute within an encrypted capsule that abstracts away the infrastructure, such as I/O, and has the CryptoDelegate attached so incoming and outgoing messages are signed, validated, and proven automatically. Cryptlets support distributed transactions so that contract logic can take on complex multi-step, multi-blockchain and external system transactions in an ACID manner. This allows developers to create portable, isolated, and private resolutions of the truth for use in smart-contracts. Cryptlets follow the format below:
public class SampleContractCryptlet : Cryptlet { public SampleContractCryptlet(Guid id, Guid bindingId, string name, string address, IContainerServices hostContainer, bool contract) : base(id, bindingId, name, address, hostContainer, contract) { MessageApi = new CryptletMessageApi(GetType().FullName, new SampleContractConstructor())
For a more decentralized solution, we can currently turn to TrueBit [9], who offer a solution for scalable and verifiable off-chain computation. It introduces a system of solvers and verifiers, who are incentivized to perform computations and verification of those computations, respectively. Should a solution be challenged, an iterative verification process on subsets of the computation are performed on-chain—a kind of 'verification game'. The game proceeds through a series of rounds, each recursively checking a smaller and smaller subset of the computation. The game eventually reaches a final round, where the challenge is sufficiently trivial such that the judges–Ethereum miners–can make a final ruling on whether the challenge was justified, on-chain. In effect, TrueBit is an implementation of a computation market, allowing decentralized applications to pay for verifiable computation to be performed outside of the network, but relying on Ethereum to enforce the rules of the verification game. In theory, this enables trustless smart contracts to securely perform any computation task.
A broad range of applications exist for systems like TrueBit, ranging from machine learning to verification of any proof-of-work. An example of the latter is the Doge-Ethereum bridge, which utilizes TrueBit to verify Dogecoin’s proof-of-work (Scrypt), which is a memory-hard and computationally intensive function that cannot be computed within the Ethereum block gas limit. By performing this verification on TrueBit, it has been possible to securely verify Dogecoin transactions within a smart contract on Ethereum’s Rinkeby testnet.
While centralized data or computation oracles suffice for many applications, they do however represent central points of failure in the Ethereum network. A number of schemes have been proposed around the idea of decentralized oracles as a means of ensuring data availability, and the creation of a network of individual data providers with an on-chain data aggregation system.
ChainLink [10] have proposed a decentralized oracle network consisting of three key smart contracts: a reputation contract, an order-matching contract, an aggregation contract, and an off-chain registry of data providers. The reputation contract is used to keep track of data provider’s performance. Scores in the reputation contract are used to populate the off-chain registry. The order-matching contract selects bids from oracles using the reputation contract. It then finalizes a Service Level Agreement (SLA), which includes query parameters and the number of oracles required. This means that the purchaser needn’t transact with the individual oracles directly. The aggregation contract collects responses, submitted using a commit-reveal scheme, from multiple oracles, and then calculates the final collective result of the query, and finally feeds the results back into the reputation contract.
One of the main challenges with such a decentralized approach is the formulation of the aggregation function. ChainLink proposes calculating a weighted response, allowing a validity score to be reported for each oracle response. Detecting an 'invalid' score here is non-trivial since it relies on the premise that outlying data points, measured by deviations from responses provided by peers, are incorrect. Calculating a validity score based on the location of an oracle response amongst a distribution of responses risks penalizing correct answers over average ones. Therefore, ChainLink offers a standard set of aggregation contracts, but also allows customized aggregation contracts to be specified.
A related idea is the SchellingCoin protocol [11]. Here, multiple participants report values and the median is taken as the 'correct' answer. Reporters are required to provide a deposit which is redistributed in favor of values that are closer to the median, therefore incentivizing the reporting of values that are similar to others. A common value, also known as the Schelling Point, which respondents might consider as the natural and obvious target around which to coordinate is expected to be close to the actual value.
Teutsch recently proposed a new design for a decentralized off-chain data availability oracle [12]. This design leverages a dedicated proof-of-work blockchain which is able to correctly report on whether or not registered data is available during a given epoch. Miners attempt to download, store, and propagate all currently registered data, therefore guaranteeing data is available locally. While such a system is expensive in the sense that every mining node stores and propagates all registered data, the system allows storage to be reused by releasing data after the registration period ends.
Below is a Solidity example demonstrating how Oraclize can be used to continuously poll for the ETH/USD price from an API and store the result in a usable manner. :
/* ETH/USD price ticker leveraging CryptoCompare API This contract keeps in storage an updated ETH/USD price, which is updated every 10 minutes. */ pragma solidity ^0.4.1; import "github.com/oraclize/ethereum-api/oraclizeAPI.sol"; /* "oraclize_" prepended methods indicate inheritance from "usingOraclize" */ contract EthUsdPriceTicker is usingOraclize { uint public ethUsd; event newOraclizeQuery(string description); event newCallbackResult(string result); function EthUsdPriceTicker() payable { // signals TLSN proof generation and storage on IPFS oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS); // requests query queryTicker(); } function __callback(bytes32 _queryId, string _result, bytes _proof) public { if (msg.sender != oraclize_cbAddress()) throw; newCallbackResult(_result); /* * parse the result string into an unsigned integer for on-chain use * uses inherited "parseInt" helper from "usingOraclize", allowing for * a string result such as "123.45" to be converted to uint 12345 */ ethUsd = parseInt(_result, 2); // called from callback since we're polling the price queryTicker(); } function queryTicker() public payable { if (oraclize_getPrice("URL") > this.balance) { newOraclizeQuery("Oraclize query was NOT sent, please add some ETH to cover for the query fee"); } else { newOraclizeQuery("Oraclize query was sent, standing by for the answer.."); // query params are (delay in seconds, datasource type, datasource argument) // specifies JSONPath, to fetch specific portion of JSON API result oraclize_query(60 * 10, "URL", "json(https://min-api.cryptocompare.com/data/price?fsym=ETH&tsyms=USD,EUR,GBP).USD"); } } }
To integrate with Oraclize, the contract EthUsdPriceTicker must be a child of usingOraclize; the usingOraclize contract is defined in the oraclizeAPI file. The data request is made using the oraclize_query() function which is inherited from the usingOraclize contract. This is an overloaded function that expects at least two arguments:
-
The supported datasource to use, such as URL, WolframAlpha, IPFS, or computation
-
The argument for the given datasource, which may include the use of JSON or XML parsing helpers
The price query is performed in the queryTicker() function. In order to perform the query, Oraclize requires the payment of a small fee in ether, covering the gas cost for transmitting and processing the result to the callback() function and accompanying surcharge for the service. This amount is dependent on the datasource, and where specified, the type of authenticity proof that is required. Once the data has been retrieved, the callback() function is called by an Oraclize controlled account permissioned to do the callback; it passes in the response value and a unique queryId argument, which as an example, can be used to handle and track multiple pending callbacks from Oraclize.
Financial data provider Thomson Reuters also provides an oracle service for Ethereum, called BlockOne IQ, allowing market and reference data to be requested by smart contracts running on private or permissioned networks [13]. Below is the interface for the oracle, and a client contract that will make the request:
pragma solidity ^0.4.11; contract Oracle { uint256 public divisor; function initRequest(uint256 queryType, function(uint256) external onSuccess, function(uint256) external onFailure) public returns (uint256 id); function addArgumentToRequestUint(uint256 id, bytes32 name, uint256 arg) public; function addArgumentToRequestString(uint256 id, bytes32 name, bytes32 arg) public; function executeRequest(uint256 id) public; function getResponseUint(uint256 id, bytes32 name) public constant returns(uint256); function getResponseString(uint256 id, bytes32 name) public constant returns(bytes32); function getResponseError(uint256 id) public constant returns(bytes32); function deleteResponse(uint256 id) public constant; } contract OracleB1IQClient { Oracle private oracle; event LogError(bytes32 description); function OracleB1IQClient(address addr) public payable { oracle = Oracle(addr); getIntraday("IBM", now); } function getIntraday(bytes32 ric, uint256 timestamp) public { uint256 id = oracle.initRequest(0, this.handleSuccess, this.handleFailure); oracle.addArgumentToRequestString(id, "symbol", ric); oracle.addArgumentToRequestUint(id, "timestamp", timestamp); oracle.executeRequest(id); } function handleSuccess(uint256 id) public { assert(msg.sender == address(oracle)); bytes32 ric = oracle.getResponseString(id, "symbol"); uint256 open = oracle.getResponseUint(id, "open"); uint256 high = oracle.getResponseUint(id, "high"); uint256 low = oracle.getResponseUint(id, "low"); uint256 close = oracle.getResponseUint(id, "close"); uint256 bid = oracle.getResponseUint(id, "bid"); uint256 ask = oracle.getResponseUint(id, "ask"); uint256 timestamp = oracle.getResponseUint(id, "timestamp"); oracle.deleteResponse(id); // Do something with the price data.. } function handleFailure(uint256 id) public { assert(msg.sender == address(oracle)); bytes32 error = oracle.getResponseError(id); oracle.deleteResponse(id); emit LogError(error); } }
The data request is initiated using the initRequest() function, which allows the query type (in this example, a request for an intraday price) to be specified in addition to two callback functions. This returns a uint256 identifier which can then be used to provide additional arguments. The addArgumentToRequestString() function is used to specify the RIC (Reuters Instrument Code), here for IBM stock, and addArgumentToRequestUint() allows the timestamp to be specified. Now, passing in an alias for block.timestamp will retrieve the current price for IBM. The request is then executed by the executeRequest() function. Once the request has been processed, the oracle contract will call the onSuccess callback function with the query identifier, allowing the resulting data to be retrieved, else the onFailure callback with an error code in the event of retrieval failure. The available fields that can be retrieved on success include open, high, low, close (OHLC) and bid/ask prices.
Reality Keys [14] allows requests for facts to be made off-chain using POST requests. Responses are cryptographically signed, allowing them to be verified on-chain. Here, a request is made to check the balance of an account on the Bitcoin blockchain at a specific time using the blockr.io API:
wget -qO- https://www.realitykeys.com/api/v1/blockchain/new --post-data="chain=XBT&address=1F1tAaz5x1HUXrCNLbtMDqcw6o5GNn4xqX&which_total=total_received&comparison=ge&value=1000&settlement_date=2015-09-23&objection_period_secs=604800&accept_terms_of_service=current&use_existing=1"
For this example, arguments allow the blockchain to be specified, the amount to be queried (total received or final balance) and the result to be compared with a provided value, allowing a true or false response. The resulting JSON object includes the returned value, in addition to the "signature_v2" field which allows the result to be verified in a smart contract using the ecrecover() function:
"machine_resolution_value" : "29665.80352", "signature_v2" : { "fact_hash" : "aadb3fa8e896e56bb13958947280047c0b4c3aa4ab8c07d41a744a79abf2926b", "ethereum_address" : "6fde387af081c37d9ffa762b49d340e6ae213395", "base_unit" : 1, "signed_value" : "0000000000000000000000000000000000000000000000000000000000000001", "sig_r" : "a2cd9dc040e393299b86b1c21cbb55141ef5ee868072427fc12e7cfaf8fd02d1", "sig_s" : "8f3199b9c5696df34c5193afd0d690241291d251a5d7b5c660fa8fb310e76f80", "sig_v" : 27 }
To verify the signature, ecrecover() can determine that the data was indeed signed by ethereum_address as follows. The fact_hash and signed_value are hashed, and passed to ecrecover() with the three signature parameters:
bytes32 result_hash = sha3(fact_hash, signed_value); address signer_address = ecrecover(result_hash, sig_v, sig_r, sig_s); assert(signer_address == ethereum_address); uint256 result = uint256(signed_value) / base_unit; // Do something with the result..
[1] http://www.oraclize.it/
[2] https://tlsnotary.org/
[3] https://tlsnotary.org/pagesigner.html
[4] https://bitcointalk.org/index.php?topic=301538.0
[5] http://hackingdistributed.com/2017/06/15/town-crier/
[6] https://www.cs.cornell.edu/~fanz/files/pubs/tc-ccs16-final.pdf
[7] https://www.crowdfundinsider.com/2018/04/131519-vitalik-buterin-outlines-off-chain-ethereum-smart-contract-activity-at-deconomy/
[8] https://github.com/Azure/azure-blockchain-projects/blob/master/bletchley/EnterpriseSmartContracts.md
[9] https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
[10] https://link.smartcontract.com/whitepaper
[11] https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/
[12] http://people.cs.uchicago.edu/~teutsch/papers/decentralized_oracles.pdf
[13] https://developers.thomsonreuters.com/blockchain-apis/blockone-iq-ethereum
[14] https://www.realitykeys.com
https://ethereum.stackexchange.com/questions/201/how-does-oraclize-handle-the-tlsnotary-secret
https://blog.oraclize.it/on-decentralization-of-blockchain-oracles-94fb78598e79
https://medium.com/@YondonFu/off-chain-computation-solutions-for-ethereum-developers-507b23355b17
https://blog.oraclize.it/overcoming-blockchain-limitations-bd50a4cfb233
https://medium.com/@jeff.ethereum/optimising-the-ethereum-virtual-machine-58457e61ca15
http://docs.oraclize.it/#ethereum
https://media.consensys.net/a-visit-to-the-oracle-de9097d38b2f
https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/
http://www.oraclize.it/papers/random_datasource-rev1.pdf
https://blog.oraclize.it/on-decentralization-of-blockchain-oracles-94fb78598e79
https://www.reddit.com/r/ethereum/comments/73rgzu/is_solving_the_oracle_problem_a_paradox/
https://medium.com/truebit/a-file-system-dilemma-2bd81a2cba25
https://medium.com/@roman.brodetski/introducing-oracul-decentralized-oracle-data-feed-solution-for-ethereum-5cab1ca8bb64