-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
234 lines (181 loc) · 7.85 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Created by Adam Goldbraikh - Scalpel Lab Technion
# adapted from: https://github.com/colincsl/TemporalConvolutionalNetworks/blob/master/code/metrics.py
# parts of the code were adapted from: https://github.com/sj-li/MS-TCN2?utm_source=catalyzex.com
import os
import numpy as np
import argparse
from termcolor import colored, cprint
from sklearn.metrics import f1_score, accuracy_score, recall_score, precision_score, confusion_matrix
# https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
# https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
def read_file(path):
with open(path, 'r') as f:
content = f.read()
f.close()
return content
def get_labels_start_end_time(frame_wise_labels, bg_class=["background"]):
labels = []
starts = []
ends = []
last_label = frame_wise_labels[0]
if frame_wise_labels[0] not in bg_class:
labels.append(frame_wise_labels[0])
starts.append(0)
for i in range(len(frame_wise_labels)):
if frame_wise_labels[i] != last_label:
if frame_wise_labels[i] not in bg_class:
labels.append(frame_wise_labels[i])
starts.append(i)
if last_label not in bg_class:
ends.append(i)
last_label = frame_wise_labels[i]
if last_label not in bg_class:
ends.append(i)
return labels, starts, ends
def levenstein(p, y, norm=False):
m_row = len(p)
n_col = len(y)
D = np.zeros([m_row + 1, n_col + 1], np.float)
for i in range(m_row + 1):
D[i, 0] = i
for i in range(n_col + 1):
D[0, i] = i
for j in range(1, n_col + 1):
for i in range(1, m_row + 1):
if y[j - 1] == p[i - 1]:
D[i, j] = D[i - 1, j - 1]
else:
D[i, j] = min(D[i - 1, j] + 1,
D[i, j - 1] + 1,
D[i - 1, j - 1] + 1)
if norm:
score = (1 - D[-1, -1] / max(m_row, n_col)) * 100
else:
score = D[-1, -1]
return score
def edit_score(recognized, ground_truth, norm=True, bg_class=["background"]):
P, _, _ = get_labels_start_end_time(recognized, bg_class)
Y, _, _ = get_labels_start_end_time(ground_truth, bg_class)
return levenstein(P, Y, norm)
def f_score(recognized, ground_truth, overlap, bg_class=["background"]):
p_label, p_start, p_end = get_labels_start_end_time(recognized, bg_class)
y_label, y_start, y_end = get_labels_start_end_time(ground_truth, bg_class)
tp = 0
fp = 0
hits = np.zeros(len(y_label))
for j in range(len(p_label)):
intersection = np.minimum(p_end[j], y_end) - np.maximum(p_start[j], y_start)
union = np.maximum(p_end[j], y_end) - np.minimum(p_start[j], y_start)
IoU = (1.0 * intersection / union) * ([p_label[j] == y_label[x] for x in range(len(y_label))])
# Get the best scoring segment
idx = np.array(IoU).argmax()
if IoU[idx] >= overlap and not hits[idx]:
tp += 1
hits[idx] = 1
else:
fp += 1
fn = len(y_label) - sum(hits)
return float(tp), float(fp), float(fn)
def pars_ground_truth(gt_source):
contant = []
for line in gt_source:
info = line.split()
line_contant = [info[2]] * (int(info[1]) - int(info[0]) + 1)
contant = contant + line_contant
return contant
def metric_calculation(ground_truth_path, recognition_list, list_of_videos, suffix=""):
overlap = [.1, .25, .5]
results_dict = {"Acc " + suffix: None, "Edit " + suffix: None, "F1-macro " + suffix: None,
F"F1@{int(overlap[0] * 100)} " + suffix: None, F"F1@{int(overlap[1] * 100)} " + suffix: None,
F"F1@{int(overlap[2] * 100)} " + suffix: None
}
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
correct = 0
total = 0
edit = 0
gt_list = []
all_gt = []
all_recogs = []
for i, seq in enumerate(list_of_videos):
file_ptr = open(ground_truth_path + seq.split('.')[0] + '.txt', 'r')
gt_source = file_ptr.read().split('\n')[:-1]
gt_content = pars_ground_truth(gt_source)
gt_list.append(gt_content)
recog_content = recognition_list[i]
all_gt = all_gt + gt_content[:min(len(gt_content), len(recog_content))]
all_recogs = all_recogs + list(recog_content[:min(len(gt_content), len(recog_content))])
for i in range(min(len(gt_content), len(recog_content))):
total += 1
if gt_content[i] == recog_content[i]:
correct += 1
edit += edit_score(recog_content, gt_content)
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(recog_content, gt_content, overlap[s])
tp[s] += tp1
fp[s] += fp1
fn[s] += fn1
color = "yellow"
print(colored("Acc: %.4f" % (100 * float(correct) / total), color))
f1_macro = f1_score(all_gt, all_recogs, average='macro')
results_dict["F1-macro " + suffix] = 100 * f1_macro
labels = list(set(all_gt + all_recogs))
f1_per_class = f1_score(all_gt, all_recogs, average='macro', labels=labels)
print(colored("F1-macro: %.4f" % (100 * float(f1_macro)), color))
print(colored('Edit: %.4f' % ((1.0 * edit) / len(list_of_videos)), color))
acc = (100 * float(correct) / total)
results_dict["Acc " + suffix] = acc
edit = ((1.0 * edit) / len(list_of_videos))
results_dict["Edit " + suffix] = edit
for s in range(len(overlap)):
precision = tp[s] / float(tp[s] + fp[s])
recall = tp[s] / float(tp[s] + fn[s])
f1 = 2.0 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) * 100
results_dict[F"F1@{int(overlap[s] * 100)} " + suffix] = f1
print(colored('F1@%0.2f: %.4f' % (overlap[s], f1), color))
# CHANGE - Added mean metric over all other metrics for overall maximization (internal use - doesn't affect the evaluation)
list_metrics = list(results_dict.values())
mean_metric = sum(list_metrics) / len(list_metrics)
results_dict["mean_metric"] = mean_metric
return results_dict, gt_list
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default="gtea")
parser.add_argument('--split', default='1')
args = parser.parse_args()
ground_truth_path = "./data/" + args.dataset + "/groundTruth/"
recog_path = "./results/" + args.dataset + "/split_" + args.split + "/"
file_list = "./data/" + args.dataset + "/splits/test.split" + args.split + ".bundle"
list_of_videos = read_file(file_list).split('\n')[:-1]
overlap = [.1, .25, .5]
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
correct = 0
total = 0
edit = 0
for vid in list_of_videos:
gt_file = ground_truth_path + vid
gt_content = read_file(gt_file).split('\n')[0:-1]
recog_file = recog_path + vid.split('.')[0]
recog_content = read_file(recog_file).split('\n')[1].split()
for i in range(len(gt_content)):
total += 1
if gt_content[i] == recog_content[i]:
correct += 1
edit += edit_score(recog_content, gt_content)
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(recog_content, gt_content, overlap[s])
tp[s] += tp1
fp[s] += fp1
fn[s] += fn1
print("Acc: %.4f" % (100 * float(correct) / total))
print('Edit: %.4f' % ((1.0 * edit) / len(list_of_videos)))
acc = (100 * float(correct) / total)
edit = ((1.0 * edit) / len(list_of_videos))
for s in range(len(overlap)):
precision = tp[s] / float(tp[s] + fp[s])
recall = tp[s] / float(tp[s] + fn[s])
f1 = 2.0 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) * 100
print('F1@%0.2f: %.4f' % (overlap[s], f1))
if __name__ == '__main__':
main()