-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmt_train.py
executable file
·475 lines (450 loc) · 14.6 KB
/
mt_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#!/usr/bin/env python3
# encoding: utf-8
# Copyright 2019 Kyoto University (Hirofumi Inaguma)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Neural machine translation model training script."""
import logging
import os
import random
import subprocess
import sys
import configargparse
import numpy as np
from espnet import __version__
from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES
# NOTE: you need this func to generate our sphinx doc
def get_parser(parser=None, required=True):
"""Get default arguments."""
if parser is None:
parser = configargparse.ArgumentParser(
description="Train a neural machine translation (NMT) model on one CPU, "
"one or multiple GPUs",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
)
# general configuration
parser.add("--config", is_config_file=True, help="config file path")
parser.add(
"--config2",
is_config_file=True,
help="second config file path that overwrites the settings in `--config`.",
)
parser.add(
"--config3",
is_config_file=True,
help="third config file path that overwrites the settings "
"in `--config` and `--config2`.",
)
parser.add_argument(
"--ngpu",
default=None,
type=int,
help="Number of GPUs. If not given, use all visible devices",
)
parser.add_argument(
"--train-dtype",
default="float32",
choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"],
help="Data type for training (only pytorch backend). "
"O0,O1,.. flags require apex. "
"See https://nvidia.github.io/apex/amp.html#opt-levels",
)
parser.add_argument(
"--backend",
default="chainer",
type=str,
choices=["chainer", "pytorch"],
help="Backend library",
)
parser.add_argument(
"--outdir", type=str, required=required, help="Output directory"
)
parser.add_argument("--debugmode", default=1, type=int, help="Debugmode")
parser.add_argument(
"--dict", required=required, help="Dictionary for source/target languages"
)
parser.add_argument("--seed", default=1, type=int, help="Random seed")
parser.add_argument("--debugdir", type=str, help="Output directory for debugging")
parser.add_argument(
"--resume",
"-r",
default="",
nargs="?",
help="Resume the training from snapshot",
)
parser.add_argument(
"--minibatches",
"-N",
type=int,
default="-1",
help="Process only N minibatches (for debug)",
)
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
parser.add_argument(
"--tensorboard-dir",
default=None,
type=str,
nargs="?",
help="Tensorboard log dir path",
)
parser.add_argument(
"--report-interval-iters",
default=100,
type=int,
help="Report interval iterations",
)
parser.add_argument(
"--save-interval-iters",
default=0,
type=int,
help="Save snapshot interval iterations",
)
# task related
parser.add_argument(
"--train-json",
type=str,
default=None,
help="Filename of train label data (json)",
)
parser.add_argument(
"--valid-json",
type=str,
default=None,
help="Filename of validation label data (json)",
)
# network architecture
parser.add_argument(
"--model-module",
type=str,
default=None,
help="model defined module (default: espnet.nets.xxx_backend.e2e_mt:E2E)",
)
# loss related
parser.add_argument(
"--lsm-weight", default=0.0, type=float, help="Label smoothing weight"
)
# translations options to compute BLEU
parser.add_argument(
"--report-bleu",
default=True,
action="store_true",
help="Compute BLEU on development set",
)
parser.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
parser.add_argument("--beam-size", type=int, default=4, help="Beam size")
parser.add_argument("--penalty", default=0.0, type=float, help="Incertion penalty")
parser.add_argument(
"--maxlenratio",
default=0.0,
type=float,
help="""Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths""",
)
parser.add_argument(
"--minlenratio",
default=0.0,
type=float,
help="Input length ratio to obtain min output length",
)
parser.add_argument(
"--rnnlm", type=str, default=None, help="RNNLM model file to read"
)
parser.add_argument(
"--rnnlm-conf", type=str, default=None, help="RNNLM model config file to read"
)
parser.add_argument("--lm-weight", default=0.0, type=float, help="RNNLM weight.")
parser.add_argument("--sym-space", default="<space>", type=str, help="Space symbol")
parser.add_argument("--sym-blank", default="<blank>", type=str, help="Blank symbol")
# minibatch related
parser.add_argument(
"--sortagrad",
default=0,
type=int,
nargs="?",
help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs",
)
parser.add_argument(
"--batch-count",
default="auto",
choices=BATCH_COUNT_CHOICES,
help="How to count batch_size. "
"The default (auto) will find how to count by args.",
)
parser.add_argument(
"--batch-size",
"--batch-seqs",
"-b",
default=0,
type=int,
help="Maximum seqs in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-bins",
default=0,
type=int,
help="Maximum bins in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-in",
default=0,
type=int,
help="Maximum input frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-out",
default=0,
type=int,
help="Maximum output frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--batch-frames-inout",
default=0,
type=int,
help="Maximum input+output frames in a minibatch (0 to disable)",
)
parser.add_argument(
"--maxlen-in",
"--batch-seq-maxlen-in",
default=100,
type=int,
metavar="ML",
help="When --batch-count=seq, "
"batch size is reduced if the input sequence length > ML.",
)
parser.add_argument(
"--maxlen-out",
"--batch-seq-maxlen-out",
default=100,
type=int,
metavar="ML",
help="When --batch-count=seq, "
"batch size is reduced if the output sequence length > ML",
)
parser.add_argument(
"--n-iter-processes",
default=0,
type=int,
help="Number of processes of iterator",
)
# optimization related
parser.add_argument(
"--opt",
default="adadelta",
type=str,
choices=["adadelta", "adam", "noam"],
help="Optimizer",
)
parser.add_argument(
"--accum-grad", default=1, type=int, help="Number of gradient accumuration"
)
parser.add_argument(
"--eps", default=1e-8, type=float, help="Epsilon constant for optimizer"
)
parser.add_argument(
"--eps-decay", default=0.01, type=float, help="Decaying ratio of epsilon"
)
parser.add_argument(
"--lr", default=1e-3, type=float, help="Learning rate for optimizer"
)
parser.add_argument(
"--lr-decay", default=1.0, type=float, help="Decaying ratio of learning rate"
)
parser.add_argument(
"--weight-decay", default=0.0, type=float, help="Weight decay ratio"
)
parser.add_argument(
"--criterion",
default="acc",
type=str,
choices=["loss", "acc"],
help="Criterion to perform epsilon decay",
)
parser.add_argument(
"--threshold", default=1e-4, type=float, help="Threshold to stop iteration"
)
parser.add_argument(
"--epochs", "-e", default=30, type=int, help="Maximum number of epochs"
)
parser.add_argument(
"--early-stop-criterion",
default="validation/main/acc",
type=str,
nargs="?",
help="Value to monitor to trigger an early stopping of the training",
)
parser.add_argument(
"--patience",
default=3,
type=int,
nargs="?",
help="Number of epochs to wait "
"without improvement before stopping the training",
)
parser.add_argument(
"--grad-clip", default=5, type=float, help="Gradient norm threshold to clip"
)
parser.add_argument(
"--num-save-attention",
default=3,
type=int,
help="Number of samples of attention to be saved",
)
# decoder related
parser.add_argument(
"--context-residual",
default=False,
type=strtobool,
nargs="?",
help="The flag to switch to use context vector residual in the decoder network",
)
parser.add_argument(
"--tie-src-tgt-embedding",
default=False,
type=strtobool,
nargs="?",
help="Tie parameters of source embedding and target embedding.",
)
parser.add_argument(
"--tie-classifier",
default=False,
type=strtobool,
nargs="?",
help="Tie parameters of target embedding and output projection layer.",
)
# finetuning related
parser.add_argument(
"--enc-init",
default=None,
type=str,
nargs="?",
help="Pre-trained ASR model to initialize encoder.",
)
parser.add_argument(
"--enc-init-mods",
default="enc.enc.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of encoder modules to initialize, separated by a comma.",
)
parser.add_argument(
"--dec-init",
default=None,
type=str,
nargs="?",
help="Pre-trained ASR, MT or LM model to initialize decoder.",
)
parser.add_argument(
"--dec-init-mods",
default="att., dec.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of decoder modules to initialize, separated by a comma.",
)
# multilingual related
parser.add_argument(
"--multilingual",
default=False,
type=strtobool,
help="Prepend target language ID to the source sentence. "
"Both source/target language IDs must be prepend in the pre-processing stage.",
)
parser.add_argument(
"--replace-sos",
default=False,
type=strtobool,
help="Replace <sos> in the decoder with a target language ID "
"(the first token in the target sequence)",
)
return parser
def main(cmd_args):
"""Run the main training function."""
parser = get_parser()
args, _ = parser.parse_known_args(cmd_args)
if args.backend == "chainer" and args.train_dtype != "float32":
raise NotImplementedError(
f"chainer backend does not support --train-dtype {args.train_dtype}."
"Use --dtype float32."
)
if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"):
raise ValueError(
f"--train-dtype {args.train_dtype} does not support the CPU backend."
)
from espnet.utils.dynamic_import import dynamic_import
if args.model_module is None:
model_module = "espnet.nets." + args.backend + "_backend.e2e_mt:E2E"
else:
model_module = args.model_module
model_class = dynamic_import(model_module)
model_class.add_arguments(parser)
args = parser.parse_args(cmd_args)
args.model_module = model_module
if "chainer_backend" in args.model_module:
args.backend = "chainer"
if "pytorch_backend" in args.model_module:
args.backend = "pytorch"
# add version info in args
args.version = __version__
# logging info
if args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# If --ngpu is not given,
# 1. if CUDA_VISIBLE_DEVICES is set, all visible devices
# 2. if nvidia-smi exists, use all devices
# 3. else ngpu=0
if args.ngpu is None:
cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
if cvd is not None:
ngpu = len(cvd.split(","))
else:
logging.warning("CUDA_VISIBLE_DEVICES is not set.")
try:
p = subprocess.run(
["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
except (subprocess.CalledProcessError, FileNotFoundError):
ngpu = 0
else:
ngpu = len(p.stderr.decode().split("\n")) - 1
args.ngpu = ngpu
else:
if args.ngpu != 1:
logging.debug(
"There are some bugs with multi-GPU processing in PyTorch 1.2+"
+ " (see https://github.com/pytorch/pytorch/issues/21108)"
)
ngpu = args.ngpu
logging.info(f"ngpu: {ngpu}")
# display PYTHONPATH
logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))
# set random seed
logging.info("random seed = %d" % args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# load dictionary for debug log
if args.dict is not None:
with open(args.dict, "rb") as f:
dictionary = f.readlines()
char_list = [entry.decode("utf-8").split(" ")[0] for entry in dictionary]
char_list.insert(0, "<blank>")
char_list.append("<eos>")
args.char_list = char_list
else:
args.char_list = None
# train
logging.info("backend = " + args.backend)
if args.backend == "pytorch":
from espnet.mt.pytorch_backend.mt import train
train(args)
else:
raise ValueError("Only pytorch are supported.")
if __name__ == "__main__":
main(sys.argv[1:])