-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiar_inference.py
executable file
·733 lines (665 loc) · 26.1 KB
/
diar_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
#!/usr/bin/env python3
import argparse
import logging
import sys
from itertools import permutations
from pathlib import Path
from typing import Any, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import trange
from typeguard import typechecked
from espnet2.enh.loss.criterions.tf_domain import FrequencyDomainMSE
from espnet2.enh.loss.criterions.time_domain import SISNRLoss
from espnet2.enh.loss.wrappers.pit_solver import PITSolver
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.fileio.sound_scp import SoundScpWriter
from espnet2.tasks.diar import DiarizationTask
from espnet2.tasks.enh_s2t import EnhS2TTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import (
humanfriendly_parse_size_or_none,
int_or_none,
str2bool,
str2triple_str,
str_or_none,
)
from espnet.utils.cli_utils import get_commandline_args
class DiarizeSpeech:
"""DiarizeSpeech class
Examples:
>>> import soundfile
>>> diarization = DiarizeSpeech("diar_config.yaml", "diar.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> diarization(audio)
[(spk_id, start, end), (spk_id2, start2, end2)]
"""
@typechecked
def __init__(
self,
train_config: Union[Path, str, None] = None,
model_file: Union[Path, str, None] = None,
segment_size: Optional[float] = None,
hop_size: Optional[float] = None,
normalize_segment_scale: bool = False,
show_progressbar: bool = False,
normalize_output_wav: bool = False,
num_spk: Optional[int] = None,
device: str = "cpu",
dtype: str = "float32",
enh_s2t_task: bool = False,
multiply_diar_result: bool = False,
):
task = DiarizationTask if not enh_s2t_task else EnhS2TTask
# 1. Build Diar model
diar_model, diar_train_args = task.build_model_from_file(
train_config, model_file, device
)
if enh_s2t_task:
diar_model.inherite_attributes(
inherite_s2t_attrs=[
"decoder",
"attractor",
],
inherite_enh_attrs=[
"mask_module",
],
)
diar_model.to(dtype=getattr(torch, dtype)).eval()
self.device = device
self.dtype = dtype
self.diar_train_args = diar_train_args
self.diar_model = diar_model
# only used when processing long speech, i.e.
# segment_size is not None and hop_size is not None
self.segment_size = segment_size
self.hop_size = hop_size
self.normalize_segment_scale = normalize_segment_scale
self.normalize_output_wav = normalize_output_wav
self.show_progressbar = show_progressbar
# not specifying "num_spk" in inference config file
# will enable speaker number prediction during inference
self.num_spk = num_spk
# multiply_diar_result corresponds to the "Post-processing"
# in https://arxiv.org/pdf/2203.17068.pdf
self.multiply_diar_result = multiply_diar_result
self.enh_s2t_task = enh_s2t_task
self.segmenting_diar = segment_size is not None and not enh_s2t_task
self.segmenting_enh_diar = (
segment_size is not None and hop_size is not None and enh_s2t_task
)
if self.segmenting_diar:
logging.info("Perform segment-wise speaker diarization")
logging.info("Segment length = {} sec".format(segment_size))
elif self.segmenting_enh_diar:
logging.info("Perform segment-wise speech separation and diarization")
logging.info(
"Segment length = {} sec, hop length = {} sec".format(
segment_size, hop_size
)
)
else:
logging.info("Perform direct speaker diarization on the input")
@torch.no_grad()
@typechecked
def __call__(
self, speech: Union[torch.Tensor, np.ndarray], fs: int = 8000
) -> Union[List[torch.Tensor], Tuple]:
"""Inference
Args:
speech: Input speech data (Batch, Nsamples [, Channels])
fs: sample rate
Returns:
[speaker_info1, speaker_info2, ...]
"""
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.as_tensor(speech)
assert speech.dim() > 1, speech.size()
batch_size = speech.size(0)
speech = speech.to(getattr(torch, self.dtype))
# lengths: (B,)
lengths = speech.new_full(
[batch_size], dtype=torch.long, fill_value=speech.size(1)
)
# a. To device
speech = to_device(speech, device=self.device)
lengths = to_device(lengths, device=self.device)
if self.segmenting_diar and lengths[0] > self.segment_size * fs:
# Segment-wise speaker diarization
# Note that the segments are processed independently for now
# i.e., no speaker tracing is performed
num_segments = int(np.ceil(speech.size(1) / (self.segment_size * fs)))
t = T = int(self.segment_size * fs)
pad_shape = speech[:, :T].shape
diarized_wavs = []
range_ = trange if self.show_progressbar else range
for i in range_(num_segments):
st = int(i * self.segment_size * fs)
en = st + T
if en >= lengths[0]:
# en - st < T (last segment)
en = lengths[0]
speech_seg = speech.new_zeros(pad_shape)
t = en - st
speech_seg[:, :t] = speech[:, st:en]
else:
t = T
speech_seg = speech[:, st:en] # B x T [x C]
lengths_seg = speech.new_full(
[batch_size], dtype=torch.long, fill_value=T
)
# b. Diarization Forward
encoder_out, encoder_out_lens = self.encode(
speech_seg,
lengths_seg,
)
spk_prediction, _ = self.decode(encoder_out, encoder_out_lens)
# List[torch.Tensor(B, T, num_spks)]
diarized_wavs.append(spk_prediction)
# Determine maximum estimated number of speakers among the segments
max_len = max([x.size(2) for x in diarized_wavs])
# pad tensors in diarized_wavs with "float('-inf')" to have same size
diarized_wavs = [
torch.nn.functional.pad(
x, (0, max_len - x.size(2)), "constant", float("-inf")
)
for x in diarized_wavs
]
spk_prediction = torch.cat(diarized_wavs, dim=1)
waves = None
else:
# b. Diarization Forward
encoder_out, encoder_out_lens = self.encode(speech, lengths)
spk_prediction, num_spk = self.decode(encoder_out, encoder_out_lens)
if self.enh_s2t_task:
# Segment-wise speech separation
# Note that this is done after diarization using the whole sequence
if self.segmenting_enh_diar and lengths[0] > self.segment_size * fs:
overlap_length = int(
np.round(fs * (self.segment_size - self.hop_size))
)
num_segments = int(
np.ceil(
(speech.size(1) - overlap_length) / (self.hop_size * fs)
)
)
t = T = int(self.segment_size * fs)
pad_shape = speech[:, :T].shape
enh_waves = []
range_ = trange if self.show_progressbar else range
for i in range_(num_segments):
st = int(i * self.hop_size * fs)
en = st + T
if en >= lengths[0]:
# en - st < T (last segment)
en = lengths[0]
speech_seg = speech.new_zeros(pad_shape)
t = en - st
speech_seg[:, :t] = speech[:, st:en]
else:
t = T
speech_seg = speech[:, st:en] # B x T [x C]
lengths_seg = speech.new_full(
[batch_size], dtype=torch.long, fill_value=T
)
# Separation Forward
_, _, processed_wav = self.diar_model.encode_diar(
speech_seg, lengths_seg, num_spk
)
if self.normalize_segment_scale:
# normalize the scale to match the input mixture scale
mix_energy = torch.sqrt(
torch.mean(
speech_seg[:, :t].pow(2), dim=1, keepdim=True
)
)
enh_energy = torch.sqrt(
torch.mean(
sum(processed_wav)[:, :t].pow(2),
dim=1,
keepdim=True,
)
)
processed_wav = [
w * (mix_energy / enh_energy) for w in processed_wav
]
# List[torch.Tensor(num_spk, B, T)]
enh_waves.append(torch.stack(processed_wav, dim=0))
# c. Stitch the enhanced segments together
waves = enh_waves[0]
for i in range(1, num_segments):
# permutation between separated streams
# in last and current segments
perm = self.cal_permumation(
waves[:, :, -overlap_length:],
enh_waves[i][:, :, :overlap_length],
criterion="si_snr",
)
# repermute separated streams in current segment
for batch in range(batch_size):
enh_waves[i][:, batch] = enh_waves[i][perm[batch], batch]
if i == num_segments - 1:
enh_waves[i][:, :, t:] = 0
enh_waves_res_i = enh_waves[i][:, :, overlap_length:t]
else:
enh_waves_res_i = enh_waves[i][:, :, overlap_length:]
# overlap-and-add (average over the overlapped part)
waves[:, :, -overlap_length:] = (
waves[:, :, -overlap_length:]
+ enh_waves[i][:, :, :overlap_length]
) / 2
# concatenate the residual parts of the later segment
waves = torch.cat([waves, enh_waves_res_i], dim=2)
# ensure the stitched length is same as input
assert waves.size(2) == speech.size(1), (waves.shape, speech.shape)
waves = torch.unbind(waves, dim=0)
else:
# Separation Forward using the whole signal
_, _, waves = self.diar_model.encode_diar(speech, lengths, num_spk)
# multiply diarization result and separation result
# by calculating the correlation
if self.multiply_diar_result:
spk_prediction, interp_prediction, _ = self.permute_diar(
waves, spk_prediction
)
waves = [
waves[i] * interp_prediction[:, :, i] for i in range(num_spk)
]
if self.normalize_output_wav:
waves = [
(w / abs(w).max(dim=1, keepdim=True)[0] * 0.9).cpu().numpy()
for w in waves
] # list[(batch, sample)]
else:
waves = [w.cpu().numpy() for w in waves]
else:
waves = None
if self.num_spk is not None:
assert spk_prediction.size(2) == self.num_spk, (
spk_prediction.size(2),
self.num_spk,
)
assert spk_prediction.size(0) == batch_size, (
spk_prediction.size(0),
batch_size,
)
spk_prediction = spk_prediction.cpu().numpy()
spk_prediction = 1 / (1 + np.exp(-spk_prediction))
return waves, spk_prediction if self.enh_s2t_task else spk_prediction
@torch.no_grad()
def cal_permumation(self, ref_wavs, enh_wavs, criterion="si_snr"):
"""Calculate the permutation between seaprated streams in two adjacent segments.
Args:
ref_wavs (List[torch.Tensor]): [(Batch, Nsamples)]
enh_wavs (List[torch.Tensor]): [(Batch, Nsamples)]
criterion (str): one of ("si_snr", "mse", "corr)
Returns:
perm (torch.Tensor): permutation for enh_wavs (Batch, num_spk)
"""
criterion_class = {"si_snr": SISNRLoss, "mse": FrequencyDomainMSE}[criterion]
pit_solver = PITSolver(criterion=criterion_class())
_, _, others = pit_solver(ref_wavs, enh_wavs)
perm = others["perm"]
return perm
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build DiarizeSpeech instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
DiarizeSpeech: DiarizeSpeech instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return DiarizeSpeech(**kwargs)
def permute_diar(self, waves, spk_prediction):
# Permute the diarization result using the correlation
# between wav and spk_prediction
# FIXME(YushiUeda): batch_size > 1 is not considered
num_spk = len(waves)
permute_list = [np.array(p) for p in permutations(range(num_spk))]
corr_list = []
interp_prediction = F.interpolate(
torch.sigmoid(spk_prediction).transpose(1, 2),
size=waves[0].size(1),
mode="linear",
).transpose(1, 2)
for p in permute_list:
diar_perm = interp_prediction[:, :, p]
corr_perm = [0]
for q in range(num_spk):
corr_perm += np.corrcoef(
torch.squeeze(abs(waves[q])).cpu().numpy(),
torch.squeeze(diar_perm[:, :, q]).cpu().numpy(),
)[0, 1]
corr_list.append(corr_perm)
max_corr, max_idx = torch.max(torch.from_numpy(np.array(corr_list)), dim=0)
return (
spk_prediction[:, :, permute_list[max_idx]],
interp_prediction[:, :, permute_list[max_idx]],
permute_list[max_idx],
)
def encode(self, speech, lengths):
if self.enh_s2t_task:
encoder_out, encoder_out_lens, _ = self.diar_model.encode_diar(
speech, lengths, self.num_spk
)
else:
bottleneck_feats = bottleneck_feats_lengths = None
encoder_out, encoder_out_lens = self.diar_model.encode(
speech, lengths, bottleneck_feats, bottleneck_feats_lengths
)
return encoder_out, encoder_out_lens
def decode(self, encoder_out, encoder_out_lens):
# SA-EEND
if self.diar_model.attractor is None:
assert self.num_spk is not None, 'Argument "num_spk" must be specified'
spk_prediction = self.diar_model.decoder(encoder_out, encoder_out_lens)
num_spk = self.num_spk
# EEND-EDA
else:
# if num_spk is specified, use that number
if self.num_spk is not None:
attractor, att_prob = self.diar_model.attractor(
encoder_out,
encoder_out_lens,
to_device(
torch.zeros(
encoder_out.size(0),
self.num_spk + 1,
encoder_out.size(2),
),
device=self.device,
),
)
spk_prediction = torch.bmm(
encoder_out,
attractor[:, : self.num_spk, :].permute(0, 2, 1),
)
num_spk = self.num_spk
# else find the first att_prob[i] < 0
else:
max_num_spk = 15 # upper bound number for estimation
attractor, att_prob = self.diar_model.attractor(
encoder_out,
encoder_out_lens,
to_device(
torch.zeros(
encoder_out.size(0),
max_num_spk + 1,
encoder_out.size(2),
),
device=self.device,
),
)
att_prob = torch.squeeze(att_prob)
for num_spk in range(len(att_prob)):
if att_prob[num_spk].item() < 0:
break
spk_prediction = torch.bmm(
encoder_out, attractor[:, :num_spk, :].permute(0, 2, 1)
)
return spk_prediction, num_spk
@typechecked
def inference(
output_dir: str,
batch_size: int,
dtype: str,
fs: int,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
model_tag: Optional[str],
allow_variable_data_keys: bool,
segment_size: Optional[float],
hop_size: Optional[float],
normalize_segment_scale: bool,
show_progressbar: bool,
num_spk: Optional[int],
normalize_output_wav: bool,
multiply_diar_result: bool,
enh_s2t_task: bool,
):
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build separate_speech
diarize_speech_kwargs = dict(
train_config=train_config,
model_file=model_file,
segment_size=segment_size,
hop_size=hop_size,
normalize_segment_scale=normalize_segment_scale,
show_progressbar=show_progressbar,
normalize_output_wav=normalize_output_wav,
num_spk=num_spk,
device=device,
dtype=dtype,
multiply_diar_result=multiply_diar_result,
enh_s2t_task=enh_s2t_task,
)
diarize_speech = DiarizeSpeech.from_pretrained(
model_tag=model_tag,
**diarize_speech_kwargs,
)
# 3. Build data-iterator
loader = DiarizationTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=DiarizationTask.build_preprocess_fn(
diarize_speech.diar_train_args, False
),
collate_fn=DiarizationTask.build_collate_fn(
diarize_speech.diar_train_args, False
),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
writer = NpyScpWriter(f"{output_dir}/predictions", f"{output_dir}/diarize.scp")
if enh_s2t_task:
wav_writers = []
if diarize_speech.num_spk is not None:
for i in range(diarize_speech.num_spk):
wav_writers.append(
SoundScpWriter(
f"{output_dir}/wavs/{i + 1}", f"{output_dir}/spk{i + 1}.scp"
)
)
else:
for i in range(diarize_speech.diar_model.mask_module.max_num_spk):
wav_writers.append(
SoundScpWriter(
f"{output_dir}/wavs/{i + 1}", f"{output_dir}/spk{i + 1}.scp"
)
)
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
if enh_s2t_task:
waves, spk_predictions = diarize_speech(**batch)
for b in range(batch_size):
writer[keys[b]] = spk_predictions[b]
for spk, w in enumerate(waves):
wav_writers[spk][keys[b]] = fs, w[b]
else:
spk_predictions = diarize_speech(**batch)
for b in range(batch_size):
writer[keys[b]] = spk_predictions[b]
if enh_s2t_task:
for w in wav_writers:
w.close()
writer.close()
def get_parser():
parser = config_argparse.ArgumentParser(
description="Speaker Diarization inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--fs",
type=humanfriendly_parse_size_or_none,
default=8000,
help="Sampling rate",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--train_config",
type=str,
help="Diarization training configuration",
)
group.add_argument(
"--model_file",
type=str,
help="Diarization model parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, train_config and "
"model_file will be overwritten",
)
group = parser.add_argument_group("Data loading related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("Diarize speech related")
group.add_argument(
"--segment_size",
type=float,
default=None,
help="Segment length in seconds for segment-wise speaker diarization",
)
group.add_argument(
"--hop_size",
type=float,
default=None,
help="Hop length in seconds for segment-wise speech enhancement/separation",
)
group.add_argument(
"--show_progressbar",
type=str2bool,
default=False,
help="Whether to show a progress bar when performing segment-wise speaker "
"diarization",
)
group.add_argument(
"--num_spk",
type=int_or_none,
default=None,
help="Predetermined number of speakers for inference",
)
group = parser.add_argument_group("Enh + Diar related")
group.add_argument(
"--enh_s2t_task",
type=str2bool,
default=False,
help="enhancement and diarization joint model",
)
group.add_argument(
"--normalize_segment_scale",
type=str2bool,
default=False,
help="Whether to normalize the energy of the separated streams in each segment",
)
group.add_argument(
"--normalize_output_wav",
type=str2bool,
default=False,
help="Whether to normalize the predicted wav to [-1~1]",
)
group.add_argument(
"--multiply_diar_result",
type=str2bool,
default=False,
help="Whether to multiply diar results to separated waves",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()