-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenh_tse_inference.py
executable file
·684 lines (606 loc) · 23.3 KB
/
enh_tse_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
#!/usr/bin/env python3
import argparse
import logging
import sys
from itertools import chain
from pathlib import Path
from typing import Any, List, Optional, Sequence, Tuple, Union
import humanfriendly
import numpy as np
import torch
import yaml
from tqdm import trange
from typeguard import typechecked
from espnet2.enh.loss.criterions.tf_domain import FrequencyDomainMSE
from espnet2.enh.loss.criterions.time_domain import SISNRLoss
from espnet2.enh.loss.wrappers.pit_solver import PITSolver
from espnet2.fileio.sound_scp import SoundScpWriter
from espnet2.tasks.enh_tse import TargetSpeakerExtractionTask as TSETask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.train.abs_espnet_model import AbsESPnetModel
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.utils.cli_utils import get_commandline_args
EPS = torch.finfo(torch.get_default_dtype()).eps
def get_train_config(train_config, model_file=None):
if train_config is None:
assert model_file is not None, (
"The argument 'model_file' must be provided "
"if the argument 'train_config' is not specified."
)
train_config = Path(model_file).parent / "config.yaml"
else:
train_config = Path(train_config)
return train_config
def recursive_dict_update(dict_org, dict_patch, verbose=False, log_prefix=""):
"""Update `dict_org` with `dict_patch` in-place recursively."""
for key, value in dict_patch.items():
if key not in dict_org:
if verbose:
logging.info(
"Overwriting config: [{}{}]: None -> {}".format(
log_prefix, key, value
)
)
dict_org[key] = value
elif isinstance(value, dict):
recursive_dict_update(
dict_org[key], value, verbose=verbose, log_prefix=f"{key}."
)
else:
if verbose and dict_org[key] != value:
logging.info(
"Overwriting config: [{}{}]: {} -> {}".format(
log_prefix, key, dict_org[key], value
)
)
dict_org[key] = value
def build_model_from_args_and_file(task, args, model_file, device):
model = task.build_model(args)
if not isinstance(model, AbsESPnetModel):
raise RuntimeError(
f"model must inherit {AbsESPnetModel.__name__}, but got {type(model)}"
)
model.to(device)
if model_file is not None:
if device == "cuda":
# NOTE(kamo): "cuda" for torch.load always indicates cuda:0
# in PyTorch<=1.4
device = f"cuda:{torch.cuda.current_device()}"
model.load_state_dict(torch.load(model_file, map_location=device))
return model
class SeparateSpeech:
"""SeparateSpeech class
Examples:
>>> import soundfile
>>> separate_speech = SeparateSpeech("enh_config.yml", "enh.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> separate_speech(audio)
[separated_audio1, separated_audio2, ...]
"""
@typechecked
def __init__(
self,
train_config: Union[Path, str, None] = None,
model_file: Union[Path, str, None] = None,
inference_config: Union[Path, str, None] = None,
segment_size: Optional[float] = None,
hop_size: Optional[float] = None,
normalize_segment_scale: bool = False,
show_progressbar: bool = False,
ref_channel: Optional[int] = None,
normalize_output_wav: bool = False,
device: str = "cpu",
dtype: str = "float32",
):
# 1. Build Enh model
if inference_config is None:
(
enh_model,
enh_train_args,
) = TSETask.build_model_from_file(train_config, model_file, device)
else:
# Overwrite model attributes
train_config = get_train_config(train_config, model_file=model_file)
with train_config.open("r", encoding="utf-8") as f:
train_args = yaml.safe_load(f)
with Path(inference_config).open("r", encoding="utf-8") as f:
infer_args = yaml.safe_load(f)
supported_keys = list(
chain(*[[k, k + "_conf"] for k in ("encoder", "extractor", "decoder")])
)
for k in infer_args.keys():
if k not in supported_keys:
raise ValueError(
"Only the following top-level keys are supported: %s"
% ", ".join(supported_keys)
)
recursive_dict_update(train_args, infer_args, verbose=True)
enh_train_args = argparse.Namespace(**train_args)
enh_model = build_model_from_args_and_file(
TSETask, enh_train_args, model_file, device
)
enh_model.to(dtype=getattr(torch, dtype)).eval()
self.device = device
self.dtype = dtype
self.enh_train_args = enh_train_args
self.enh_model = enh_model
# only used when processing long speech, i.e.
# segment_size is not None and hop_size is not None
self.segment_size = segment_size
self.hop_size = hop_size
self.normalize_segment_scale = normalize_segment_scale
self.normalize_output_wav = normalize_output_wav
self.show_progressbar = show_progressbar
self.num_spk = enh_model.num_spk
task = f"{self.num_spk}-speaker extraction"
# reference channel for processing multi-channel speech
if ref_channel is not None:
logging.info(
"Overwrite enh_model.extractor.ref_channel with {}".format(ref_channel)
)
enh_model.extractor.ref_channel = ref_channel
self.ref_channel = ref_channel
else:
self.ref_channel = enh_model.ref_channel
self.segmenting = segment_size is not None and hop_size is not None
if self.segmenting:
logging.info("Perform segment-wise speech %s" % task)
logging.info(
"Segment length = {} sec, hop length = {} sec".format(
segment_size, hop_size
)
)
else:
logging.info("Perform direct speech %s on the input" % task)
@torch.no_grad()
@typechecked
def __call__(
self, speech_mix: Union[torch.Tensor, np.ndarray], fs: int = 8000, **kwargs
) -> List[Union[torch.Tensor, np.array]]:
"""Inference
Args:
speech_mix: Input speech data (Batch, Nsamples [, Channels])
fs: sample rate
enroll_ref1: enrollment for speaker 1
enroll_ref2: enrollment for speaker 2
...
Returns:
[separated_audio1, separated_audio2, ...]
"""
enroll_ref = [
# (Batch, samples_aux)
torch.as_tensor(kwargs["enroll_ref{}".format(spk + 1)])
for spk in range(self.num_spk)
if "enroll_ref{}".format(spk + 1) in kwargs
]
# Input as audio signal
if isinstance(speech_mix, np.ndarray):
speech_mix = torch.as_tensor(speech_mix)
assert speech_mix.dim() > 1, speech_mix.size()
batch_size = speech_mix.size(0)
speech_mix = speech_mix.to(getattr(torch, self.dtype))
# lengths: (B,)
lengths = speech_mix.new_full(
[batch_size], dtype=torch.long, fill_value=speech_mix.size(1)
)
aux_lengths = [
aux.new_full([batch_size], dtype=torch.long, fill_value=aux.size(1))
for aux in enroll_ref
]
# a. To device
speech_mix = to_device(speech_mix, device=self.device)
enroll_ref = to_device(enroll_ref, device=self.device)
if self.enh_model.share_encoder:
feats_aux, flens_aux = zip(
*[
self.enh_model.encoder(enroll_ref[spk], aux_lengths[spk])
for spk in range(len(enroll_ref))
]
)
else:
feats_aux = enroll_ref
flens_aux = aux_lengths
if self.segmenting and lengths[0] > self.segment_size * fs:
# Segment-wise speech enhancement/separation
overlap_length = int(np.round(fs * (self.segment_size - self.hop_size)))
num_segments = int(
np.ceil((speech_mix.size(1) - overlap_length) / (self.hop_size * fs))
)
t = T = int(self.segment_size * fs)
pad_shape = speech_mix[:, :T].shape
enh_waves = []
range_ = trange if self.show_progressbar else range
for i in range_(num_segments):
st = int(i * self.hop_size * fs)
en = st + T
if en >= lengths[0]:
# en - st < T (last segment)
en = lengths[0]
speech_seg = speech_mix.new_zeros(pad_shape)
t = en - st
speech_seg[:, :t] = speech_mix[:, st:en]
else:
t = T
speech_seg = speech_mix[:, st:en] # B x T [x C]
lengths_seg = speech_mix.new_full(
[batch_size], dtype=torch.long, fill_value=T
)
# b. Enhancement/Separation Forward
feats, f_lens = self.enh_model.encoder(speech_seg, lengths_seg)
feature_pre, _, others = zip(
*[
self.enh_model.extractor(
feats,
f_lens,
feats_aux[spk],
flens_aux[spk],
suffix_tag=f"_spk{spk + 1}",
)
for spk in range(len(enroll_ref))
]
)
processed_wav = [
self.enh_model.decoder(f, lengths_seg)[0] for f in feature_pre
]
if speech_seg.dim() > 2:
# multi-channel speech
speech_seg_ = speech_seg[:, self.ref_channel]
else:
speech_seg_ = speech_seg
if self.normalize_segment_scale:
# normalize the scale to match the input mixture scale
mix_energy = torch.sqrt(
torch.mean(speech_seg_[:, :t].pow(2), dim=1, keepdim=True)
)
enh_energy = torch.sqrt(
torch.mean(
sum(processed_wav)[:, :t].pow(2), dim=1, keepdim=True
)
)
processed_wav = [
w * (mix_energy / enh_energy) for w in processed_wav
]
# List[torch.Tensor(num_spk, B, T)]
enh_waves.append(torch.stack(processed_wav, dim=0))
# c. Stitch the enhanced segments together
waves = enh_waves[0]
for i in range(1, num_segments):
# permutation between separated streams in last and current segments
perm = self.cal_permumation(
waves[:, :, -overlap_length:],
enh_waves[i][:, :, :overlap_length],
criterion="si_snr",
)
# repermute separated streams in current segment
for batch in range(batch_size):
enh_waves[i][:, batch] = enh_waves[i][perm[batch], batch]
if i == num_segments - 1:
enh_waves[i][:, :, t:] = 0
enh_waves_res_i = enh_waves[i][:, :, overlap_length:t]
else:
enh_waves_res_i = enh_waves[i][:, :, overlap_length:]
# overlap-and-add (average over the overlapped part)
waves[:, :, -overlap_length:] = (
waves[:, :, -overlap_length:] + enh_waves[i][:, :, :overlap_length]
) / 2
# concatenate the residual parts of the later segment
waves = torch.cat([waves, enh_waves_res_i], dim=2)
# ensure the stitched length is same as input
assert waves.size(2) == speech_mix.size(1), (waves.shape, speech_mix.shape)
waves = torch.unbind(waves, dim=0)
else:
# b. Enhancement/Separation Forward
feats, f_lens = self.enh_model.encoder(speech_mix, lengths)
feature_pre, _, others = zip(
*[
self.enh_model.extractor(
feats,
f_lens,
feats_aux[spk],
flens_aux[spk],
suffix_tag=f"_spk{spk + 1}",
)
for spk in range(len(enroll_ref))
]
)
others = {k: v for dic in others for k, v in dic.items()}
waves = [self.enh_model.decoder(f, lengths)[0] for f in feature_pre]
assert len(waves[0]) == batch_size, (len(waves[0]), batch_size)
if self.normalize_output_wav:
waves = [
(w / abs(w).max(dim=1, keepdim=True)[0] * 0.9).cpu().numpy()
for w in waves
] # list[(batch, sample)]
else:
waves = [w.cpu().numpy() for w in waves]
return waves
@torch.no_grad()
def cal_permumation(self, ref_wavs, enh_wavs, criterion="si_snr"):
"""Calculate the permutation between seaprated streams in two adjacent segments.
Args:
ref_wavs (List[torch.Tensor]): [(Batch, Nsamples)]
enh_wavs (List[torch.Tensor]): [(Batch, Nsamples)]
criterion (str): one of ("si_snr", "mse", "corr)
Returns:
perm (torch.Tensor): permutation for enh_wavs (Batch, num_spk)
"""
criterion_class = {"si_snr": SISNRLoss, "mse": FrequencyDomainMSE}[criterion]
pit_solver = PITSolver(criterion=criterion_class())
_, _, others = pit_solver(ref_wavs, enh_wavs)
perm = others["perm"]
return perm
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build SeparateSpeech instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
SeparateSpeech: SeparateSpeech instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return SeparateSpeech(**kwargs)
def humanfriendly_or_none(value: str):
if value in ("none", "None", "NONE"):
return None
return humanfriendly.parse_size(value)
@typechecked
def inference(
output_dir: str,
batch_size: int,
dtype: str,
fs: int,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
model_tag: Optional[str],
inference_config: Optional[str],
allow_variable_data_keys: bool,
segment_size: Optional[float],
hop_size: Optional[float],
normalize_segment_scale: bool,
show_progressbar: bool,
ref_channel: Optional[int],
output_format: str,
normalize_output_wav: bool,
):
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build separate_speech
separate_speech_kwargs = dict(
train_config=train_config,
model_file=model_file,
inference_config=inference_config,
segment_size=segment_size,
hop_size=hop_size,
normalize_segment_scale=normalize_segment_scale,
show_progressbar=show_progressbar,
ref_channel=ref_channel,
normalize_output_wav=normalize_output_wav,
device=device,
dtype=dtype,
)
separate_speech = SeparateSpeech.from_pretrained(
model_tag=model_tag,
**separate_speech_kwargs,
)
# 3. Build data-iterator
loader = TSETask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=TSETask.build_preprocess_fn(
separate_speech.enh_train_args, False
),
collate_fn=TSETask.build_collate_fn(separate_speech.enh_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
variable_names = [
name
for path, name, typ in loader.dataset.path_name_type_list
if name.startswith("enroll_ref")
]
num_spk = len(variable_names)
if train_config is None:
train_config = Path(model_file).parent / "config.yaml"
if num_spk != separate_speech.num_spk:
raise RuntimeError(
f"Number of speakers in the model ({separate_speech.num_spk}) "
"and the number of speakers provided by --data_path_and_name_and_type "
f"({num_spk}) do not match.\nTwo solutions:\n"
f" 1. Set model_conf.num_spk in {train_config} manually to {num_spk}.\n"
" 2. Reduce the number of speakers in --data_path_and_name_and_type to "
f"{separate_speech.num_spk}."
)
# 4. Start for-loop
output_dir: Path = Path(output_dir).expanduser().resolve()
writers = []
for i in range(separate_speech.num_spk):
writers.append(
SoundScpWriter(
f"{output_dir}/wavs/{i + 1}",
f"{output_dir}/spk{i + 1}.scp",
format=output_format,
)
)
for i, (keys, batch) in enumerate(loader):
logging.info(f"[{i}] Enhancing {keys}")
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
waves = separate_speech(**batch)
for spk, w in enumerate(waves):
for b in range(batch_size):
writers[spk][keys[b]] = fs, w[b]
for writer in writers:
writer.close()
def get_parser():
parser = config_argparse.ArgumentParser(
description="Frontend inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as extractor.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--fs", type=humanfriendly_or_none, default=8000, help="Sampling rate"
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("Output data related")
group.add_argument(
"--normalize_output_wav",
type=str2bool,
default=False,
help="Whether to normalize the predicted wav to [-1~1]",
)
group.add_argument(
"--output_format",
type=str,
default="wav",
help="Output format for the separated speech",
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--train_config",
type=str,
help="Training configuration file",
)
group.add_argument(
"--model_file",
type=str,
help="Model parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, train_config and "
"model_file will be overwritten",
)
group.add_argument(
"--inference_config",
type=str_or_none,
default=None,
help="Optional configuration file for overwriting enh model attributes "
"during inference",
)
group = parser.add_argument_group("Data loading related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("SeparateSpeech related")
group.add_argument(
"--segment_size",
type=float,
default=None,
help="Segment length in seconds for segment-wise speech enhancement/separation",
)
group.add_argument(
"--hop_size",
type=float,
default=None,
help="Hop length in seconds for segment-wise speech enhancement/separation",
)
group.add_argument(
"--normalize_segment_scale",
type=str2bool,
default=False,
help="Whether to normalize the energy of the separated streams in each segment",
)
group.add_argument(
"--show_progressbar",
type=str2bool,
default=False,
help="Whether to show a progress bar when performing segment-wise speech "
"enhancement/separation",
)
group.add_argument(
"--ref_channel",
type=int,
default=None,
help="If not None, this will overwrite the ref_channel defined in the "
"extractor module (for multi-channel speech processing)",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()