-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
240 lines (198 loc) · 8.73 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from datetime import date
import tensorflow as tf
import pandas as pd
import gradio as gr
import numpy as np
import cv2 as cv2
def shapeModel():
labels=["Octagon","Triangle","Circle Prohibitory","Circle","Rhombus"]
json_file = open('./model/model1.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = tf.keras.models.model_from_json(loaded_model_json)
model.load_weights("./model/model1.h5")
return [model,labels]
def recognitionModel():
json_file = open('./recognition_model/model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = tf.keras.models.model_from_json(loaded_model_json)
model.load_weights("./recognition_model/model.h5")
return model
def dark_image(h,w):
image = np.zeros((h, w, 3), np.uint8) * 255
return image
#------------------------ ⬇⬇⬇ Extracting Shape Regions ⬇⬇⬇ -----------------------------
def fill(img):
h,w=img.shape
image=dark_image(h,w)
cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(image,[c], 0, (255,255,255), -1)
return image
#------------------------- ➡➡➡ This block ends ⬅⬅⬅ --------------------------------
#------------------------ ⬇⬇⬇ Segmenting Red Regions ⬇⬇⬇ -----------------------------
def red_mask(image):
lower_red_1 = np.array([0, 100, 20])
upper_red_1 = np.array([10, 255, 255])
lower_red_2 = np.array([160,100,20])
upper_red_2 = np.array([179,255,255])
lower_red_mask = cv2.inRange(image, lower_red_1, upper_red_1)
upper_red_mask = cv2.inRange(image, lower_red_2, upper_red_2)
red_full_mask = lower_red_mask + upper_red_mask
return red_full_mask
def red_fill(img):
h,w=img.shape
image=dark_image(h,w)
cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(image,[c], 0, (255,0,0), -1)
return image
#------------------------- ➡➡➡ This block ends ⬅⬅⬅ -----------------------------------
#-------------------------- ⬇⬇⬇ Segmenting Blue Regions ⬇⬇⬇---------------------------
def blue_mask(image):
lower_blue_1 = np.array([112,50,50])
upper_blue_1 = np.array([130,255,255])
lower_blue_2 = np.array([96, 80, 2])
upper_blue_2 = np.array([126, 255, 255])
lower_blue_mask =cv2.inRange(image, lower_blue_1, upper_blue_1)
upper_blue_mask =cv2.inRange(image, lower_blue_2, upper_blue_2)
blue_full_mask = lower_blue_mask + upper_blue_mask
return blue_full_mask
def blue_fill(img):
h,w=img.shape
image=dark_image(h,w)
cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(image,[c], 0, (0,0,255), -1)
return image
#------------------------- ➡➡➡ This block ends ⬅⬅⬅ -----------------------------------
#-------------------------- ⬇⬇⬇ Calculating Center of Image ⬇⬇⬇---------------------------
def coi(img):
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
moment = cv2.moments(gray_img)
X = int(moment ["m10"] / moment["m00"])
Y = int(moment ["m01"] / moment["m00"])
return X+10,Y+8
#------------------------- ➡➡➡ This block ends ⬅⬅⬅ -----------------------------------
def resize(img):
# img= cv2.bilateralFilter(img,9,75,75)
width = 32
height = 32
dim = (width, height)
resized=cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
return resized
def shape_recognition(number, image):
model=shapeModel()[0]
labels=shapeModel()[1]
image=resize(image)
image_array= np.expand_dims(image, axis=0)
predictions=model.predict(image_array)
score = tf.nn.softmax(predictions[0])
# return {f"{number +' '+ labels[i] }": float(score[i]) for i in range(len(labels))}
return f'Shape {str(number)}:'+" "+ f'{labels[np.argmax(score)]}'
def ts_recognition(number, image):
model=recognitionModel()
labels=pd.read_csv('./recognition_model/labels.csv')
labels=labels['Name']
image=resize(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
image_array= np.expand_dims(image, axis=0)
predictions=model(image_array)
score = tf.nn.softmax(predictions[0])
# return {f"{number +' '+ labels[i] }": float(score[i]) for i in range(len(labels))}
return f'Sign {str(number)}:'+" "+ f'{labels[np.argmax(score)]}'
def outputs(roi):
shape_n=[]
color=[]
sign=[]
count=1
for i in roi:
result = i.copy()
x,y=list(coi(i))
image = cv2.cvtColor(result, cv2.COLOR_RGB2HSV)
red_full_mask = red_mask(image)
blue_full_mask = blue_mask(image)
filled_red=red_fill(red_full_mask)
filled_blue=blue_fill(blue_full_mask)
# x=center_of_image[0]
# y=center_of_image[1]
rb_img=filled_red+filled_blue
if list(rb_img[y,x])==[255,0, 0] or list(rb_img[y,x])==[255,0, 255]:
# save(fill(red_full_mask))
#print(fill(red_full_mask).shape)
shape_n.append(shape_recognition(count,fill(red_full_mask)))
color.append(f"Color {count}: Red")
sign.append(ts_recognition(count,result))
elif list(rb_img[y,x])==[0, 0, 255]:
# print(fill(red_full_mask).shape)
shape_n.append(shape_recognition(count,fill(blue_full_mask)))
color.append(f"Color {count}: Blue")
sign.append(ts_recognition(count,result))
else:
shape_n.append(f"Shape {count}: Undefined")
color.append(f"Color {count}: Undefined")
sign.append(ts_recognition(count,result))
count+=1
return shape_n, color ,sign
def detect(image):
with tf.io.gfile.GFile('./detection_model/frozen_inference_graph.pb', 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
with tf.compat.v1.Session() as sess:
# Restore session
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
# Read and preprocess an image.
img = image
cropper=img.copy()
rows = img.shape[0]
cols = img.shape[1]
inp = cv2.resize(img, (300, 300))
#inp = inp[:, :, [2, 1, 0]] # BGR2RGB
# Run the model
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': inp.reshape(1, inp.shape[0], inp.shape[1], 3)})
# Visualize detected bounding boxes.
num_detections = int(out[0][0])
roi=[]
for i in range(num_detections):
classId = int(out[3][0][i])
score = float(out[1][0][i])
bbox = [float(v) for v in out[2][0][i]]
if score > 0.8:
x = (bbox[1] * cols) -10 #left
y = (bbox[0] * rows) - 15 #top
right = (bbox[3] * cols) + 10
bottom = (bbox[2] * rows ) +10
crop=cropper[int(y): int(bottom),int(x):int(right)]
if crop.shape[0]!=0 and crop.shape[1]!=0:
roi.append(crop)
detect=cv2.rectangle(img, (int(x), int(y)), (int(right), int(bottom)), (15, 255,100), thickness=4)
cv2.putText(detect, f'{i+1}', (int(x), int(y-10)), cv2.FONT_HERSHEY_PLAIN, 0.8, (255,255,0), 2)
if roi:
shape_n,color, sign=outputs(roi)
return detect, ', '.join(shape_n), ', '.join(color), ', '.join(sign)
else:
return image, 'Undetected', 'Undetected', 'Undetected'
iface=gr.Interface(detect,
inputs=gr.inputs.Image(label="Upload an Image"),
outputs=[gr.outputs.Image(label="Detected Image"),
gr.outputs.Label(label="Shape"),
# gr.outputs.Image(label="Removed Background Image"),
gr.outputs.Label(label="Color"),
gr.outputs.Label(label="Signs")
],
title="Bangladeshi Traffic Sign, Detection, Shape-Color Recognition & Classification",
examples=['examples/1.jpg','./examples/2.jpg', './examples/4.jpg'],
layout='center',
description='The following is an Implementation of a Thesis paper done by Md. Ziaul Karim, \n for the Department of Software Engineering, Daffodil International University\'s Undergraduate program as a proof of concept.',
theme='dark-peach',css='./style.css',article=f'<a href="https://codingwithzk.netlify.app", target="_blank">© {date.today().year} Copyright | Made by <strong>Ziaul Karim</strong></a><a href="https://gradio.app/"> | with <strong>Gradio</strong></a>'
)
iface.launch(debug=True, favicon_path='./favicon.png',height=300,width=500)