All encoder-based models use the same environment. Instructions for creating this enivornment are as follows. You can see our exact creation scripts at scripts/setup
.
Create the conda env (named coref_env
):
conda create -y -n coref_env python=3.9 cudatoolkit=11.3.1 --override-channels -c conda-forge -c nvidia
conda activate coref_env
conda install -y pytorch=1.12.1 torchvision==0.13.1 torchaudio==0.12.1 --override-channels -c nvidia -c pytorch -c conda-forge -c defaults
conda install -y scikit-learn pandas matplotlib hydra-core --override-channels -c conda-forge
conda install -y transformers==4.27.2 datasets==2.10.1 sentencepiece pytorch-lightning==2.0.0 --override-channels -c conda-forge
conda install -y jsonlines wandb --override-channels -c conda-forge
pip install udapi
pip install nltk
Activate the environment and login to huggingface and wandb:
conda activate coref_env
wandb login
huggingface-cli login
To train a respective model, use experiments/train_*/train.py
.
Use inference/inference_*.py
.