-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_omics_sem_sim.py
54 lines (39 loc) · 2.25 KB
/
run_omics_sem_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from transformers import AutoTokenizer, AutoModel
from semanticSimFunctions import getNameSimilarities_no_repeat
import pandas as pd
import numpy as np
import pickle
## Load the sapbert model and tokenizer
SapBERT_tokenizer = AutoTokenizer.from_pretrained('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
SapBERT_model = AutoModel.from_pretrained('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--inputFile", type=str, help="Input file path")
parser.add_argument("--nameCol1", type=str, help="Column name for the first name")
parser.add_argument("--nameCol2", type=str, help="Column name for the second name")
args = parser.parse_args()
inputFile = args.inputFile
nameCol_LLM = args.nameCol1
nameCol_GO = args.nameCol2
reduced_LLM_genes_DF = pd.read_csv(inputFile, sep = "\t")
reduced_LLM_genes_DF[nameCol_GO] = reduced_LLM_genes_DF[nameCol_GO].replace(np.nan, 'NaN')
## initialize the dataframe with dummy values
new_DF = reduced_LLM_genes_DF.copy()
new_DF['LLM_name_GO_term_sim'] = None
# skip rows with LLM Name as 'system of unrelated proteins' ignore cases
filtered_DF = reduced_LLM_genes_DF[reduced_LLM_genes_DF[nameCol_LLM].str.lower() != 'system of unrelated proteins'].reset_index(drop = True)
skipped_rows = reduced_LLM_genes_DF[reduced_LLM_genes_DF[nameCol_LLM].str.lower() == 'system of unrelated proteins'].reset_index(drop = True)
llm_name_embedding_dict = {}
go_term_embedding_dict = {}
names_DF, llm_emb_dict, go_emb_dict = getNameSimilarities_no_repeat(filtered_DF, nameCol_LLM, nameCol_GO,
SapBERT_tokenizer, SapBERT_model,llm_name_embedding_dict,
go_term_embedding_dict, "cosine_similarity")
# add back the rows with LLM Name as 'system of unrelated proteins'
names_DF = pd.concat([names_DF, skipped_rows]).reset_index(drop = True)
def save_emb_dict(emb_dict, file_name):
with open(file_name, 'wb') as handle:
pickle.dump(emb_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
save_emb_dict(llm_emb_dict, inputFile.replace(".tsv", "_llm_emb_dict.pkl"))
save_emb_dict(go_emb_dict, inputFile.replace(".tsv", "_go_emb_dict.pkl"))
names_DF.to_csv(inputFile.replace(".tsv", "_simVals_DF.tsv"), sep = "\t", index = False)
print("Done with ", inputFile.replace(".tsv", "_simVals_DF.tsv"))