-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
IFPromptMkrNode.py
853 lines (755 loc) · 39.7 KB
/
IFPromptMkrNode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
#IFPromptMkrNode.py
import os
import sys
import json
import torch
import codecs
import asyncio
import requests
from PIL import Image
from io import BytesIO
from typing import List, Dict, Any, Optional, Union, Tuple
import folder_paths
from .omost import omost_function
from .send_request import send_request
from .utils import (
get_api_key,
get_models,
process_images_for_comfy,
process_mask,
clean_text,
load_placeholder_image,
validate_models,
)
# Add ComfyUI directory to path
comfy_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
sys.path.insert(0, comfy_path)
# Set up logging
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
try:
from server import PromptServer
from aiohttp import web
@PromptServer.instance.routes.post("/IF_PromptMkr/get_llm_models")
async def get_llm_models_endpoint(request):
try:
data = await request.json()
llm_provider = data.get("llm_provider")
engine = llm_provider
base_ip = data.get("base_ip")
port = data.get("port")
external_api_key = data.get("external_api_key")
if external_api_key:
api_key = external_api_key
else:
api_key_name = f"{llm_provider.upper()}_API_KEY"
try:
api_key = get_api_key(api_key_name, engine)
except ValueError:
api_key = None
node = IFPrompt2Prompt()
models = node.get_models(engine, base_ip, port, api_key)
return web.json_response(models)
except Exception as e:
print(f"Error in get_llm_models_endpoint: {str(e)}")
return web.json_response([], status=500)
@PromptServer.instance.routes.post("/IF_PromptMkr/add_routes")
async def add_routes_endpoint(request):
return web.json_response({"status": "success"})
except AttributeError:
print("PromptServer.instance not available. Skipping route decoration for IF_PromptMkr.")
class IFPrompt2Prompt:
def __init__(self):
self.strategies = "normal"
# Initialize paths and load presets
self.base_path = folder_paths.base_path
self.presets_dir = os.path.join(folder_paths.base_path, "custom_nodes", "ComfyUI-IF_AI_tools", "IF_AI", "presets")
# Load preset configurations
self.profiles = self.load_presets(os.path.join(self.presets_dir, "profiles.json"))
self.neg_prompts = self.load_presets(os.path.join(self.presets_dir, "neg_prompts.json"))
self.embellish_prompts = self.load_presets(os.path.join(self.presets_dir, "embellishments.json"))
self.style_prompts = self.load_presets(os.path.join(self.presets_dir, "style_prompts.json"))
self.stop_strings = self.load_presets(os.path.join(self.presets_dir, "stop_strings.json"))
# Initialize placeholder image path
self.placeholder_image_path = os.path.join(folder_paths.base_path, "custom_nodes", "ComfyUI-IF_AI_tools", "IF_AI", "placeholder.png")
# Default values
self.base_ip = "localhost"
self.port = "11434"
self.engine = "xai"
self.selected_model = ""
self.profile = "IF_PromptMKR_IMG"
self.messages = []
self.keep_alive = False
self.seed = 94687328150
self.history_steps = 10
self.external_api_key = ""
self.preset = "Default"
self.precision = "fp16"
self.attention = "sdpa"
self.Omni = None
self.mask = None
self.aspect_ratio = "1:1"
self.keep_alive = False
self.clear_history = False
self.random = False
self.max_tokens = 2048
self.temperature = 0.7
self.top_k = 40
self.top_p = 0.9
self.repeat_penalty = 1.1
self.stop = None
self.batch_count = 4
@classmethod
def INPUT_TYPES(cls):
node = cls()
return {
"required": {
"images": ("IMAGE", {"list": True}), # Primary image input
"llm_provider": (["xai","llamacpp", "ollama", "kobold", "lmstudio", "textgen", "groq", "gemini", "openai", "anthropic", "mistral", "transformers"], {}),
"llm_model": ((), {}),
"base_ip": ("STRING", {"default": "localhost"}),
"port": ("STRING", {"default": "11434"}),
"user_prompt": ("STRING", {"multiline": True}),
},
"optional": {
"strategy": (["normal", "omost", "create", "edit", "variations"], {"default": "normal"}),
"mask": ("MASK", {}),
"prime_directives": ("STRING", {"forceInput": True, "tooltip": "The system prompt for the LLM."}),
"profiles": (["None"] + list(cls().profiles.keys()), {"default": "None", "tooltip": "The pre-defined system_prompt from the json profile file on the presets folder you can edit or make your own will be listed here."}),
"embellish_prompt": (list(cls().embellish_prompts.keys()), {"tooltip": "The pre-defined embellishment from the json embellishments file on the presets folder you can edit or make your own will be listed here."}),
"style_prompt": (list(cls().style_prompts.keys()), {"tooltip": "The pre-defined style from the json style_prompts file on the presets folder you can edit or make your own will be listed here."}),
"neg_prompt": (list(cls().neg_prompts.keys()), {"tooltip": "The pre-defined negative prompt from the json neg_prompts file on the presets folder you can edit or make your own will be listed here."}),
"stop_string": (list(cls().stop_strings.keys()), {"tooltip": "Specifies a string at which text generation should stop."}),
"max_tokens": ("INT", {"default": 2048, "min": 1, "max": 8192, "tooltip": "Maximum number of tokens to generate in the response."}),
"random": ("BOOLEAN", {"default": False, "label_on": "Seed", "label_off": "Temperature", "tooltip": "Toggles between using a fixed seed or temperature-based randomness."}),
"seed": ("INT", {"default": 0, "tooltip": "Random seed for reproducible outputs."}),
"temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "tooltip": "Controls randomness in output generation. Higher values increase creativity but may reduce coherence."}),
"top_k": ("INT", {"default": 40, "tooltip": "Limits the next token selection to the K most likely tokens."}),
"top_p": ("FLOAT", {"default": 0.9, "tooltip": "Cumulative probability cutoff for token selection."}),
"repeat_penalty": ("FLOAT", {"default": 1.1, "tooltip": "Penalizes repetition in generated text."}),
"keep_alive": ("BOOLEAN", {"default": False, "label_on": "Keeps Model on Memory", "label_off": "Unloads Model from Memory", "tooltip": "Determines whether to keep the model loaded in memory between calls."}),
"clear_history": ("BOOLEAN", {"default": False, "label_on": "Clear History", "label_off": "Keep History", "tooltip": "Determines whether to clear the history between calls."}),
"history_steps": ("INT", {"default": 10, "tooltip": "Number of steps to keep in history."}),
"aspect_ratio": (["1:1", "16:9", "4:5", "3:4", "5:4", "9:16"], {"default": "1:1", "tooltip": "Aspect ratio for the generated images."}),
"batch_count": ("INT", {"default": 4, "tooltip": "Number of images to generate. only for create, edit and variations strategies."}),
"external_api_key": ("STRING", {"default": "", "tooltip": "If this is not empty, it will be used instead of the API key from the .env file. Make sure it is empty to use the .env file."}),
"precision": (["fp16", "fp32", "bf16"], {"tooltip": "Select preccision on Transformer models."}),
"attention": (["sdpa", "flash_attention_2", "xformers"], {"tooltip": "Select attention mechanism on Transformer models."}),
"Omni": ("OMNI", {"default": None, "tooltip": "Additional input for the selected tool."}),
}
}
RETURN_TYPES = ("STRING", "STRING", "STRING", "OMNI", "IMAGE", "MASK")
RETURN_NAMES = ("question", "response", "negative", "omni", "generated_images", "mask")
FUNCTION = "process_image_wrapper"
OUTPUT_NODE = True
CATEGORY = "ImpactFrames💥🎞️/IF_tools"
def get_models(self, engine, base_ip, port, api_key=None):
return get_models(engine, base_ip, port, api_key)
def load_presets(self, file_path: str) -> Dict[str, Any]:
"""
Load JSON presets with support for multiple encodings.
Args:
file_path (str): Path to the JSON preset file
Returns:
Dict[str, Any]: Loaded JSON data or empty dict if loading fails
"""
# List of encodings to try
encodings = ['utf-8', 'utf-8-sig', 'latin1', 'cp1252', 'gbk']
for encoding in encodings:
try:
with codecs.open(file_path, 'r', encoding=encoding) as f:
data = json.load(f)
# If successful, write back with UTF-8 encoding to prevent future issues
try:
with codecs.open(file_path, 'w', encoding='utf-8') as out_f:
json.dump(data, out_f, ensure_ascii=False, indent=2)
except Exception as write_err:
print(f"Warning: Could not write back UTF-8 encoded file: {write_err}")
return data
except UnicodeDecodeError:
continue
except json.JSONDecodeError as e:
print(f"JSON parsing error with {encoding} encoding: {str(e)}")
continue
except Exception as e:
print(f"Error loading presets from {file_path} with {encoding} encoding: {e}")
continue
print(f"Error: Failed to load {file_path} with any supported encoding")
return {}
def validate_outputs(self, outputs):
"""Helper to validate output types match expectations"""
if len(outputs) != len(self.RETURN_TYPES):
raise ValueError(
f"Expected {len(self.RETURN_TYPES)} outputs, got {len(outputs)}"
)
for i, (output, expected_type) in enumerate(zip(outputs, self.RETURN_TYPES)):
if output is None and expected_type in ["IMAGE", "MASK"]:
raise ValueError(
f"Output {i} ({self.RETURN_NAMES[i]}) cannot be None for type {expected_type}"
)
async def generate_negative_prompts(
self,
prompt: str,
llm_provider: str,
llm_model: str,
base_ip: str,
port: str,
config: dict,
messages: list = None
) -> List[str]:
"""
Generate negative prompts for the given input prompt.
Args:
prompt: Input prompt text
llm_provider: LLM provider name
llm_model: Model name
base_ip: API base IP
port: API port
config: Dict containing generation parameters like seed, temperature etc
messages: Optional message history
Returns:
List of generated negative prompts
"""
try:
if not prompt:
return []
# Get system message for negative prompts
neg_system_message = self.profiles.get("IF_NegativePromptEngineer", "")
# Generate negative prompts
neg_response = await send_request(
llm_provider=llm_provider,
base_ip=base_ip,
port=port,
images=None,
llm_model=llm_model,
system_message=neg_system_message,
user_message=f"Generate negative prompts for:\n{prompt}",
messages=messages or [],
**config
)
if not neg_response:
return []
# Split into lines and clean up
neg_lines = [line.strip() for line in neg_response.split('\n') if line.strip()]
# Match number of prompts
num_prompts = len(prompt.split('\n'))
if len(neg_lines) < num_prompts:
neg_lines.extend([neg_lines[-1] if neg_lines else ""] * (num_prompts - len(neg_lines)))
return neg_lines[:num_prompts]
except Exception as e:
logger.error(f"Error generating negative prompts: {str(e)}")
return ["Error generating negative prompt"] * num_prompts
@classmethod
def IS_CHANGED(cls, **kwargs):
return float("NaN")
async def process_image(
self,
llm_provider: str,
llm_model: str,
base_ip: str,
port: str,
user_prompt: str,
strategy: str = "normal",
images=None,
prime_directives: Optional[str] = None,
profiles: Optional[str] = None,
embellish_prompt: Optional[str] = None,
style_prompt: Optional[str] = None,
neg_prompt: Optional[str] = None,
stop_string: Optional[str] = None,
max_tokens: int = 2048,
seed: int = 0,
random: bool = False,
temperature: float = 0.8,
top_k: int = 40,
top_p: float = 0.9,
repeat_penalty: float = 1.1,
keep_alive: bool = False,
clear_history: bool = False,
history_steps: int = 10,
external_api_key: str = "",
precision: str = "fp16",
attention: str = "sdpa",
Omni: Optional[str] = None,
aspect_ratio: str = "1:1",
mask: Optional[torch.Tensor] = None,
batch_count: int = 4,
**kwargs
) -> Union[str, Dict[str, Any]]:
try:
# Initialize variables at the start
formatted_response = None
generated_images = None
generated_masks = None
tool_output = None
if external_api_key != "":
llm_api_key = external_api_key
else:
llm_api_key = get_api_key(f"{llm_provider.upper()}_API_KEY", llm_provider)
print(f"LLM API key: {llm_api_key[:5]}...")
# Validate LLM model
validate_models(llm_model, llm_provider, "LLM", base_ip, port, llm_api_key)
# Handle history
if clear_history:
self.messages = []
elif history_steps > 0:
self.messages = self.messages[-history_steps:]
messages = self.messages
# Handle stop
if stop_string is None or stop_string == "None":
stop_content = None
else:
stop_content = self.stop_strings.get(stop_string, None)
stop = stop_content
if llm_provider not in ["ollama", "llamacpp", "vllm", "lmstudio", "gemeni"]:
if llm_provider == "kobold":
stop = stop_content + \
["\n\n\n\n\n"] if stop_content else ["\n\n\n\n\n"]
elif llm_provider == "mistral":
stop = stop_content + \
["\n\n"] if stop_content else ["\n\n"]
else:
stop = stop_content if stop_content else None
# Prepare embellishments and styles
embellish_content = self.embellish_prompts.get(embellish_prompt, "").strip() if embellish_prompt else ""
style_content = self.style_prompts.get(style_prompt, "").strip() if style_prompt else ""
neg_content = self.neg_prompts.get(neg_prompt, "").strip() if neg_prompt else ""
profile_content = self.profiles.get(profiles, "")
# Prepare system prompt
if prime_directives is not None:
system_message_str = prime_directives
else:
system_message_str= json.dumps(profile_content)
if strategy == "omost":
system_prompt = self.profiles.get("IF_Omost")
messages = []
# Generate the text using LLM
llm_response = await send_request(
llm_provider=llm_provider,
base_ip=base_ip,
port=port,
images=images,
llm_model=llm_model,
system_message=system_prompt,
user_message=user_prompt,
messages=messages,
seed=seed,
temperature=temperature,
max_tokens=max_tokens,
random=random,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
stop=stop,
keep_alive=keep_alive,
llm_api_key=llm_api_key,
tools=None,
tool_choice=None,
precision=precision,
attention=attention,
aspect_ratio=aspect_ratio,
strategy="omost",
batch_count=batch_count,
mask=mask,
)
# Pass the generated_text to omost_function
tool_args = {
"name": "omost_tool",
"description": "Analyzes images composition and generates a Canvas representation.",
"system_prompt": system_prompt,
"input": user_prompt,
"llm_response": llm_response,
"function_call": None,
"omni_input": Omni
}
tool_result = await omost_function(tool_args)
# Process the tool output
if "error" in tool_result:
llm_response = f"Error: {tool_result['error']}"
tool_output = None
else:
tool_output = tool_result.get("canvas_conditioning", "")
llm_response = f"{tool_output}"
cleaned_response = clean_text(llm_response)
neg_content = self.neg_prompts.get(neg_prompt, "").strip() if neg_prompt else ""
# Update message history if keeping alive
if keep_alive and cleaned_response:
messages.append({"role": "user", "content": user_prompt})
messages.append({"role": "assistant", "content": cleaned_response})
return {
"Question": user_prompt,
"Response": cleaned_response,
"Negative": neg_content,
"Tool_Output": tool_output,
"Retrieved_Image": None,
"Mask": None
}
elif strategy in ["create", "edit", "variations"]:
resulting_images = await send_request(
llm_provider=llm_provider,
base_ip=base_ip,
port=port,
images=images,
llm_model=llm_model,
system_message=system_prompt,
user_message=user_prompt,
messages=messages,
seed=seed,
temperature=temperature,
max_tokens=max_tokens,
random=random,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
stop=stop,
keep_alive=keep_alive,
llm_api_key=llm_api_key,
tools=None,
tool_choice=None,
precision=precision,
attention=attention,
aspect_ratio=aspect_ratio,
strategy=strategy,
batch_count=batch_count,
mask=mask,
)
if isinstance(resulting_images, dict) and "images" in resulting_images:
generated_images = resulting_images["images"]
generated_masks = None
else:
generated_images = None
generated_masks = None
try:
if generated_images is not None:
if isinstance(generated_images, torch.Tensor):
# Ensure correct format (B, C, H, W)
image_tensor = generated_images.unsqueeze(0) if generated_images.dim() == 3 else generated_images
# Create matching batch masks
batch_size = image_tensor.shape[0]
height = image_tensor.shape[2]
width = image_tensor.shape[3]
# Create default masks
mask_tensor = torch.ones((batch_size, 1, height, width),
dtype=torch.float32,
device=image_tensor.device)
if generated_masks is not None:
mask_tensor = process_mask(generated_masks, image_tensor)
else:
image_tensor, mask_tensor = process_images_for_comfy(generated_images, self.placeholder_image_path)
mask_tensor = process_mask(generated_masks, image_tensor) if generated_masks is not None else mask_tensor
else:
# No retrieved image - use original or placeholder
if images is not None and len(images) > 0:
image_tensor = images[0] if isinstance(images[0], torch.Tensor) else process_images_for_comfy(images, self.placeholder_image_path)[0]
mask_tensor = torch.ones_like(image_tensor[:1]) # Create mask with same spatial dimensions
else:
image_tensor, mask_tensor = load_placeholder_image(self.placeholder_image_path)
return {
"Question": user_prompt,
"Response": f"{strategy} image has been successfully generated.",
"Negative": neg_content,
"Tool_Output": None,
"Retrieved_Image": image_tensor,
"Mask": mask_tensor
}
except Exception as e:
print(f"Error in process_image: {str(e)}")
image_tensor, mask_tensor = load_placeholder_image(self.placeholder_image_path)
return {
"Question": user_prompt,
"Response": f"Error: {str(e)}",
"Negative": "",
"Tool_Output": None,
"Retrieved_Image": image_tensor,
"Mask": mask_tensor
}
elif strategy == "normal":
try:
formatted_responses = []
final_prompts = []
final_negative_prompts = []
# Handle images as they come from ComfyUI - no extra processing needed
current_images = images if images is not None else None
# If mask provided, ensure it matches image dimensions
if mask is not None:
mask_tensor = process_mask(mask, current_images)
else:
# Create default mask if needed
if current_images is not None:
mask_tensor = torch.ones((current_images.shape[0], 1, current_images.shape[2], current_images.shape[3]),
dtype=torch.float32,
device=current_images.device)
else:
_, mask_tensor = load_placeholder_image(self.placeholder_image_path)
# Iterate over batches
for batch_idx in range(batch_count):
try:
response = await send_request(
llm_provider=llm_provider,
base_ip=base_ip,
port=port,
images=current_images, # Pass images directly
llm_model=llm_model,
system_message=system_message_str,
user_message=user_prompt,
messages=messages,
seed=seed + batch_idx if seed != 0 else seed,
temperature=temperature,
max_tokens=max_tokens,
random=random,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
stop=stop,
keep_alive=keep_alive,
llm_api_key=llm_api_key,
precision=precision,
attention=attention,
aspect_ratio=aspect_ratio,
strategy="normal",
batch_count=1,
mask=mask_tensor,
)
if not response:
raise ValueError("No response received from LLM API")
# Clean and process response
cleaned_response = clean_text(response)
final_prompts.append(cleaned_response)
# Handle negative prompts
if neg_prompt == "AI_Fill":
negative_prompt = await self.generate_negative_prompts(
prompt=cleaned_response,
llm_provider=llm_provider,
llm_model=llm_model,
base_ip=base_ip,
port=port,
config={
"seed": seed + batch_idx if seed != 0 else seed,
"temperature": temperature,
"max_tokens": max_tokens,
"random": random,
"top_k": top_k,
"top_p": top_p,
"repeat_penalty": repeat_penalty
},
messages=messages
)
final_negative_prompts.append(negative_prompt[0] if negative_prompt else neg_content)
else:
final_negative_prompts.append(neg_content)
formatted_responses.append(cleaned_response)
except Exception as e:
logger.error(f"Error in batch {batch_idx}: {str(e)}")
formatted_responses.append(f"Error in batch {batch_idx}: {str(e)}")
final_negative_prompts.append(f"Error generating negative prompt for batch {batch_idx}")
# Combine all responses
formatted_response = "\n".join(final_prompts)
neg_content = "\n".join(final_negative_prompts)
# Update message history if needed
if keep_alive and formatted_response:
messages.append({"role": "user", "content": user_prompt})
messages.append({"role": "assistant", "content": formatted_response})
return {
"Question": user_prompt,
"Response": formatted_response,
"Negative": neg_content,
"Tool_Output": None,
"Retrieved_Image": current_images, # Return original images
"Mask": mask_tensor
}
except Exception as e:
logger.error(f"Error in normal strategy: {str(e)}")
# Return original images or placeholder on error
if images is not None:
current_images = images # Use original images
if mask is not None:
current_mask = mask
else:
# Create default mask matching image dimensions
current_mask = torch.ones((current_images.shape[0], 1, current_images.shape[2], current_images.shape[3]),
dtype=torch.float32,
device=current_images.device)
else:
current_images, current_mask = load_placeholder_image(self.placeholder_image_path)
return {
"Question": user_prompt,
"Response": f"Error in processing: {str(e)}",
"Negative": "",
"Tool_Output": None,
"Retrieved_Image": current_images,
"Mask": current_mask
}
except Exception as e:
logger.error(f"Error in process_image: {str(e)}")
return {
"Question": kwargs.get("user_prompt", ""),
"Response": f"Error: {str(e)}",
"Negative": "",
"Tool_Output": None,
"Retrieved_Image": (
images[0]
if images is not None and len(images) > 0
else load_placeholder_image(self.placeholder_image_path)[0]
),
"Mask": (
torch.ones_like(images[0][:1])
if images is not None and len(images) > 0
else load_placeholder_image(self.placeholder_image_path)[1]
),
}
def process_image_wrapper(self, **kwargs):
"""Wrapper to handle async execution of process_image"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Ensure images is present in kwargs
if 'images' not in kwargs:
raise ValueError("Input images are required")
# Ensure all other required parameters are present
required_params = ['llm_provider', 'llm_model', 'base_ip', 'port', 'user_prompt']
missing_params = [p for p in required_params if p not in kwargs]
if missing_params:
raise ValueError(f"Missing required parameters: {', '.join(missing_params)}")
# Get the result from process_image
result = loop.run_until_complete(self.process_image(**kwargs))
# Extract values in the correct order matching RETURN_TYPES
prompt = result.get("Response", "") # This is the formatted prompt
response = result.get("Question", "") # Original question/prompt
negative = result.get("Negative", "")
omni = result.get("Tool_Output")
retrieved_image = result.get("Retrieved_Image")
mask = result.get("Mask")
# Ensure we have valid image and mask tensors
if retrieved_image is None or not isinstance(retrieved_image, torch.Tensor):
retrieved_image, mask = load_placeholder_image(self.placeholder_image_path)
# Ensure mask has correct format
if mask is None:
mask = torch.ones((retrieved_image.shape[0], 1, retrieved_image.shape[2], retrieved_image.shape[3]),
dtype=torch.float32,
device=retrieved_image.device)
# Return tuple matching RETURN_TYPES order: ("STRING", "STRING", "STRING", "OMNI", "IMAGE", "MASK")
return (
response, # First STRING (question/prompt)
prompt, # Second STRING (generated response)
negative, # Third STRING (negative prompt)
omni, # OMNI
retrieved_image, # IMAGE
mask # MASK
)
except Exception as e:
logger.error(f"Error in process_image_wrapper: {str(e)}")
# Create fallback values
image_tensor, mask_tensor = load_placeholder_image(self.placeholder_image_path)
return (
kwargs.get("user_prompt", ""), # Original prompt
f"Error: {str(e)}", # Error message as response
"", # Empty negative prompt
None, # No OMNI data
image_tensor, # Placeholder image
mask_tensor # Default mask
)
'''def process_image_wrapper(self, **kwargs):
"""Main entry point maintaining sequential outputs"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Extract parameters
auto_mix = kwargs.pop('auto_mix', False)
auto_combo = kwargs.pop('auto_combo', False)
strategy = kwargs.get('strategy', 'normal')
images = kwargs.pop('images', None)
mask = kwargs.pop('mask', None)
if images is None:
raise ValueError("Input images are required")
# Process based on mode
if auto_mix and strategy in ['normal', 'create', 'omost']:
result = loop.run_until_complete(
self.process_auto_mix(input_images=images, **kwargs)
)
if isinstance(result, dict):
results = [result]
else:
results = result if result else []
elif auto_combo and strategy in ['normal', 'create', 'omost']:
result = loop.run_until_complete(
self.process_auto_combo(input_images=images, **kwargs)
)
if isinstance(result, dict):
results = [result]
else:
results = result if result else []
else:
# Single execution mode
result = loop.run_until_complete(
self.process_image(**{**kwargs, 'images': images, 'mask': mask})
)
results = [result] if result else []
if not results:
# Return empty/placeholder outputs with default mask
if images is not None:
default_mask = torch.ones((1, 1, images.shape[2], images.shape[3]),
dtype=torch.float32,
device=images.device)
return ("", "", "", None, images, default_mask)
else:
placeholder_img, placeholder_mask = load_placeholder_image(self.placeholder_image_path)
return ("", "", "", None, placeholder_img, placeholder_mask)
# Prepare sequential outputs
try:
questions = []
responses = []
negatives = []
images_list = []
masks_list = []
tool_outputs = []
for r in results:
if isinstance(r, dict):
questions.append(r.get("Question", ""))
responses.append(r.get("Response", ""))
negatives.append(r.get("Negative", ""))
if r.get("Retrieved_Image") is not None:
images_list.append(r["Retrieved_Image"])
if r.get("Mask") is not None:
masks_list.append(r["Mask"])
tool_outputs.append(r.get("Tool_Output"))
# Handle images and masks
output_images = torch.cat(images_list, dim=0) if images_list else images
output_masks = torch.cat(masks_list, dim=0) if masks_list else torch.ones_like(output_images[:, :1])
# Return tuple matching RETURN_TYPES
return (
"\n".join(filter(None, questions)),
"\n".join(filter(None, responses)),
"\n".join(filter(None, negatives)),
tool_outputs[0] if tool_outputs else None,
output_images,
output_masks
)
except Exception as e:
logger.error(f"Error processing results: {str(e)}")
if images is not None:
default_mask = torch.ones((1, 1, images.shape[2], images.shape[3]),
dtype=torch.float32,
device=images.device)
return ("", f"Error processing results: {str(e)}", "", None, images, default_mask)
else:
placeholder_img, placeholder_mask = load_placeholder_image(self.placeholder_image_path)
return ("", f"Error processing results: {str(e)}", "", None, placeholder_img, placeholder_mask)
except Exception as e:
logger.error(f"Error in process_image_wrapper: {str(e)}")
if images is not None:
default_mask = torch.ones((1, 1, images.shape[2], images.shape[3]),
dtype=torch.float32,
device=images.device)
return ("", f"Error: {str(e)}", "", None, images, default_mask)
else:
placeholder_img, placeholder_mask = load_placeholder_image(self.placeholder_image_path)
return ("", f"Error: {str(e)}", "", None, placeholder_img, placeholder_mask)'''
NODE_CLASS_MAPPINGS = {"IF_PromptMkr": IFPrompt2Prompt}
NODE_DISPLAY_NAME_MAPPINGS = {"IF_PromptMkr": "IF Prompt to Prompt💬"}