-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_seg.py
executable file
·521 lines (441 loc) · 24.3 KB
/
train_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#!/usr/bin/env python
from __future__ import absolute_import, division, print_function
import csv
import json
import os
import random
import time
import warnings
import torch
# Common Imports
import dataloader.pt_data_loader.mytransforms as mytransforms
from dataloader.definitions.labels_file import labels_cityscape_seg
from dataloader.eval.metrics import SegmentationRunningScore
from dataloader.file_io.get_path import GetPath
from dataloader.pt_data_loader.specialdatasets import StandardDataset
from torch.nn import CrossEntropyLoss
from torch.optim import Adam, SGD, lr_scheduler, AdamW
from torch.utils.data import DataLoader
# pt_models Imports to use common models
from models.seg_decoders.swiftnet import SwiftNet
from models.seg_decoders.deeplab.fw_adaptor import build_deeplab
from models.seg_decoders.monodepth import MonoDepth
from train.plotter import *
from train.losses import *
# Import local dependencies
from train_options import TrainOptions
def _init_fn(worker_id):
seed_worker = worker_seed + worker_id
random.seed(seed_worker)
torch.manual_seed(seed_worker)
torch.cuda.manual_seed(seed_worker)
torch.cuda.manual_seed_all(seed_worker)
np.random.seed(seed_worker)
class Trainer:
def __init__(self, options):
self.opt = options
''' Use '_verbose_info' as 'print' if flag --verbose is specified. '''
_verbose_info = print if self.opt.verbose else lambda *a, **k: None
''' Remember device type '''
self.device = torch.device("cpu" if self.opt.no_cuda else "cuda")
_verbose_info('Using device: ', self.device)
# --------------------------------------------------------------------------------
# Dataset loading and preparation
# --------------------------------------------------------------------------------
''' Load Label and key definitons '''
keys_to_load = ['color', 'segmentation_trainid']
self.keys_to_load = keys_to_load
labels = labels_cityscape_seg.getlabels() # original labels used by Cityscapes
train_ids = [labels[i].trainId for i in range(len(labels))]
self.num_classes_wo_bg = len(set(train_ids)) - 1 # 19
self.interpolated = not (self.opt.width == 2048 and self.opt.height == 1024)
''' Specifiy DataLoader and which data transforms to use for training '''
train_data_transforms = [mytransforms.RandomHorizontalFlip(), mytransforms.CreateScaledImage()]
train_data_transforms.append(mytransforms.RandomRescale((0.5, 2))) # Careful when modifying: Scale misleading!
train_data_transforms.append(
mytransforms.RandomCrop((self.opt.crop_height, self.opt.crop_width), pad_if_needed=True))
train_data_transforms.append(mytransforms.CreateColoraug()) # Important otherwise keys can not be found!
train_data_transforms.append(mytransforms.RemoveOriginals())
train_data_transforms.append(mytransforms.ConvertSegmentation())
train_data_transforms.append(mytransforms.ToTensor())
if self.opt.zeromean:
train_data_transforms.append(mytransforms.NormalizeZeroMean())
train_dataset = StandardDataset(dataset=self.opt.dataset,
trainvaltest_split=self.opt.trainvaltest_split,
labels_mode='fromtrainid',
labels=labels,
keys_to_load=keys_to_load,
data_transforms=train_data_transforms,
)
self.train_loader = DataLoader(train_dataset, batch_size=self.opt.batch_size_train, shuffle=True,
num_workers=self.opt.num_workers, worker_init_fn=_init_fn, pin_memory=True)
''' Specifiy DataLoader and which data transforms to use for validation '''
val_data_transforms = [mytransforms.CreateScaledImage()]
if self.interpolated:
val_data_transforms.append(mytransforms.Resize((self.opt.height, self.opt.width), image_types=['color']))
val_data_transforms.append(mytransforms.RemoveOriginals())
val_data_transforms.append(mytransforms.CreateColoraug()) # Adjusts keys so that NormalizeZeroMean() finds it
val_data_transforms.append(mytransforms.ConvertSegmentation())
val_data_transforms.append(mytransforms.ToTensor())
if self.opt.zeromean:
val_data_transforms.append(mytransforms.NormalizeZeroMean())
val_dataset = StandardDataset(dataset=self.opt.dataset,
trainvaltest_split='validation',
labels_mode='fromtrainid',
labels=labels,
keys_to_load=keys_to_load,
data_transforms=val_data_transforms)
# folders_to_load=['leftimg8bit/val/lindau', 'lindau'])
self.val_loader = DataLoader(val_dataset, batch_size=self.opt.batch_size_val, shuffle=False,
num_workers=self.opt.num_workers, pin_memory=True, drop_last=False)
self.val_iter = iter(self.val_loader)
print("Using dataset:\n ", self.opt.dataset)
print("There are {:d} training samples and {:d} validation samples\n".format(len(train_dataset),
len(val_dataset)))
# --------------------------------------------------------------------------------
# Configure path settings
# --------------------------------------------------------------------------------
path_getter = GetPath()
checkpoint_path = path_getter.get_checkpoint_path()
self.model_states_root_path = os.path.join(checkpoint_path, self.opt.model_name)
self.base_path = os.path.join(self.model_states_root_path, self.opt.savedir)
if not os.path.isdir(self.base_path):
os.makedirs(self.base_path)
self.loss_plotter = LossPlotter(path=self.base_path,
lr_scale=100 / self.opt.learning_rate_fine_tune,
loss_scale=100,
mode="segmentation",
max_epoch=self.opt.num_epochs)
_verbose_info("Base path for loading parameters and saving outputs: ", self.base_path)
print("Basepath: Models files are saved to:\n ", self.base_path)
# --------------------------------------------------------------------------------
# Model definition and state checkpoint recovery
# --------------------------------------------------------------------------------
# Model architecture definition is loaded here
self.model_name = self.opt.model_name
if self.model_name == 'SwiftNet':
self.model = SwiftNet(self.num_classes_wo_bg, encoder=self.opt.encoder)
elif self.model_name == 'DeepLab':
self.model = build_deeplab(self.num_classes_wo_bg, encoder=self.opt.encoder)
elif self.model_name == 'MonoDepth':
self.model = MonoDepth(self.num_classes_wo_bg)
else:
ValueError(f"The model name {self.model_name} is not supported.")
_verbose_info(self.model)
self.model.to(self.device)
print("Model definition based on", self.model_name, "was loaded into: ", self.device)
# --------------------------------------------------------------------------------
# Handle deterministic, classweighing, etc. options
# --------------------------------------------------------------------------------
""" deterministic behaviour """
if self.opt.deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print('Set random seed to: ' + str(seed), flush=True)
""" Apply classweights due to imbalances (Cityscapes only!)"""
if self.opt.classweighing:
# create instances of classes used in the loss
weight = torch.ones(self.num_classes_wo_bg, dtype=torch.float)
weight[0] = 2.8149201869965
weight[1] = 6.9850029945374
weight[2] = 3.7890393733978
weight[3] = 9.9428062438965
weight[4] = 9.7702074050903
weight[5] = 9.5110931396484
weight[6] = 10.311357498169
weight[7] = 10.026463508606
weight[8] = 4.6323022842407
weight[9] = 9.5608062744141
weight[10] = 7.8698215484619
weight[11] = 9.5168733596802
weight[12] = 10.373730659485
weight[13] = 6.6616044044495
weight[14] = 10.260489463806
weight[15] = 10.287888526917
weight[16] = 10.289801597595
weight[17] = 10.405355453491
weight[18] = 10.138095855713
# weight[19] = 0
if self.device.type == 'cuda':
weight = weight.cuda()
# --------------------------------------------------------------------------------
# Configure Optimization while training
# --------------------------------------------------------------------------------
""" Define different parameter sets"""
fine_tune_params = self.model.fine_tune_params()
random_init_params = self.model.random_init_params()
if self.opt.group_params:
print("Group parameter is activated.")
fine_tune_params = self.model.configure_params(wd=self.opt.wd_fine_tune, lr=self.opt.learning_rate_fine_tune)
""" Specify Loss Criterion """
if self.opt.classweighing:
criterion = CrossEntropyLoss(weight=weight, ignore_index=255, ignore_background=True,
device=self.device)
else:
criterion = CrossEntropyLoss(ignore_index=255, ignore_background=True, device=self.device)
if self.device.type == 'cuda':
criterion = criterion.cuda()
print("Using Loss criterion:" + str(type(criterion)), flush=True)
self.criterion = criterion
"""
Optimizer Setting
"""
if self.opt.optimizer == "Adam":
self.optimizer_fine_tune = Adam(fine_tune_params, lr=self.opt.learning_rate_fine_tune, weight_decay=self.opt.wd_fine_tune)
self.optimizer_random = Adam(random_init_params, lr=self.opt.learning_rate_random_init, weight_decay=self.opt.wd_random_init)
eta_min_fine = self.opt.eta_min_fine_tune
eta_min_random = self.opt.eta_min_random_init
elif self.opt.optimizer == "AdamW":
self.optimizer_fine_tune = AdamW(fine_tune_params, lr=self.opt.learning_rate_fine_tune, weight_decay=self.opt.wd_fine_tune)
self.optimizer_random = AdamW(random_init_params, lr=self.opt.learning_rate_random_init, weight_decay=self.opt.wd_random_init)
eta_min_fine = self.opt.eta_min_fine_tune
eta_min_random = self.opt.eta_min_random_init
elif self.opt.optimizer == "SGD":
self.optimizer_fine_tune = SGD(fine_tune_params,
lr=self.opt.learning_rate_fine_tune,
weight_decay=self.opt.wd_fine_tune,
momentum=self.opt.momentum)
self.optimizer_random = SGD(random_init_params,
lr=self.opt.learning_rate_random_init,
weight_decay=self.opt.wd_random_init,
momentum=self.opt.momentum)
else:
ValueError("Currently, no optimizer other than ADAM or SGD is supported")
print("\nInitial Optimizer settings for fine_tune_params with " + str(type(self.optimizer_fine_tune)) + " :")
for param_group in self.optimizer_fine_tune.param_groups:
print(" Initial Learning rate: " + str(param_group['lr']))
print(" Weight Decay: " + str(param_group['weight_decay']))
print("\nInitial Optimizer settings for random_init_params with " + str(type(self.optimizer_random)) + " :")
for param_group in self.optimizer_random.param_groups:
print(" Initial Learning rate: " + str(param_group['lr']))
print(" Weight Decay: " + str(param_group['weight_decay']))
"""
LR Scheduler
"""
if self.opt.LRscheduler == "CosineAnnealing":
print("\nCosine AnnealingLR: Eta_min_fine: " + str(eta_min_fine)
+ " Eta_min_random: " + str(eta_min_random))
self.scheduler_fine_tune = lr_scheduler.CosineAnnealingLR(self.optimizer_fine_tune,
T_max=self.opt.num_epochs, eta_min=eta_min_fine)
self.scheduler_random = lr_scheduler.CosineAnnealingLR(self.optimizer_random, T_max=self.opt.num_epochs,
eta_min=eta_min_random) # eta_min=1e-6)
elif self.opt.LRscheduler == "Poly":
print("\nPoly LR with power of 0.9")
poly = lambda epoch: (1 - epoch / self.opt.num_epochs) ** 0.9
self.scheduler_fine_tune = torch.optim.lr_scheduler.LambdaLR(self.optimizer_fine_tune, lr_lambda=poly)
self.scheduler_random = torch.optim.lr_scheduler.LambdaLR(self.optimizer_random, lr_lambda=poly)
else:
ValueError("Currently, no lr scheduling other than CosineAnnealing or Poly is supported")
"""
For all the logging purposes...
"""
self.automated_log_path = self.base_path + "/automated_log.txt"
if (not os.path.exists(self.automated_log_path)): # dont add first line if it exists
with open(self.automated_log_path, "a") as myfile:
myfile.write("Epoch\t\t\tTrain.-loss\t\tVal.-loss\t\tVal.-IoU\t\tLR_fine")
self.csv_log_file = self.base_path + "/" + self.opt.savedir + "_plot_log.csv"
# CSV for tikz_plots
if (not os.path.exists(self.csv_log_file)): # dont add first line if it exists
with open(self.csv_log_file, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['epoch', 'tr_loss', 'val_loss', 'val_miou', 'lr_fine', 'lr_random'])
""" Metric setup """
self.metric_model = SegmentationRunningScore(self.num_classes_wo_bg)
self.best_iou = 0
self.time_loss = []
self.average_epoch_loss_train = 0
""" Save run options """
self.save_opts()
def set_train(self):
"""Convert all models to training mode
"""
self.model.train()
def set_eval(self):
"""Convert all models to testing/evaluation mode
"""
self.model.eval()
def train(self):
"""Run the entire training pipeline
"""
print("\n========== START TRAINING ===========", flush=True)
self.step = 0
self.start_time = time.time()
for self.epoch in range(self.opt.num_epochs + self.opt.warmup_iters):
self.run_epoch()
if (self.epoch + 1) % self.opt.save_frequency == 0:
self.save_model_state()
if ((self.epoch + 1) % self.opt.val_frequency == 0) or (self.epoch < 5) or \
(self.epoch > (self.opt.num_epochs - 37)):
self.full_validation()
def run_epoch(self):
"""Run a single epoch of training and validation
"""
print("----- TRAINING - EPOCH", self.epoch + 1, "-----", flush=True)
epoch_loss = []
time_train = []
time_aug = []
temp_time_aug = time.time() # just to initialize with some value
self.time_loss = []
for param_group in self.optimizer_fine_tune.param_groups:
self.usedLr_fine_tune = float(param_group['lr'])
for param_group in self.optimizer_random.param_groups:
self.usedLr_random = float(param_group['lr'])
print(" LEARNING RATES --> fine-tune params:", self.usedLr_fine_tune,
" random-init params:", self.usedLr_random, flush=True)
self.set_train()
for batch_idx, inputs in enumerate(self.train_loader):
before_op_time = time.time()
time_aug.append(before_op_time - temp_time_aug)
outputs, losses = self.process_batch(inputs)
""" Backpropagate """
self.optimizer_fine_tune.zero_grad()
self.optimizer_random.zero_grad()
losses["loss"].backward()
epoch_loss.append(losses["loss"].item())
""" Do Optimization step """
self.optimizer_fine_tune.step()
self.optimizer_random.step()
time_train.append(time.time() - before_op_time)
self.step += 1
temp_time_aug = time.time()
""" Train time measures """
average_aug_delay = sum(time_aug) / len(time_aug)
average_samples_per_sec = self.opt.batch_size_train * len(time_train) / sum(time_train)
average_time_loss = sum(self.time_loss) / len(self.time_loss)
self.average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
print(' Summary --> Train loss: {: 3.8f} with {: 4.2f} examples/s just for the inference and backpropagate '
' + optim part'.format(self.average_epoch_loss_train, average_samples_per_sec))
print(' Timing analysis: DataLoader + augmentation per batch: {: 4.4f}s);'
' time for calculating loss per batch: {: 4.4f}s'.format(average_aug_delay, average_time_loss))
self.scheduler_fine_tune.step()
self.scheduler_random.step()
def process_batch(self, inputs):
"""Pass a minibatch through the network and generate images and losses
"""
for key, ipt in inputs.items():
inputs[key] = ipt.to(self.device)
input_color = inputs[("color_aug", 0, 0)]
seg_logits = self.model(input_color)
seg_map = torch.argmax(seg_logits, dim=1)
outputs = {'segmentation_logits': seg_logits, 'segmentation': seg_map}
losses = self.compute_losses(inputs, outputs)
return outputs, losses
def compute_losses(self, inputs, outputs):
"""Compute the losses for a minibatch
"""
losses = {}
preds = outputs['segmentation_logits'].float()
targets = inputs[(self.keys_to_load[1], 0, 0)][:, 0, :, :].long()
start_time_loss = time.time()
criterion_loss = self.criterion(preds, targets)
self.time_loss.append(time.time() - start_time_loss)
losses["loss"] = criterion_loss
return losses
def compute_segmentation_losses(self, inputs, outputs):
label_true = np.array(inputs[(self.keys_to_load[1], 0, 0)].cpu())[:, 0, :, :]
label_pred = np.array(outputs['segmentation'].cpu())
self.metric_model.update(label_true, label_pred)
metrics = self.metric_model.get_scores()
self.metric_model.reset()
return metrics
def update_val_metric_model(self, inputs, outputs):
label_true = np.array(inputs[(self.keys_to_load[1], 0, 0)].cpu())[:, 0, :, :]
label_pred = np.array(outputs['segmentation'].cpu())
self.metric_model.update(label_true, label_pred)
def save_opts(self):
"""Save options to disk so we know what we ran this experiment with
"""
models_dir = os.path.join(self.base_path, "models")
if not os.path.exists(models_dir):
os.makedirs(models_dir)
to_save = self.opt.__dict__.copy()
with open(os.path.join(models_dir, 'opt.json'), 'w') as f:
json.dump(to_save, f, indent=2)
def save_model_state(self):
"""Save model weights to disk
"""
save_folder = os.path.join(self.base_path, "models", "weights_{}".format(self.epoch + 1))
if not os.path.exists(save_folder):
os.makedirs(save_folder)
save_path = os.path.join(save_folder, "{}.pth".format("model"))
to_save = self.model.state_dict()
torch.save(to_save, save_path)
save_path = os.path.join(save_folder, "{}.pth".format("optim_fine"))
torch.save(self.optimizer_fine_tune.state_dict(), save_path)
save_path = os.path.join(save_folder, "{}.pth".format("optim_random"))
torch.save(self.optimizer_random.state_dict(), save_path)
def full_validation(self):
# Validate on 500 val images after each epoch of training
print("----- VALIDATING - EPOCH", self.epoch + 1, " on full val set -----", flush=True)
epoch_loss_val = []
time_val = []
self.set_eval()
for batch_idx, inputs_val in enumerate(self.val_loader):
start_time = time.time()
with torch.no_grad():
outputs_val, losses_val = self.process_batch(inputs_val)
time_val.append(time.time() - start_time)
epoch_loss_val.append(losses_val["loss"].item())
if (self.keys_to_load[1], 0, 0) in inputs_val:
self.update_val_metric_model(inputs_val, outputs_val)
metrics_val = self.metric_model.get_scores()
self.metric_model.reset()
self.set_train()
average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
print(
' Summary --> Train loss: {: 3.8f} Val loss: {: 3.8f} --> mIoU(val): {: 4.3f}% --> meanAcc(val): {: 4.3f}%'.format(
self.average_epoch_loss_train, average_epoch_loss_val, metrics_val["meaniou"] * 100,
metrics_val["meanacc"] * 100))
self.save_best_epoch(metrics_val["meaniou"] * 100, self.average_epoch_loss_train, average_epoch_loss_val,
self.usedLr_fine_tune, self.usedLr_random)
def save_best_epoch(self, iou_acc, average_epoch_loss_train, average_epoch_loss_val, currentLR_fine,
currentLR_random):
""" Remember best val_IoU and save checkpoint """
current_iou_val = iou_acc
is_best = current_iou_val > self.best_iou
self.best_iou = max(current_iou_val, self.best_iou)
with open(self.automated_log_path, "a") as myfile:
myfile.write("\n%d\t\t\t%.4f\t\t\t%.4f\t\t\t%.4f\t\t\t%.8f" % (
self.epoch + 1, average_epoch_loss_train, average_epoch_loss_val, current_iou_val, currentLR_fine))
with open(self.csv_log_file, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow(
[self.epoch + 1, average_epoch_loss_train, average_epoch_loss_val, current_iou_val, currentLR_fine,
currentLR_random])
self.loss_plotter.append_data(epoch_=self.epoch + 1,
train_loss=average_epoch_loss_train,
current_lr=currentLR_fine,
val_loss=average_epoch_loss_val,
mIoU=current_iou_val)
self.loss_plotter.save_loss_fig()
if (is_best):
self.save_model_state()
print(f'-->saved: epoch: {self.epoch + 1} as new best)', flush=True)
with open(self.base_path + "/best.txt", "w") as myfile:
myfile.write("Best epoch is %d, with Val.-IoU= %.4f" % (self.epoch + 1, current_iou_val))
if __name__ == "__main__":
warnings.filterwarnings("ignore")
options = TrainOptions()
opt = options.parse()
# setting global seed values for determinism
worker_seed = opt.worker_seed
seed = opt.global_seed
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
print('Set random seed to: ' + str(seed), flush=True)
if opt.deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# checking height and width are multiples of 32
assert opt.height % 32 == 0, "'height' must be a multiple of 32"
assert opt.width % 32 == 0, "'width' must be a multiple of 32"
trainer = Trainer(options=opt)
trainer.train()
# model = build_deeplab(19, encoder='convnext_tiny')
# model = SwiftNet(20, encoder="convnext_tiny")
# model.eval()
# output = model(torch.rand(1,3,768,768))
# print(output.shape)