-
Notifications
You must be signed in to change notification settings - Fork 91
/
Maximise_Hour_Glass_Sum.js
50 lines (40 loc) · 1.29 KB
/
Maximise_Hour_Glass_Sum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/*
2428. Maximum Sum of an Hourglass
You are given an m x n integer matrix grid.
We define an hourglass as a part of the matrix with the following form:
For Input : [[6,2,1],[4,2,1],[9,2,8]]
The Hourglass sum would be => 6 + 2 + 1 + 2( 2nd row , 2nd column) + 9 + 2 + 8
Return the maximum sum of the elements of an hourglass.
Note that an hourglass cannot be rotated and must be entirely contained within the matrix.
Constraints:
m == grid.length
n == grid[i].length
3 <= m, n <= 150
0 <= grid[i][j] <= 106
Input: grid = [[6,2,1,3],[4,2,1,5],[9,2,8,7],[4,1,2,9]]
Output: 30
Explanation: The cells shown above represent the hourglass with the maximum sum: 6 + 2 + 1 + 2 + 9 + 2 + 8 = 30.
Input: grid = [[1,2,3],[4,5,6],[7,8,9]]
Output: 35
Explanation: There is only one hourglass in the matrix, with the sum: 1 + 2 + 3 + 5 + 7 + 8 + 9 = 35.
*/
/**
* @param {number[][]} grid
* @return {number}
*/
var maxSum = function(grid) {
const m = grid.length;
const n = grid[0].length;
if(m<3 || n < 3) {
return 0;
}
let max = 0;
for(let i = 0; i<m-2; i++)
for(let j = 0; j<n-2;j++)
{
let cur = grid[i][j] + grid[i][j+1] + grid[i][j+2] + grid[i+1][j+1] + grid[i+2][j] + grid[i+2][j+1] + grid[i+2][j+2];
max = Math.max(cur, max);
}
return max;
};
module.exports.maxSum = maxSum;