-
Notifications
You must be signed in to change notification settings - Fork 671
/
gan_cifar_resnet.py
404 lines (346 loc) · 17.8 KB
/
gan_cifar_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
"""WGAN-GP ResNet for CIFAR-10"""
import os, sys
sys.path.append(os.getcwd())
import tflib as lib
import tflib.ops.linear
import tflib.ops.cond_batchnorm
import tflib.ops.conv2d
import tflib.ops.batchnorm
import tflib.save_images
import tflib.cifar10
import tflib.inception_score
import tflib.plot
import numpy as np
import tensorflow as tf
import sklearn.datasets
import time
import functools
import locale
locale.setlocale(locale.LC_ALL, '')
# Download CIFAR-10 (Python version) at
# https://www.cs.toronto.edu/~kriz/cifar.html and fill in the path to the
# extracted files here!
DATA_DIR = '/home/ishaan/data/cifar10'
if len(DATA_DIR) == 0:
raise Exception('Please specify path to data directory in gan_cifar.py!')
N_GPUS = 2
if N_GPUS not in [1,2]:
raise Exception('Only 1 or 2 GPUs supported!')
BATCH_SIZE = 64 # Critic batch size
GEN_BS_MULTIPLE = 2 # Generator batch size, as a multiple of BATCH_SIZE
ITERS = 100000 # How many iterations to train for
DIM_G = 128 # Generator dimensionality
DIM_D = 128 # Critic dimensionality
NORMALIZATION_G = True # Use batchnorm in generator?
NORMALIZATION_D = False # Use batchnorm (or layernorm) in critic?
OUTPUT_DIM = 3072 # Number of pixels in CIFAR10 (32*32*3)
LR = 2e-4 # Initial learning rate
DECAY = True # Whether to decay LR over learning
N_CRITIC = 5 # Critic steps per generator steps
INCEPTION_FREQUENCY = 1000 # How frequently to calculate Inception score
CONDITIONAL = True # Whether to train a conditional or unconditional model
ACGAN = True # If CONDITIONAL, whether to use ACGAN or "vanilla" conditioning
ACGAN_SCALE = 1. # How to scale the critic's ACGAN loss relative to WGAN loss
ACGAN_SCALE_G = 0.1 # How to scale generator's ACGAN loss relative to WGAN loss
if CONDITIONAL and (not ACGAN) and (not NORMALIZATION_D):
print "WARNING! Conditional model without normalization in D might be effectively unconditional!"
DEVICES = ['/gpu:{}'.format(i) for i in xrange(N_GPUS)]
if len(DEVICES) == 1: # Hack because the code assumes 2 GPUs
DEVICES = [DEVICES[0], DEVICES[0]]
lib.print_model_settings(locals().copy())
def nonlinearity(x):
return tf.nn.relu(x)
def Normalize(name, inputs,labels=None):
"""This is messy, but basically it chooses between batchnorm, layernorm,
their conditional variants, or nothing, depending on the value of `name` and
the global hyperparam flags."""
if not CONDITIONAL:
labels = None
if CONDITIONAL and ACGAN and ('Discriminator' in name):
labels = None
if ('Discriminator' in name) and NORMALIZATION_D:
return lib.ops.layernorm.Layernorm(name,[1,2,3],inputs,labels=labels,n_labels=10)
elif ('Generator' in name) and NORMALIZATION_G:
if labels is not None:
return lib.ops.cond_batchnorm.Batchnorm(name,[0,2,3],inputs,labels=labels,n_labels=10)
else:
return lib.ops.batchnorm.Batchnorm(name,[0,2,3],inputs,fused=True)
else:
return inputs
def ConvMeanPool(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, inputs, he_init=he_init, biases=biases)
output = tf.add_n([output[:,:,::2,::2], output[:,:,1::2,::2], output[:,:,::2,1::2], output[:,:,1::2,1::2]]) / 4.
return output
def MeanPoolConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
output = inputs
output = tf.add_n([output[:,:,::2,::2], output[:,:,1::2,::2], output[:,:,::2,1::2], output[:,:,1::2,1::2]]) / 4.
output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
return output
def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
output = inputs
output = tf.concat([output, output, output, output], axis=1)
output = tf.transpose(output, [0,2,3,1])
output = tf.depth_to_space(output, 2)
output = tf.transpose(output, [0,3,1,2])
output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
return output
def ResidualBlock(name, input_dim, output_dim, filter_size, inputs, resample=None, no_dropout=False, labels=None):
"""
resample: None, 'down', or 'up'
"""
if resample=='down':
conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=input_dim)
conv_2 = functools.partial(ConvMeanPool, input_dim=input_dim, output_dim=output_dim)
conv_shortcut = ConvMeanPool
elif resample=='up':
conv_1 = functools.partial(UpsampleConv, input_dim=input_dim, output_dim=output_dim)
conv_shortcut = UpsampleConv
conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=output_dim, output_dim=output_dim)
elif resample==None:
conv_shortcut = lib.ops.conv2d.Conv2D
conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=output_dim)
conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=output_dim, output_dim=output_dim)
else:
raise Exception('invalid resample value')
if output_dim==input_dim and resample==None:
shortcut = inputs # Identity skip-connection
else:
shortcut = conv_shortcut(name+'.Shortcut', input_dim=input_dim, output_dim=output_dim, filter_size=1, he_init=False, biases=True, inputs=inputs)
output = inputs
output = Normalize(name+'.N1', output, labels=labels)
output = nonlinearity(output)
output = conv_1(name+'.Conv1', filter_size=filter_size, inputs=output)
output = Normalize(name+'.N2', output, labels=labels)
output = nonlinearity(output)
output = conv_2(name+'.Conv2', filter_size=filter_size, inputs=output)
return shortcut + output
def OptimizedResBlockDisc1(inputs):
conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=3, output_dim=DIM_D)
conv_2 = functools.partial(ConvMeanPool, input_dim=DIM_D, output_dim=DIM_D)
conv_shortcut = MeanPoolConv
shortcut = conv_shortcut('Discriminator.1.Shortcut', input_dim=3, output_dim=DIM_D, filter_size=1, he_init=False, biases=True, inputs=inputs)
output = inputs
output = conv_1('Discriminator.1.Conv1', filter_size=3, inputs=output)
output = nonlinearity(output)
output = conv_2('Discriminator.1.Conv2', filter_size=3, inputs=output)
return shortcut + output
def Generator(n_samples, labels, noise=None):
if noise is None:
noise = tf.random_normal([n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, 4*4*DIM_G, noise)
output = tf.reshape(output, [-1, DIM_G, 4, 4])
output = ResidualBlock('Generator.1', DIM_G, DIM_G, 3, output, resample='up', labels=labels)
output = ResidualBlock('Generator.2', DIM_G, DIM_G, 3, output, resample='up', labels=labels)
output = ResidualBlock('Generator.3', DIM_G, DIM_G, 3, output, resample='up', labels=labels)
output = Normalize('Generator.OutputN', output)
output = nonlinearity(output)
output = lib.ops.conv2d.Conv2D('Generator.Output', DIM_G, 3, 3, output, he_init=False)
output = tf.tanh(output)
return tf.reshape(output, [-1, OUTPUT_DIM])
def Discriminator(inputs, labels):
output = tf.reshape(inputs, [-1, 3, 32, 32])
output = OptimizedResBlockDisc1(output)
output = ResidualBlock('Discriminator.2', DIM_D, DIM_D, 3, output, resample='down', labels=labels)
output = ResidualBlock('Discriminator.3', DIM_D, DIM_D, 3, output, resample=None, labels=labels)
output = ResidualBlock('Discriminator.4', DIM_D, DIM_D, 3, output, resample=None, labels=labels)
output = nonlinearity(output)
output = tf.reduce_mean(output, axis=[2,3])
output_wgan = lib.ops.linear.Linear('Discriminator.Output', DIM_D, 1, output)
output_wgan = tf.reshape(output_wgan, [-1])
if CONDITIONAL and ACGAN:
output_acgan = lib.ops.linear.Linear('Discriminator.ACGANOutput', DIM_D, 10, output)
return output_wgan, output_acgan
else:
return output_wgan, None
with tf.Session() as session:
_iteration = tf.placeholder(tf.int32, shape=None)
all_real_data_int = tf.placeholder(tf.int32, shape=[BATCH_SIZE, OUTPUT_DIM])
all_real_labels = tf.placeholder(tf.int32, shape=[BATCH_SIZE])
labels_splits = tf.split(all_real_labels, len(DEVICES), axis=0)
fake_data_splits = []
for i, device in enumerate(DEVICES):
with tf.device(device):
fake_data_splits.append(Generator(BATCH_SIZE/len(DEVICES), labels_splits[i]))
all_real_data = tf.reshape(2*((tf.cast(all_real_data_int, tf.float32)/256.)-.5), [BATCH_SIZE, OUTPUT_DIM])
all_real_data += tf.random_uniform(shape=[BATCH_SIZE,OUTPUT_DIM],minval=0.,maxval=1./128) # dequantize
all_real_data_splits = tf.split(all_real_data, len(DEVICES), axis=0)
DEVICES_B = DEVICES[:len(DEVICES)/2]
DEVICES_A = DEVICES[len(DEVICES)/2:]
disc_costs = []
disc_acgan_costs = []
disc_acgan_accs = []
disc_acgan_fake_accs = []
for i, device in enumerate(DEVICES_A):
with tf.device(device):
real_and_fake_data = tf.concat([
all_real_data_splits[i],
all_real_data_splits[len(DEVICES_A)+i],
fake_data_splits[i],
fake_data_splits[len(DEVICES_A)+i]
], axis=0)
real_and_fake_labels = tf.concat([
labels_splits[i],
labels_splits[len(DEVICES_A)+i],
labels_splits[i],
labels_splits[len(DEVICES_A)+i]
], axis=0)
disc_all, disc_all_acgan = Discriminator(real_and_fake_data, real_and_fake_labels)
disc_real = disc_all[:BATCH_SIZE/len(DEVICES_A)]
disc_fake = disc_all[BATCH_SIZE/len(DEVICES_A):]
disc_costs.append(tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real))
if CONDITIONAL and ACGAN:
disc_acgan_costs.append(tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=disc_all_acgan[:BATCH_SIZE/len(DEVICES_A)], labels=real_and_fake_labels[:BATCH_SIZE/len(DEVICES_A)])
))
disc_acgan_accs.append(tf.reduce_mean(
tf.cast(
tf.equal(
tf.to_int32(tf.argmax(disc_all_acgan[:BATCH_SIZE/len(DEVICES_A)], dimension=1)),
real_and_fake_labels[:BATCH_SIZE/len(DEVICES_A)]
),
tf.float32
)
))
disc_acgan_fake_accs.append(tf.reduce_mean(
tf.cast(
tf.equal(
tf.to_int32(tf.argmax(disc_all_acgan[BATCH_SIZE/len(DEVICES_A):], dimension=1)),
real_and_fake_labels[BATCH_SIZE/len(DEVICES_A):]
),
tf.float32
)
))
for i, device in enumerate(DEVICES_B):
with tf.device(device):
real_data = tf.concat([all_real_data_splits[i], all_real_data_splits[len(DEVICES_A)+i]], axis=0)
fake_data = tf.concat([fake_data_splits[i], fake_data_splits[len(DEVICES_A)+i]], axis=0)
labels = tf.concat([
labels_splits[i],
labels_splits[len(DEVICES_A)+i],
], axis=0)
alpha = tf.random_uniform(
shape=[BATCH_SIZE/len(DEVICES_A),1],
minval=0.,
maxval=1.
)
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates, labels)[0], [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = 10*tf.reduce_mean((slopes-1.)**2)
disc_costs.append(gradient_penalty)
disc_wgan = tf.add_n(disc_costs) / len(DEVICES_A)
if CONDITIONAL and ACGAN:
disc_acgan = tf.add_n(disc_acgan_costs) / len(DEVICES_A)
disc_acgan_acc = tf.add_n(disc_acgan_accs) / len(DEVICES_A)
disc_acgan_fake_acc = tf.add_n(disc_acgan_fake_accs) / len(DEVICES_A)
disc_cost = disc_wgan + (ACGAN_SCALE*disc_acgan)
else:
disc_acgan = tf.constant(0.)
disc_acgan_acc = tf.constant(0.)
disc_acgan_fake_acc = tf.constant(0.)
disc_cost = disc_wgan
disc_params = lib.params_with_name('Discriminator.')
if DECAY:
decay = tf.maximum(0., 1.-(tf.cast(_iteration, tf.float32)/ITERS))
else:
decay = 1.
gen_costs = []
gen_acgan_costs = []
for device in DEVICES:
with tf.device(device):
n_samples = GEN_BS_MULTIPLE * BATCH_SIZE / len(DEVICES)
fake_labels = tf.cast(tf.random_uniform([n_samples])*10, tf.int32)
if CONDITIONAL and ACGAN:
disc_fake, disc_fake_acgan = Discriminator(Generator(n_samples,fake_labels), fake_labels)
gen_costs.append(-tf.reduce_mean(disc_fake))
gen_acgan_costs.append(tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=disc_fake_acgan, labels=fake_labels)
))
else:
gen_costs.append(-tf.reduce_mean(Discriminator(Generator(n_samples, fake_labels), fake_labels)[0]))
gen_cost = (tf.add_n(gen_costs) / len(DEVICES))
if CONDITIONAL and ACGAN:
gen_cost += (ACGAN_SCALE_G*(tf.add_n(gen_acgan_costs) / len(DEVICES)))
gen_opt = tf.train.AdamOptimizer(learning_rate=LR*decay, beta1=0., beta2=0.9)
disc_opt = tf.train.AdamOptimizer(learning_rate=LR*decay, beta1=0., beta2=0.9)
gen_gv = gen_opt.compute_gradients(gen_cost, var_list=lib.params_with_name('Generator'))
disc_gv = disc_opt.compute_gradients(disc_cost, var_list=disc_params)
gen_train_op = gen_opt.apply_gradients(gen_gv)
disc_train_op = disc_opt.apply_gradients(disc_gv)
# Function for generating samples
frame_i = [0]
fixed_noise = tf.constant(np.random.normal(size=(100, 128)).astype('float32'))
fixed_labels = tf.constant(np.array([0,1,2,3,4,5,6,7,8,9]*10,dtype='int32'))
fixed_noise_samples = Generator(100, fixed_labels, noise=fixed_noise)
def generate_image(frame, true_dist):
samples = session.run(fixed_noise_samples)
samples = ((samples+1.)*(255./2)).astype('int32')
lib.save_images.save_images(samples.reshape((100, 3, 32, 32)), 'samples_{}.png'.format(frame))
# Function for calculating inception score
fake_labels_100 = tf.cast(tf.random_uniform([100])*10, tf.int32)
samples_100 = Generator(100, fake_labels_100)
def get_inception_score(n):
all_samples = []
for i in xrange(n/100):
all_samples.append(session.run(samples_100))
all_samples = np.concatenate(all_samples, axis=0)
all_samples = ((all_samples+1.)*(255.99/2)).astype('int32')
all_samples = all_samples.reshape((-1, 3, 32, 32)).transpose(0,2,3,1)
return lib.inception_score.get_inception_score(list(all_samples))
train_gen, dev_gen = lib.cifar10.load(BATCH_SIZE, DATA_DIR)
def inf_train_gen():
while True:
for images,_labels in train_gen():
yield images,_labels
for name,grads_and_vars in [('G', gen_gv), ('D', disc_gv)]:
print "{} Params:".format(name)
total_param_count = 0
for g, v in grads_and_vars:
shape = v.get_shape()
shape_str = ",".join([str(x) for x in v.get_shape()])
param_count = 1
for dim in shape:
param_count *= int(dim)
total_param_count += param_count
if g == None:
print "\t{} ({}) [no grad!]".format(v.name, shape_str)
else:
print "\t{} ({})".format(v.name, shape_str)
print "Total param count: {}".format(
locale.format("%d", total_param_count, grouping=True)
)
session.run(tf.initialize_all_variables())
gen = inf_train_gen()
for iteration in xrange(ITERS):
start_time = time.time()
if iteration > 0:
_ = session.run([gen_train_op], feed_dict={_iteration:iteration})
for i in xrange(N_CRITIC):
_data,_labels = gen.next()
if CONDITIONAL and ACGAN:
_disc_cost, _disc_wgan, _disc_acgan, _disc_acgan_acc, _disc_acgan_fake_acc, _ = session.run([disc_cost, disc_wgan, disc_acgan, disc_acgan_acc, disc_acgan_fake_acc, disc_train_op], feed_dict={all_real_data_int: _data, all_real_labels:_labels, _iteration:iteration})
else:
_disc_cost, _ = session.run([disc_cost, disc_train_op], feed_dict={all_real_data_int: _data, all_real_labels:_labels, _iteration:iteration})
lib.plot.plot('cost', _disc_cost)
if CONDITIONAL and ACGAN:
lib.plot.plot('wgan', _disc_wgan)
lib.plot.plot('acgan', _disc_acgan)
lib.plot.plot('acc_real', _disc_acgan_acc)
lib.plot.plot('acc_fake', _disc_acgan_fake_acc)
lib.plot.plot('time', time.time() - start_time)
if iteration % INCEPTION_FREQUENCY == INCEPTION_FREQUENCY-1:
inception_score = get_inception_score(50000)
lib.plot.plot('inception_50k', inception_score[0])
lib.plot.plot('inception_50k_std', inception_score[1])
# Calculate dev loss and generate samples every 100 iters
if iteration % 100 == 99:
dev_disc_costs = []
for images,_labels in dev_gen():
_dev_disc_cost = session.run([disc_cost], feed_dict={all_real_data_int: images,all_real_labels:_labels})
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot('dev_cost', np.mean(dev_disc_costs))
generate_image(iteration, _data)
if (iteration < 500) or (iteration % 1000 == 999):
lib.plot.flush()
lib.plot.tick()