-
Notifications
You must be signed in to change notification settings - Fork 496
/
prims.c
49 lines (46 loc) · 1.19 KB
/
prims.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <stdio.h>
#include <string.h>
#include <limits.h>
#define SIZE 5
// This function finds the minimal spanning tree by Prim's Algorithm
void prims(int G[SIZE][SIZE], int *parent) {
int select[SIZE], i, j, k;
int v1 = 0, v2 = 0;
for (i = 0; i < SIZE; ++i) { // Initialize the selected vertices list
select[i] = 0;
}
select[0] = 1;
for (k = 1; k < SIZE; ++k) {
int min_dist = INT_MAX;
for (i = 0; i < SIZE; ++i) { // Select an edge such that one vertex is selected and other is not and the edge
for (j = 0; j < SIZE; ++j) { // has the least weight.
if (G[i][j] && ((select[i] && !select[j]) || (!select[i] && select[j]))) {
if (G[i][j] < min_dist) { //obtained edge with minimum wt
min_dist = G[i][j];
v1 = i;
parent[j] = v1;
v2 = j; //picking up those vertices
}
}
}
}
select[v1] = select[v2] = 1;
}
}
int main() {
int G[SIZE][SIZE] = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}};
int i, j;
int parent[SIZE];
memset(parent, 0, SIZE);
printf("Edge\tWeight\n");
prims(G,parent);
for (i = 1; i < SIZE; ++i) {
printf("%d - %d\t%d \n", parent[i], i, G[i][parent[i]]);
}
return 0;
}