-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_triplet_save_examples.py
126 lines (94 loc) · 4.77 KB
/
test_triplet_save_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from transformers import BertModel
from model.logistic_regression import LogisticRegression
from scipy.stats import pearsonr, spearmanr
import numpy as np
from data_loader.test_data_loader import DataLoaderGenerator, LoaderType, QualDataset
import os
from transformers import BertTokenizer
"""
NOTE: For USR-TC this evaluates everything in the test set (human & non-human)
Just eval first repetition
"""
MAX_LEN = 512
BATCHSIZE = 32
def validate(data_loader_generator, bert_model, net, outfile, tokenizer, device='cuda'):
with torch.no_grad():
valloader = data_loader_generator.get_val_data_loader()
val_HUM_Y = data_loader_generator.get_val_y()
predictions = []
dials = []
j = 0
for i, data in enumerate(valloader, 0):
data = [x.to(torch.int64).to(device) for x in data]
tok, att, ty = data
_, feats = bert_model(input_ids=tok, attention_mask=att, token_type_ids = ty)
val_pred = net(feats)
val_pred = val_pred.detach().cpu().numpy()
val_pred = np.squeeze(val_pred)
val_pred = val_pred.tolist()
predictions += val_pred
for t, vp in zip(tok, val_pred):
convo = tokenizer.convert_ids_to_tokens(t)
convo = ' '.join([c for c in convo if c != '[PAD]'])
dials.append(convo)
return dials, val_HUM_Y, predictions
def main(device='cuda', epoch_target=2):
print("Loading BERT")
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
bert_model = BertModel.from_pretrained('bert-base-uncased')
bert_model.eval()
bert_model.to(device)
torch.cuda.empty_cache()
net = LogisticRegression(768) # Model to get pred from BERT
print("Start testing")
for test_dataset in ["HUMOD", 'USR_TC_REL', 'P_DD', 'FED_REL', 'FED_COR']:
data_loader_generator = DataLoaderGenerator(bert_max_len=MAX_LEN,
to_load=QualDataset[test_dataset],
load_type=LoaderType['IDK'],
batchsize=BATCHSIZE,
skip_tr=True)
# Save all domain performances
net.eval()
LOADERS = ['IDK']
LOSSES = ["bce"]
REGS = ["L1"]
LIMIT = 3750 #10
for dataset in ["HUMOD"]:
for loader in LOADERS:
for loss in LOSSES:
for reg_nme in REGS:
# For HUMOD, use provided random distractors
if dataset == "HUMOD" and loader == "Rand3750":
loader="Distr0"
save_dir = 'exp/'+dataset+'_'+loader
if loss != "trip2":
save_dir += '_' + loss
if reg_nme is not None:
save_dir += '_' + reg_nme + f'_wt1'
save_dir += f'_lim{LIMIT}'
file_num = epoch_target if epoch_target != 2 else ''
target_file = save_dir+f'/test_eval_exmple_{file_num}_{test_dataset}.tsv'
if os.path.exists(target_file):
print(f"SKIPPING existing: test {test_dataset}; {dataset} {loader} {loss} {reg_nme}")
else:
with open(target_file, 'w') as outfile:
print(f'"dialogue"\t"human"\t"{save_dir.split("/")[1]}"', file=outfile)
print(f"test {test_dataset}; {dataset} {loader} {loss} {reg_nme}")
# Just look at first model; i=0
i=0
net.load_state_dict(torch.load(os.path.join(save_dir, str(i), f'HUM_chk_{epoch_target - 1}.pt')))
net.to(device)
net.eval()
with open(target_file, 'a') as outfile:
dials, human, machine = validate(data_loader_generator, bert_model, net, outfile, tokenizer)
machine = np.array(machine)
machine = 1 - machine # Adjust for backwards sigmoid
machine -= min(machine)
scale = 2 if test_dataset == 'USR_TC_REL' or 'FED_' in test_dataset else 4
print(scale)
machine = 1 + (machine/max(machine))*scale
for convo, vh, vp in zip(dials, human, machine):
print(f"{convo}\t{vh:.2f}\t{vp:.2f}", file=outfile)
if __name__ == '__main__':
main(epoch_target=2)