forked from unitoftime/ecs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsystem.go
346 lines (289 loc) · 9.44 KB
/
system.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
package ecs
import (
"fmt"
"sync"
"time"
"runtime"
)
// Represents an individual system
type System struct {
Name string
Func func(dt time.Duration)
}
// Create a new system. The system name will be automatically created based on the function name that calls this function
func NewSystem(lambda func(dt time.Duration)) System {
systemName := "UnknownSystemName"
pc, _, _, ok := runtime.Caller(1)
if ok {
details := runtime.FuncForPC(pc)
systemName = details.Name()
}
return System{
Name: systemName,
Func: lambda,
}
}
// TODO - how to support filters?
// type Initializer interface {
// Initialize(*World)
// }
// // Idea: Automatically created, Generic systems
// func NewSystem1[A Initializer](world *World, lambda func(dt time.Duration, a *A)) System {
// a := new(A)
// (*a).Initialize(world)
// return System{
// Name: "TODO - Use Reflection",
// Func: func(dt time.Duration) {
// // aPointer.Lock()
// // defer aPointer.Unlock()
// lambda(dt, a)
// },
// }
// }
// func NewSystem1[A any](world, lambda func(a A)) System {
// var a A
// aPointer := a.Initialize(world)
// return System{
// Name: systemName,
// Func: func(dt time.Duration) {
// aPointer.Lock()
// defer aPointer.Unlock()
// lambda(dt, aPointer)
// },
// }
// }
// Executes the system once, returning the time taken.
// This is mostly used by the scheduler, but you can use it too.
func (s *System) Run(dt time.Duration) time.Duration {
// Note: Disable timing
// s.Func(dt)
// return 0
// fmt.Println(s.Name) // Spew
start := time.Now()
s.Func(dt)
return time.Since(start)
}
// A log of a system and the time it took to execute
type SystemLog struct {
Name string
Time time.Duration
}
func (s *SystemLog) String() string {
return fmt.Sprintf("%s: %s", s.Name, s.Time)
}
// TODO - Just use an atomic here?
type signal struct {
mu sync.Mutex
value bool
}
func (s *signal) Set(val bool) {
s.mu.Lock()
s.value = val
s.mu.Unlock()
}
func (s *signal) Get() bool {
s.mu.Lock()
ret := s.value
s.mu.Unlock()
return ret
}
// Scheduler is a place to put your systems and have them run.
// There are two types of systems: Fixed time systems and dynamic time systems
// 1. Fixed time systems will execute on a fixed time step
// 2. Dynamic time systems will execute as quickly as they possibly can
// The scheduler may change in the future, but right now how it works is simple:
// Input: Execute input systems (Dynamic time systems)
// Physics: Execute physics systems (Fixed time systems)
// Render: Execute render systems (Dynamic time systems)
type Scheduler struct {
input, physics, render []System
sysLogBack, sysLogFront []SystemLog
sysLogBackFixed, sysLogFrontFixed []SystemLog
fixedTimeStep time.Duration
accumulator time.Duration
// gameSpeed int64
quit signal
pauseRender signal
maxLoopCount int
}
// Creates a scheduler
func NewScheduler() *Scheduler {
return &Scheduler{
input: make([]System, 0),
physics: make([]System, 0),
render: make([]System, 0),
sysLogFront: make([]SystemLog, 0),
sysLogBack: make([]SystemLog, 0),
sysLogFrontFixed: make([]SystemLog, 0),
sysLogBackFixed: make([]SystemLog, 0),
fixedTimeStep: 16 * time.Millisecond,
accumulator: 0,
// gameSpeed: 1,
}
}
// TODO make SetGameSpeed and SetFixedTimeStep thread safe.
// Sets the rate at which time accumulates. Also, you want them to only change at the end of a frame, else you might get some inconsistencies. Just use a mutex and a single temporary variable
// func (s *Scheduler) SetGameSpeed(speed int64) {
// s.gameSpeed = speed
// }
// Tells the scheduler to exit. Scheduler will finish executing its remaining tick before closing.
func (s *Scheduler) SetQuit(value bool) {
s.quit.Set(true)
}
// Pauses the set of render systems (ie they will be skipped).
// Deprecated: This API is tentatitive
func (s *Scheduler) PauseRender(value bool) {
s.pauseRender.Set(value)
}
// Sets the amount of time required before the fixed time systems will execute
func (s *Scheduler) SetFixedTimeStep(t time.Duration) {
s.fixedTimeStep = t
}
// Adds a system to the list of input systems
func (s *Scheduler) AppendInput(systems ...System) {
s.input = append(s.input, systems...)
}
// Adds a system to the list of physics systems
func (s *Scheduler) AppendPhysics(systems ...System) {
s.physics = append(s.physics, systems...)
}
// Adds a system to the list of render systems
func (s *Scheduler) AppendRender(systems ...System) {
s.render = append(s.render, systems...)
}
// Sets the accumulator maximum point so that if the accumulator gets way to big, we will reset it and continue on, dropping all physics ticks that would have been executed. This is useful in a runtime like WASM where the browser may not let us run as frequently as we may need (for example, when the tab is hidden or minimized).
// Note: This must be set before you call scheduler.Run()
// Note: The default value is 0, which will force every physics tick to run. I highly recommend setting this to something if you plan to build for WASM!
func (s *Scheduler) SetMaxPhysicsLoopCount(count int) {
s.maxLoopCount = count
}
// Returns the front syslog so the user can analyze it. Note: This is only valid for the current frame, you should call this every frame if you use it!
func (s *Scheduler) Syslog() []SystemLog {
return s.sysLogFront
}
// Returns the front syslog for fixed-dt systems only. Note: This is only valid for the current frame, you should call this every frame if you use it!
func (s *Scheduler) SyslogFixed() []SystemLog {
return s.sysLogFrontFixed
}
// Returns an interpolation value which represents how close we are to the next fixed time step execution. Can be useful for interpolating dynamic time systems to the fixed time systems. I might rename this
func (s *Scheduler) GetRenderInterp() float64 {
return s.accumulator.Seconds() / s.fixedTimeStep.Seconds()
}
// Note: Would be nice to sleep or something to prevent spinning while we wait for work to do
// Could also separate the render loop from the physics loop (requires some thread safety in ECS)
func (s *Scheduler) Run() {
frameStart := time.Now()
dt := s.fixedTimeStep
// var accumulator time.Duration
s.accumulator = 0
maxLoopCount := time.Duration(s.maxLoopCount)
// go func() {
// for {
// time.Sleep(s.fixedTimeStep)
// for _, sys := range s.physics {
// sysTime := sys.Run(s.fixedTimeStep)
// s.sysLogBackFixed = append(s.sysLogBackFixed, SystemLog{
// Name: sys.Name,
// Time: sysTime,
// })
// }
// }
// }()
for !s.quit.Get() {
{
tmpSysLog := s.sysLogFront
s.sysLogFront = s.sysLogBack
s.sysLogBack = tmpSysLog
s.sysLogBack = s.sysLogBack[:0]
}
// Input Systems
for _, sys := range s.input {
sysTime := sys.Run(dt)
s.sysLogBack = append(s.sysLogBack, SystemLog{
Name: sys.Name,
Time: sysTime,
})
}
if maxLoopCount > 0 {
if s.accumulator > (maxLoopCount * s.fixedTimeStep) {
s.accumulator = s.fixedTimeStep // Just run one loop
}
}
// TODO - If we get a double run, then all are accumulated
if s.accumulator >= s.fixedTimeStep {
tmpSysLog := s.sysLogFrontFixed
s.sysLogFrontFixed = s.sysLogBackFixed
s.sysLogBackFixed = tmpSysLog
s.sysLogBackFixed = s.sysLogBackFixed[:0]
}
// Physics Systems
for s.accumulator >= s.fixedTimeStep {
for _, sys := range s.physics {
sysTime := sys.Run(s.fixedTimeStep)
s.sysLogBackFixed = append(s.sysLogBackFixed, SystemLog{
Name: sys.Name,
Time: sysTime,
})
}
s.accumulator -= s.fixedTimeStep
}
// Render Systems
if !s.pauseRender.Get() {
for _, sys := range s.render {
sysTime := sys.Run(dt)
s.sysLogBack = append(s.sysLogBack, SystemLog{
Name: sys.Name,
Time: sysTime,
})
}
}
// Edge case for schedules only fixed time steps
if len(s.input) == 0 && len(s.render) == 0 {
// Note: This is guaranteed to be positive because the physics execution loops until the accumulator is less than fixedtimestep
time.Sleep(s.fixedTimeStep - s.accumulator)
}
// Capture Frame time
now := time.Now()
dt = now.Sub(frameStart)
frameStart = now
// dt = time.Since(frameStart)
// frameStart = time.Now()
s.accumulator += dt
// scaledDt := dt.Nanoseconds() * s.gameSpeed
// s.accumulator += time.Duration(scaledDt)
// s.accumulator += 16667 * time.Microsecond
// fmt.Println(dt, s.accumulator)
}
}
// // TODO! - Helpful starting point of commands? Maybe pass a commandlist to systems with dt as they execute. Maybe wrap dt and commandlist inside some general thing that gets passed to systems
// type Command struct {
// Id ecs.Id // If Id is ecs.InvalidEntity, we will spawn this as a new entity
// Entity *ecs.Entity
// }
// type CommandList struct {
// world *ecs.World
// list []Command
// }
// func NewCommandList(world *ecs.World) *CommandList {
// return &CommandList{
// world: world,
// list: make([]Command, 0),
// }
// }
// func (l *CommandList) Add(c Command) {
// l.list = append(l.list, c)
// }
// func (l *CommandList) Map(lambda func(c *Command)) {
// for i := range l.list {
// lambda(&l.list[i])
// }
// }
// func (l *CommandList) Execute() {
// for _, c := range l.list {
// id := c.Id
// if id == ecs.InvalidEntity {
// id = l.world.NewId()
// }
// ecs.WriteEntity(l.world, id, c.Entity)
// }
// }