-
Notifications
You must be signed in to change notification settings - Fork 0
/
alpha_node.py
438 lines (377 loc) · 18.3 KB
/
alpha_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 10 10:08:20 2020
@author: melike
"""
import os.path as osp
import numpy as np
import random
import os
import json
import torch
import argparse
import random
from collections import Counter
from sklearn.metrics import confusion_matrix, balanced_accuracy_score, recall_score, f1_score, precision_score, cohen_kappa_score
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument('--use_gdc', action='store_true',
help='Use GDC preprocessing.')
args = parser.parse_args()
from torch_geometric.data import InMemoryDataset, Data
from torch_geometric.nn import GCNConv
from torch.nn import Sequential, Linear
from torch_sparse import coalesce
import torch.nn.functional as F
import Constants
class AlphaNode(InMemoryDataset):
def __init__(self, root, transform=None, pre_transform=None):
super(AlphaNode, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
# The name of the files to find in the self.raw_dir folder in order to skip the download.
@property
def raw_file_names(self):
return osp.join(self.root, Constants.NODE_FILE_NAME)
# A list of files in the processed_dir which needs to be found in order to skip the processing.
@property
def processed_file_names(self):
return 'data.pt'
def download(self):
pass
"""
Gather data into one Data object for creating only one graph.
"""
def process(self):
node_file_path = osp.join(self.root, Constants.ALPHA_ADJ_NODE_FEATS_PATH)
edge_file_path = osp.join(self.root, Constants.ALPHA_SPATIAL_ADJ_EDGES_PATH)
ret_val, data, map_ids = read_alpha_node_data(node_file_path, edge_file_path)
if ret_val:
# print(data)
data = data if self.pre_transform is None else self.pre_transform(data)
torch.save(self.collate([data]), self.processed_paths[0])
else:
print("Could not read dataset")
return
"""
Generates result folder with the next id.
Returns log file path.
"""
def generate_result_folder():
P = Constants.RESULTS_PATH
folder_id = len([i for i in os.listdir(P) if os.path.isdir(os.path.join(P, i))]) + 1
folder_path = os.path.join(Constants.RESULTS_PATH, str(folder_id))
if not os.path.exists(folder_path):
os.mkdir(folder_path)
return os.path.join(folder_path, 'log.txt'), folder_path
def index_to_mask(index, size):
mask = torch.zeros((size, ), dtype=torch.bool)
mask[index] = 1
return mask
# Returns label percents in given mask with given labels
def get_label_percents(counts, labels, mask):
uniq_labels = set(labels)
mask_counts = dict.fromkeys(uniq_labels, 0)
percents = {}
for i, val in enumerate(mask):
if val:
mask_counts[labels[i]] = mask_counts[labels[i]] + 1
for k in counts:
percents[k] = mask_counts[k] / counts[k]
return sorted(percents.items()), sorted(mask_counts.items())
# Returns dict with float values in nicely formatted string
def to_str(d):
res = "{"
for pair in d:
res += str(pair[0]) + ": "
if isinstance(pair[1], int):
res += str(pair[1]) + '\t'
elif isinstance(pair[1], float):
res += str("%.2f" % pair[1]) + '\t'
else:
print('Undefined type in pair!<')
res += "}"
return res
def print_train_test_info(labels, train_mask, test_mask):
if len(train_mask) != len(labels) or len(train_mask) != len(test_mask):
err_str = 'Different lengths, given %d vs %d vs %d' % (len(train_mask), len(labels), len(test_mask))
raise ValueError(err_str)
counts = dict(Counter(labels))
tr_percents, tr_counts = get_label_percents(counts, labels, train_mask)
test_percents, test_counts = get_label_percents(counts, labels, test_mask)
for name, d in zip(['counts', 'train', 'test'], [sorted(counts.items()), tr_percents, test_percents]):
print(name, '\t:', to_str(d))
return counts, tr_percents, test_percents, tr_counts, test_counts
def create_masks(len_data):
num_tr_nodes = int(len_data * Constants.ALPHA_TRAIN_PERCENT)
train_ids = random.sample(range(0, len_data), num_tr_nodes)
train_mask = index_to_mask(train_ids, len_data)
test_mask = ~train_mask
test_ids = torch.arange(0, len_data)[test_mask]
return train_mask, test_mask, train_ids, test_ids
def create_semisupervised_masks(len_data):
num_tr_nodes = 140
num_test_nodes = 1000
train_ids = random.sample(range(0, len_data), num_tr_nodes)
train_mask = index_to_mask(train_ids, len_data)
tmp_mask = ~train_mask # test mask will be created using this
tmp_ids = torch.arange(0, len_data)[tmp_mask] # get tmp_ids
shuffled_ids = torch.randperm(len(tmp_ids)) # shuffle tmp_ids
test_ids = tmp_ids[shuffled_ids[0:num_test_nodes]] # get first num_test_nodes ids as test ids
test_mask = index_to_mask(test_ids, len_data)
return train_mask, test_mask, train_ids, test_ids
"""
Creates header string for Weka as in Java.
"""
def get_header(num_features):
header = "@RELATION vaihingen_graph" + "\n";
for i in range(1, num_features + 1):
header += "@ATTRIBUTE o" + str(i) + " REAL" + "\n"
header += "@ATTRIBUTE o {"
for i in range(0, Constants.NUM_VAIHINGEN_CLASSES - 1):
header += str(i) + ","
header += str(Constants.NUM_VAIHINGEN_CLASSES - 1)
header += "}" + "\n" + "@DATA" + "\n"
return header
"""
With using given indices on given features and labels,
creates corresponding arff file with given filename
"""
def create_arff_file(ids, xs, ys, filename):
with open(Constants.ALPHA_WEKA_FEATS_PATH + "_" + filename + ".arff", 'w') as weka_file:
weka_file.write(get_header(len(xs[0])))
for i in ids:
for f in xs[i]:
weka_file.write(str(f) + ',') # Beware of ugly floats
weka_file.write(str(ys[i]) + '\n')
def create_masks_for_clique_graph(node_data):
train_end = int(len(node_data) * Constants.ALPHA_TRAIN_PERCENT)
train_index = torch.arange(train_end, dtype=torch.long)
test_index = torch.arange(train_end, len(node_data), dtype=torch.long)
train_mask = index_to_mask(train_index, len(node_data))
test_mask = index_to_mask(test_index, len(node_data))
return train_mask, test_mask
def read_alpha_node_data(node_file_path, edge_file_path):
with open(node_file_path) as node_file:
with open(edge_file_path) as edge_file:
node_data = json.load(node_file)
edge_data = json.load(edge_file)
xs = [] # node features
ys = []
node_ids = []
from_nodes = [] # COO format, from-to relation
to_nodes = []
#edge_weights = []
map_ids = {}
map_index = 0 # Maps java indices to [0, len) range
num_skipped = 0
tmp_ids = [sample['id'] for sample in node_data]
for sample in node_data:
node_id = sample['id']
if str(node_id) in edge_data:
xs.append(sample['fs'])
ys.append(sample['label'])
node_ids.append(node_id)
# parent_id = sample['parent']
# ns = edge_data[str(parent_id)]
ns = edge_data[str(node_id)]
if node_id not in map_ids: # Map node_ids to [0, len) range
map_ids[node_id] = map_index
map_index += 1
for n in ns:
if n in tmp_ids:
if n not in map_ids: # Map neighbour ids to [0, len) range
map_ids[n] = map_index
map_index += 1
from_nodes.append(map_ids[node_id])
to_nodes.append(map_ids[n])
# if n != node_id: # Clique adjacency
# from_nodes.append(map_ids[node_id])
# to_nodes.append(map_ids[n])
else:
num_skipped += 1
print('Skipped %d nodes, using %d nodes' % (num_skipped, len(node_data) - num_skipped))
assert len(node_ids) == len(np.unique(list(map_ids.keys()))) == len(map_ids)
# for key, val in map_ids.items():
# print(key, 'became', val)
len_data = len(node_data) - num_skipped
train_mask, test_mask, train_ids, test_ids = create_masks(len_data)
# train_mask, test_mask, train_ids, test_ids = create_semisupervised_masks(len_data)
for name, ids in zip(['train', 'test'], [train_ids, test_ids]):
create_arff_file(ids, xs, ys, name)
x = torch.from_numpy(np.array(xs)).to(torch.float)
y = torch.from_numpy(np.array(ys)).to(torch.long)
edge_index = torch.from_numpy(np.array([from_nodes, to_nodes])).to(torch.long)
# edge_attr = torch.from_numpy(np.array(edge_weights)).to(torch.float)
counts, tr_percents, test_percents, tr_counts, test_counts = print_train_test_info(ys, train_mask, test_mask)
data = Data(x=x, y=y, edge_index=edge_index)
data.train_mask = train_mask
data.test_mask = test_mask
data.num_actual_classes = len(counts)
data.num_tr_samples = len(train_ids)
data.num_test_samples = len(test_ids)
data.num_unlabeled_samples = len_data - (data.num_tr_samples + data.num_test_samples)
data.num_skipped = num_skipped
data.counts = counts
data.tr_percents = tr_percents
data.test_percents = test_percents
data.tr_counts = tr_counts
data.test_counts = test_counts
return True, data, map_ids
return False, None, None
def seed_everything(seed=Constants.SEED):
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
log_file_path, folder_path = generate_result_folder() # Generate results folder
seed_everything() # Set seed
# ret_val, data, map_ids = read_alpha_node_data(Constants.ALPHA_ADJ_NODE_FEATS_PATH, Constants.ALPHA_SPATIAL_ADJ_EDGES_PATH)
# print(map_ids)
dataset = AlphaNode(Constants.ALPHA_ROOT_PATH)
data = dataset[0]
if data.num_actual_classes.item() != dataset.num_classes:
err_str = 'Number of dataset classes and actual classes are different!\n\t%d vs %d' % (dataset.num_classes, data.num_actual_classes.item())
raise ValueError(err_str)
# print('num_nodes', data.num_nodes, 'dataset_len', len(dataset))
# print('contains_self_loops', data.contains_self_loops())
# print('contains_isolated_nodes', data.contains_isolated_nodes())
# print('num_tr_samples', data.num_tr_samples.item())
# print('num_test_samples', data.num_test_samples.item())
# print('num_unlabeled_samples', data.num_unlabeled_samples.item())
# print('tr_counts', data.tr_counts)
# print('test_counts', data.test_counts)
# Check there is only one graph
assert len(dataset) == 1
if args.use_gdc:
gdc = T.GDC(self_loop_weight=1, normalization_in='sym',
normalization_out='col',
diffusion_kwargs=dict(method='ppr', alpha=0.05),
sparsification_kwargs=dict(method='topk', k=128,
dim=0), exact=True)
data = gdc(data)
# Create network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
# self.lin = Sequential(Linear(10, 10))
self.conv1 = GCNConv(dataset.num_features, Constants.NUM_NODES, cached=True,
normalize=not args.use_gdc)
self.conv2 = GCNConv(Constants.NUM_NODES, dataset.num_classes, cached=True,
normalize=not args.use_gdc)
self.reg_params = self.conv1.parameters()
self.non_reg_params = self.conv2.parameters()
def forward(self):
x, edge_index = data.x, data.edge_index
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
torch.cuda.empty_cache() # For CUDA out of memory error
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model, data = Net().to(device), data.to(device) # Move network and data to device (CPU)
optimizer = torch.optim.Adam([
dict(params=model.reg_params, weight_decay=5e-4),
dict(params=model.non_reg_params, weight_decay=0)
], lr=Constants.LR)
def train():
model.train()
optimizer.zero_grad()
loss = F.nll_loss(model()[data.train_mask], data.y[data.train_mask]) # y[mask] returns array of true values in mask
# loss = F.mse_loss((model()[data.train_mask]).max(1)[1], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss
def compute_scores(y_test, y_pred):
# conf = confusion_matrix(y_test, y_pred)
# print('confusion matrix\n', conf)
# print('balanced_accuracy', balanced_accuracy_score(y_test, y_pred))
# print('precision_score', precision_score(y_test, y_pred, average="macro"))
# print('recall_score', recall_score(y_test, y_pred, average='macro'))
# print('f1_score', f1_score(y_test, y_pred, average="macro"))
# recall = recall_score(y_test, y_pred, average='macro')
f1 = f1_score(y_test, y_pred, average="macro")
kappa = cohen_kappa_score(y_test, y_pred)
return f1, kappa
def labels_to_device(y_test, y_pred):
if device.type == 'cpu':
y_test = y_test.numpy()
y_pred = y_pred.numpy()
elif device.type == 'cuda':
y_test = y_test.cpu().numpy()
y_pred = y_pred.cpu().numpy()
else:
print('Unknown device:', device)
return y_test, y_pred
@torch.no_grad()
def test():
model.eval() # Sets the module in evaluation mode.
logits, accs = model(), [] # Output of the model
for name, mask in data('train_mask', 'test_mask'):
pred = logits[mask].max(1)[1] # Returns indices of max values in each row
y_test, y_pred = labels_to_device(data.y[mask], pred)
f1, kappa = compute_scores(y_test, y_pred)
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item() # eq() computes element-wise equality.
# accs.append(acc)
accs.append(kappa)
return accs
losses, train_accs, test_accs = [], [], []
num_epochs = 400
epoch_range = range(1, num_epochs+1)
for epoch in epoch_range:
loss = train()
train_acc, test_acc = test()
log = 'Epoch: {:03d}, Train: {:.4f}, Test: {:.4f}, Loss: {:8.4f}'
print(log.format(epoch, train_acc, test_acc, loss))
losses.append(loss)
train_accs.append(train_acc)
test_accs.append(test_acc)
with open(log_file_path, 'w+') as log_file:
""" ========================== Seed ========================== """
log_file.write('Seed: %d\n' % Constants.SEED)
""" ======================= Data/Graph ======================= """
log_file.write('\nData/Graph:\n' + '=' * 50 + '\n')
log_file.write('num_features: %d\n' % data.num_features)
log_file.write('contains_self_loops: %r\n' % data.contains_self_loops())
log_file.write('contains_isolated_nodes: %r\n' % data.contains_isolated_nodes())
log_file.write('num_samples: %d\n' % data.num_nodes)
log_file.write('num_train_samples: %d\n' % data.num_tr_samples)
log_file.write('num_test_samples: %d\n' % data.num_test_samples)
log_file.write('num_unlabeled_samples: %d\n' % data.num_unlabeled_samples)
log_file.write('num_classes: %d\n' % dataset.num_classes)
""" ========================= Counts ========================= """
log_file.write('\nCounts:\n' + '=' * 50 + '\n')
for name, d in zip(['counts', 'train', 'test'], [sorted(data.counts[0].items()), data.tr_counts[0], data.test_counts[0]]):
log_file.write(name + '\t:' + to_str(d) + '\n')
for name, d in zip(['train %', 'test %'], [data.tr_percents[0], data.test_percents[0]]):
log_file.write(name + '\t:' + to_str(d) + '\n')
""" ====================== Architecture ====================== """
log_file.write('\nArchitecture:\n' + '=' * 50 + '\n')
log_file.write('learning_rate: %.6f\n' % Constants.LR)
log_file.write('num_epochs: %d\n' % num_epochs)
log_file.write('num_nodes: %d\n' % Constants.NUM_NODES)
""" ==================== Accuracy & Loss ===================== """
log_file.write('\nAccuracy & Loss:\n' + '=' * 50 + '\n')
for i in range(0, num_epochs):
log_file.write('Epoch: %03d, Train: %.4f, Test: %.4f, Loss: %8.4f\n' % (i+1, train_accs[i], test_accs[i], losses[i]))
""" ======================== Figures ========================= """
plt.rcParams["figure.figsize"] = (8,6)
fig = plt.figure()
plt.title('Loss')
plt.xlabel('Epochs')
plt.ylabel('Training loss')
plt.plot(epoch_range, losses, 'g')
plt.show()
fig.savefig(os.path.join(folder_path, "loss.png"))
fig = plt.figure()
plt.title('Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Kappa')
plt.plot(epoch_range, train_accs, 'b-')
plt.plot(epoch_range, test_accs, 'r--')
# plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend(['Training', 'Test'])
plt.show();
fig.savefig(os.path.join(folder_path, "acc.png"))