-
Notifications
You must be signed in to change notification settings - Fork 0
/
mandel-cv.tex
1466 lines (883 loc) · 102 KB
/
mandel-cv.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[margin,line]{res}
\usepackage{amsmath, amssymb}
\usepackage{eurosym}
\usepackage{hyperref}
\oddsidemargin -.5in
\evensidemargin -.5in
\textwidth=6.0in
\itemsep=0in
\parsep=0in
\newenvironment{list1}{
\begin{list}{\ding{113}}{%
\setlength{\itemsep}{0in}
\setlength{\parsep}{0in} \setlength{\parskip}{0in}
\setlength{\topsep}{0in} \setlength{\partopsep}{0in}
\setlength{\leftmargin}{0.17in}}}{\end{list}}
\newenvironment{list2}{
\begin{list}{$\bullet$}{%
\setlength{\itemsep}{0in}
\setlength{\parsep}{0in} \setlength{\parskip}{0in}
\setlength{\topsep}{0in} \setlength{\partopsep}{0in}
\setlength{\leftmargin}{0.2in}}}{\end{list}}
\begin{document}
\name{Ilya Mandel \vspace*{.1in}}
\begin{resume}
\section{\sc Contact Information}
\vspace{.05in}
\begin{tabular}{@{}p{4in}p{2in}}
School of Physics and Astronomy, Monash University \\
19 Rainforest Walk, Clayton, VIC, 3168, Australia \\
{\it E-mail:} [email protected] \\
{\it WWW:} http://ilyamandel.github.io \\
\end{tabular}
%\section{\sc Research Interests}
%\begin{tabular}{@{}p{3in}p{3in}}
%Gravitational-Wave Astronomy & Evolution of Massive Binaries \\
%Astrophysics of Compact Objects & Astrostatistics \\ %Gravitational-Wave Data Analysis
%\end{tabular}
\section{\sc Education}
{\bf California Institute of Technology}, Pasadena, CA USA\\
\vspace*{-.1in}
\begin{list1}
\item[] Ph.D. in Physics (conferred June 2008)
\begin{list2}
\vspace*{.05in}
\item Dissertation Title: ``The Three Ss of Gravitational Wave Astronomy:
Sources, Signals, Searches''
\item Advisor: Kip S. Thorne
\end{list2}
\vspace*{.05in}
\item[] M.S. in Physics, 2003
\end{list1}
{\bf Stanford University}, Stanford, CA USA\\
\vspace*{-.1in}
\begin{list1}
\item[] M.S. in Computer Science (Theory specialization), 2001
\vspace*{.05in}
\item[] B.S. in Physics, with Distinction and Departmental Honors, 2000
\end{list1}
%\section{\sc Work Experience}
\section{\sc Academic Experience}
{\bf Monash University, Australia}\\
{\em Professor of Astrophysics} \hfill {\bf 2019 - present}
{\bf University of Birmingham, UK}\\
{\em Honorary Professor} \hfill {\bf 2019 - 2022}\\
{\em Professor of Theoretical Astrophysics} \hfill {\bf 2016 - 2019}\\
{\em Senior Lecturer} \hfill {\bf 2014 - 2016}\\
{\em Lecturer} \hfill {\bf 2011 - 2014}
{\bf NSF Astronomy \& Astrophysics Postdoctoral Fellow \hfill {2009 - 2011}}\\
At Northwestern 9/2009-6/2010; at MIT 7/2010-8/2011.
{\bf Northwestern University}, Evanston, IL USA\\
\vspace*{.02in}
{\em Postdoctoral Scholar in Theoretical Astrophysics \hfill {\bf 2007 - 2009}}\\
Mentor: Vicky Kalogera
%Research on astrophysical sources of gravitational waves and data-analysis challenges posed by current and planned gravitational-wave detectors
{\bf California Institute of Technology}, Pasadena, CA USA\\
\vspace*{.02in}
{\em Research Assistant} \hfill {\bf 2006 - 2007}\\
\vspace*{0.02in}
{\em Teaching Assistant} \hfill {\bf 2001 - 2006}
%Teaching recitation sections for sophomore physics (waves, quantum mechanics, statistical mechanics); supervision of classical and modern physics lab courses and computational methods in physics
{\bf Stanford University}, Stanford, CA USA\\
\vspace*{.02in}
{\em Research Assistant, Gravity Probe B} \hfill {\bf 1996 - 2003}\\
%Physics research in the Data Analysis group of GP-B: data-analysis algorithm development, modeling, theoretical investigation of trapped magnetic flux
\vspace*{.02in}
{\em Research and Teaching Assistant, Computer Science} \hfill {\bf 1999}
%Research on the efficiency and feasibility of various routing algorithms in a congested network; Teaching Assistant for ``Design and Analysis of Algorithms'' course
%{\bf Software Development}, Silicon Valley, CA USA\\
%{\em Software developer, Contractor} \hfill {\bf 1999-2002}\\
%Development in Java, including servlets and JSP, SQL, C/C++; algorithm design; software architecture %on contract for several companies, including Kana Communications, Epitrope, and TopCoder, Inc.
\section{\sc Awards}
Clarivate “1 in 1000” highly cited researchers, 2023\\
Australian Research Council Future Fellow, 2019-2023\\
Elected Patron of Birmingham AstroSoc student society, 2017\\
Breakthrough Prize in Fundamental Physics (part of LIGO team), May 2016\\
SAMSI (Statistical and Applied Mathematical Science Institute) Research Fellow, 2016--2017\\
College of Engineering and Physical Sciences paper of the month award, February 2016\\
Classical and Quantum Gravity highlights -- most cited article in 2 years (``Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors''), 2012\\
Head of School commendation letters for excellence in teaching (multiple years, 2013--2018)\\
Kevin Westfold Distinguished Visitor, Monash Center for Astrophysics, 2014\\
NSF Astronomy and Astrophysics Postdoctoral Fellowship\\
Dean's Award for Academic Achievement (excellence in research), Stanford University\\
Tau Beta Pi (engineering honor society) Member\\
National Merit Scholar, National Advanced Placement Scholar\\
%Robert Byrd Scholarship Recipient\\
\section{\sc Service}
{\it International/national leadership:}\\
Member, Australian Research Council College of Experts (2022 -- current)\\
Aspen Center for Physics board member (2016 -- current)\\
Gravitational-Wave International Committee 3G Science Case team member, Binaries working group co-chair (2017 -- 2019)\\
President, IAU Binary and Multiple Star Systems Commission (2024 -- current); Vice President (2022 -- 2024); Organising Committee Member (2018 -- present)\\
International Society on General Relativity \& Gravitation, Nominating Committee member (2016 -- current)\\
Chair, steering committee of the Australian National Institute for Theoretical Astrophysics (ANITA; 2020 -- 2024 [deputy chair, 2019-2020])\\
Councillor, Astronomical Society of Australia (2019 -- 2021)\\
Council member, International Astrostatistics Association (2021 -- 2023)\\
International Statistics Institute (ISI) Astrostatistics Special Interest Group Management Committee (2022 -- current)\\
Science Meets Parliament representative, 2021\\
{\it Journal editing and review, grant review:}\\
Scientific Editor, AAS (Astrophysical Journal, ApJ Letters) (2021 -- current)\\
Editor-in-Chief, Encyclopedia of Astrophysics (2023--2025)\\
Editorial Board member, Nature Scientific Data (2018 -- 2024)\\
Reviewer for the Astrophysical Journal, Physical Review, Classical and Quantum Gravity, Monthly Notices of the Royal Astronomical Society, Philosophical Transactions of the Royal Society, Nature journals, Science (2008--current); Institute of Physics Trusted Reviewer (2020) \\
ARC College of Experts member (2022--2024)\\
Grant reviewer for NASA (USA; including as member of NASA Astrophysics Theory Grant Panel), NSF (USA), Hungarian Scientific Research Fund, STFC (UK), NWO (Netherlands Organisation for Scientific Research), European Research Council, CONICYT (Chile), ARC (Australia), CRC (Canada), Marsden grants (New Zealand) (2008--current)\\
{\it Collaboration leadership/membership:}\\
LIGO Scientific Collaboration member (2005--2016), LSC Council member (2012 -- 2016)\\
LSC internal reviewer (2009 -- 2016), intermediate mass black hole source group co-chair (2012 -- 2016)\\
LISA Consortium Member\\
Mock LISA Data Challenge and Parameter Estimation Taskforce member\\
Einstein Telescope Science Working Group member\\
LOFT science team member\\
Member of several electromagnetic transient surveys (e.g., ePESSTO) and multi-messenger consortia for following up gravitational-wave signals (e.g., ENGRAVE, where I co-chair the Populations theory group)\\
{\it Meeting organisation:}\\
SOC member, inaugural South African GW workshop (2011)\\
Convener of relativistic astrophysics session, GR-20 (2013)\\
Co-organizer and SOC co-chair, ``Science with the first gravitational-wave detections'' (2013)\\
Lead organizer, Aspen Center for Physics Workshop on Ultra-compact Binaries as Laboratories for Fundamental Physics (2014)\\
Main organizer and SOC chair, Gravitational-wave Astrophysics meeting at COSPAR (2014)\\
Program Leader, SAMSI Program on Statistical, Mathematical and Computational Methods for Astronomy (2016-2017)\\
Main organizer and SOC chair, Massive Binary Evolution meeting at COSPAR (2016 [cancelled because of current events in Turkey])\\
Organizer, SAMSI workshop on Astrophysical Population Emulation and Uncertainty Quantification (2017)\\
SOC member, Alpine Cosmology Workshop (2017 -- current)\\
Co-director, Kavli Summer Program in Astrophysics 2017: Astrophysics with gravitational wave detections (2017)\\
Co-organizer and SOC co-chair, Lorentz Center Workshop ``And then there was light:
Electromagnetic signatures of stellar mass binary black hole mergers'' (2017)\\
Co-organizer, Munich Institute for Astro- and Particle Physics program ``Precision gravity: from the LHC to LISA'' (2019)\\
SOC Member, EAS Symposium ``What have we learned from the observed population of gravitational wave sources?'' (2020)\\
%SOC Member, COSPAR event ``X- and Gamma-ray Counterparts of New Transients in the Multimessenger Era'' (2020/2021)\\
Astronomical Society of Australia 2020 (virtual) science meeting organizer\\
ANITA 2021 workshop (virtual) lead organiser\\
SOC co-chair, EAS session ``Where are the BH-NS binaries?'' (2021)\\
SOC member, GWPAW 2021\\
SOC member, Nuclear burning in massive stars: towards the formation of binary black holes (2021)\\
SOC member, Designing the Next-Generation EHT to Transform Black Hole Science (2021)\\
Lead organizer and SOC chair, Gravitational-Wave Physics and Astronomy Workshop, Melbourne (2022)\\
Lead organizer, Aspen Center for Physics Workshop on Transients and Interacting Binaries (2023) \\
SOC member, IAU Symposium 389: Gravitational Wave Astronomy, Cape Town, South Africa (2024)\\
SOC member, GWPAW 2024\\
SOC co-chair, Gravitational-Wave Snowballs, Sexten, Italy (2025)\\
{\it Institutional contributions:}\\
University of Birmingham astrophysics seminar organizer (2012--2015)\\
University of Birmingham physics and astronomy colloquium organizer (2015--current)\\
University of Birmingham head of graduate admissions for astronomy (2012 -- current)\\
University of Birmingham Faculty Senate representative elected for Engineering and Physical Sciences (2016 -- current)\\
School and College Equality and Diversity Committee member, University of Birmingham (2014 -- 2017) \\
Monash University astrophysics seminar and school colloquium co-organiser (2019)\\
\section{\sc Mentoring}
{\it Postdoctoral associates:}\\
Trevor Sidery (2011 -- 2013, co-mentored with Alberto Vecchio), gravitational-wave data analysis\\
Walter del Pozzo (2013 -- 2016), tests of general relativity with compact binaries; now faculty at University of Pisa\\
Christopher Berry (2013 -- 2017, co-mentored with Alberto Vecchio), astrostatistics; now faculty at University of Glasgow via research faculty at Northwestern\\
Dorottya Sz\'{e}csi (2017 -- 2018), stellar evolution; now faculty in Nicolaus Copernicus University via Humboldt fellowship in Cologne\\
Tyrone Woods (2018), stellar and binary evolution; now Plaskett Fellow at the NRC Herzberg Astronomy and Astrophysics, Victoria, Canada\\
Ryosuke Hirai (2019 -- current), hydrodynamical modelling\\
Evgeni Grishin (2021 -- current), dynamics\\
Isobel Romero-Shaw (2021 -- 2022), X-ray binary population modelling; now Herchel Smith Fellow at the University of Cambridge\\
Jin-Ping Zhu (2023 -- current), kilonovae and gamma-ray bursts\\
Jeff Riley (2023 -- current), rapid binary population synthesis and machine learning
\\
{\it Post-graduate students:}\\
Vivien Raymond (2007 -- 2012, co-advised with Vicky Kalogera), parameter estimation on spinning binaries; now faculty at Cardiff University via Albert Einstein Institute postdoc and Caltech postdoctoral prize fellowship\\
Ben Farr (2009 -- 2014, co-advised with V.~Kalogera), MCMC techniques in LIGO data analysis; now faculty at University of Oregon via McCormick postdoctoral fellow at U.~Chicago\\
Carl Rodriguez (2010 -- 2013, co-advised with V.~Kalogera, then F.~Rasio), signatures of deviations from Kerr spacetime; now faculty at Carnegie Mellon University via Pappalardo prize postdoc at MIT\\
Rory Smith (2011 -- 2013), intermediate-mass-ratio waveforms and rapid parameter estimation; now OzGrav postdoc at Monash via postdoc at Caltech\\
Will Vousden (2011 -- 2015), astrophysics with multi-messenger gravitational-wave detections, now at Oxford Asset Management\\
%Kat Grover (2011 -- present, co-advising with A. Vecchio), testing GR with compact-binary coalescences\\
Carl-Johan Haster (2012 -- 2016), topics in gravitational-wave data analysis; now postdoc at MIT via CITA national fellowship, winner of Springer PhD thesis award\\
Simon Stevenson (2013 -- 2017), population synthesis of compact binaries; now OzGrav postdoc at Swinburne University\\
Ben Bradnick (2015 -- 2017, co-advised with W.~Farr), galactic center dynamics; now at Tesella\\
Serena Vinciguerra (2014 -- 2018), advanced techniques for efficient parameter estimation; now postdoc at University of Amsterdam\\
Jim Barrett (2015 -- 2018, co-advised with W.~Farr), emulators and machine learning; now in private-sector big data in Sweden \\
Alejandro Vigna Gomez (2015 -- 2019), mass transfer in stellar binaries; now postdoc at DARK, Copenhagen\\
Coenraad Neijssel (2016 -- 2022), formation of binary black holes across cosmic history\\
Lucy McNeill (2019 -- 2021, co-advised with B.~Mueller), angular momentum transport in evolved stars\\
Reinhold Willcox (2019 -- 2022), neutron star kicks and dynamics\\
Jeff Riley (2019 -- 2023), massive stellar binary population synthesis\\
Mike Lau (2019 -- 2023), hydrodynamics modelling of common envelopes and planetary engulfment\\
Tanner Wilson (2019 -- 2023, co-advised with A.~Casey), asteroseismology and differential rotation\\
%Andreas Konstantinou (2022 -- 2023), topics in massive binary evolution\\
Fitz Hu (2023 -- current, co-advised with D.~Price), hydrodynamical modelling of tidal disruption events\\
Adam Brcek (2024 -- current), population synthesis modelling\\
Seyed Tabasi (2024 -- current), tidal disruption events\\
\\
{\it Undergraduate and masters students:}\\
Matthew Dodelson (2009) and Daniel Douglas (2010) testing GR with EMRIs\\
Frederick Robinson (2009 -- 2010), Fisher matrix analysis\\
Luke Kelley (2010 -- 2011, co-advised with Enrico Ramirez-Ruiz), electromagnetic counterparts to LIGO searches\\
Alex Mellus and Benjamin Hubbert (2012), investigation of numerical waveform accuracy and parameter estimation tests of convergence\\
Jason Tye (2012 -- 2013), animations of gravitational waves, gravitational lensing of gravitational waves\\
Ben Bradnick and Hannah Middleton (2012 -- 2013), progenitors of short gamma ray bursts; shared the Tesella Prize for best computational year 4 project, 2013\\
Zachary Hafen and Jenna Klemkowsky (2013), waveform accuracy requirements on hybrid waveforms and gravitational-wave event rate calculator\\
Kirsty Stroud and Chris Aldridge (2013 -- 2014, co-advised with Will Farr), exoplanet properties in Kepler data\\
George King and Hasini Janapriya (2014 -- 2015, co-advised with Will Farr), searching for exoplanets around red giants\\
Tom Riley, Ben Giblin (2014 -- 2015, co-advised with Will Farr), short gamma ray bursts and time delays in binary mergers; Tom Riley earned prize for top 4th year project\\
Rajath Sathyaprakash and Morgan Brown (2015 -- 2016), massive stellar evolution modeling\\
Andrea Colonna (2015 -- 2016), clustering and inference, jointly with Computer Science\\
Kit Boyer and Fabian Gittins (2016 -- 2017), modelling X-ray binaries\\
Gareth Thomas (2014 -- 2017), searching for intermediate-mass-ratio inspirals\\
Dave Perkins (2016), analysis of population synthesis predictions\\
George Howitt (2017), visiting PhD student from Australia, luminous red novae\\
Kaila Nathaniel (2017), IREU student, chemically homogeneous evolution\\
Isobel Romero-Shaw (2017), impact of single stellar evolution on binary evolution\\
Luke Nugent (2017), mathematical modeling masters student, efficient population synthesis sampling\\
Alice Perry and Samuel Kingdon (2017-- 2018), Be X-ray binaries as probes of supernovae and binary evolution\\
Nicholas Bennett and Samuel Ratcliff (2017-- 2018, co-advised with Dorottya Sz\'{e}csi), lithium abundances in globular clusters\\
Spencer Shortt and Ellen Butler (2018), chemically homogeneous evolution\\
Mike Lau (2018), compact binary observations with LISA\\
Floor Broekgaarden (2019, co-advised with Stephen Justham, Selma de Mink), adaptive importance sampling for population synthesis\\
Michelle Wassink (2019--2020, co-advised with Gijs Nelemans), expansion of stars after the helium main sequence\\
Joanna Shepherd (2020, co-advised with Daniel Price), extracting light curves from hydrodynamical simulations of tidal disruption events\\
Thillai Saravanan (2020--2022), the impact of initial conditions on binary evolution\\
Tushar Nagar (2021, co-advised with Eric Thrane), gravitational-wave source catalog population inference\\
Amir Kashapov(2021, co-advised with Ryo Hirai), late-time expansion of naked helium stars\\
Bayley Tranter (2021, co-advised with Ryo Hirai), few-body scattering experiments\\
Abhi Mangipudi (2021--2022, co-advised with Evgeni Grishin), non-orbit-averaged behaviour in hierarchical triples\\
Max Tory (2022, co-advised with Evgeni Grishin), stability of hierarchical triples\\
Andrew Atta (2022, co-advised with Ryo Hirai and Bernhard M\"{u}ller), stripped red supergiants\\
Lewis Picker (2022--2023, co-advised with Ryo Hirai), two-stage common envelopes\\
Aadarsh Madhavan (2022), detectability of luminous red nova progenitors with LSST\\
Alvaro Jose Herrera (2022, co-advised with Ryo Hirai), IREU student, detached black-hole binaries in Gaia data\\
Lucas Confalonieri (2023, co-supervised with Evgeni Grishin), magnetic braking\\
%Supervised undergraduates Matthew Dodelson (NASA summer student, 2009) and Daniel Douglas (2010) on a project regarding the signature of deviations from General Relativity in gravitational waves from extreme-mass-ratio inspirals\\
%Supervised undergraduate Frederick Robinson on a project related to the accuracy of parameter estimation and measurements of an anomalous quadrupole moment during LIGO intermediate-mass-ratio inspirals (2009-2010)\\
%Co-advising graduate students Vivien Raymond (2007 -- present) and Ben Farr (2009 -- present) on applying Markov-Chain Monte-Carlo techniques to LIGO data analysis.\\
%Co-advising graduate student Carl Rodriguez (2010 -- present) on parameter-estimation projects. \\
%Co-advised undergraduate student Luke Kelley (2010 -- 2011) on research on electromagnetic counterparts to LIGO searches \\
%Advising graduate student Will Vousden
\section{\sc Courses taught}
Classical Mechanics and Relativity (first-year, $\gtrsim 200$ students)\\
Waves and Quantum Mechanics (first year, $\sim 200$ students)\\
Inference on Scientific Data (fourth year, $\sim 75$ students)\\
Introduction to General Relativity (third year, $\sim 60$ students)\\
Relativistic Astrophysics and Black Holes (third- and fourth-year, $\sim 50$ students)\\
Introduction to Astrophysics (first-year, $\sim 50$ students)\\
Introduction to Particle Physics and Cosmology (first-year, $\sim 50$ students)\\
General Physics [back-of-the-envelope physics] (third-year, $\sim 150$ students)\\
Group studies [research project] (third-year, $16$ students)\\
Observational Cosmology (third- and fourth-year, $\sim 30$ students)\\
Gravitational-wave Astrophysics (graduate seminar, $\sim 10$ students)\\
Advanced General Relativity (masters course)\\
Order-of-magnitude Astrophysics (honours and masters course)\\
\section{\sc Grants}
\begin{tabular}{@{}p{0.8in}p{4.7in}}
2024--2030 & Australian Research Council Centre of Excellence for Gravitational-Wave Discovery OzGrav2 (total of AUD \$35M across OzGrav)\\
2022 & Monash Faculty of Science Strategic Uplift Scheme (CI): {\it Advancing gravitational-wave astrophysics through machine learning} [AUD \$17k]\\
2022--2025 & Australian Research Council LIEF grant for LSST support (Monash lead CI; total of AUD \$1.685M)\\
2019--2024 & Australian Research Council Future Fellowship (PI): {\it Shining gravitational waves on binary astrophysics} [AUD \$936k from ARC, AUD \$996k in matching Monash funds]\\
2017--2023 & Australian Research Council Centre of Excellence for Gravitational-Wave Discovery OzGrav (total of AUD \$31.3M across OzGrav)\\
2017--2020 & NERC grant (Co-I): {\it Reducing Greenhouse Climate Proxy Uncertainty} [total value of grant \pounds 434k]\\
2016--2019 & STFC Consolidated grant (Co-I): {\it Searching for intermediate mass ratio coalescences in Advanced LIGO/Virgo data} [total value of grant \pounds1,834k]\\
2016--2019 & STFC grant supporting UK Involvement in the Operation of Advanced LIGO (co-I) [\pounds 244k to Birmingham]\\
2016 & RAS Undergraduate Bursary {\it Black holes in globular clusters} (PI) [\pounds 1200]\\
2015 & Kevin Westfold Distinguished Visitor to Monash University, Melbourne, Australia [\$12k support]\\
2015 & RAS Undergraduate Bursary {\it Studying black holes with gravitational waves} (PI) [\pounds 1200]\\
2014 & South African National Institute of Theoretical Physics (NITheP) long-term visitor grant [\$2k]\\
2013--2017 & FP7 Marie Curie Initial Training Network (Co-I): {\it GraWIToN} [total value to Birmingham \pounds 481k]\\
2013--2016 & Leverhulme Trust Research Project Grant (PI): {\it Testing general relativity with ground-based gravitational-wave observations} [\pounds162k]\\
2013--2016 & STFC Consolidated grant (Co-I): {\it Gravitational wave observations of compact binary systems} [total value of grant \pounds1,876k]\\
2013-2016 & ASPERA grant (Co-I): {\it Networking and R\&D for the Einstein Telescope} [salary and travel support, \euro59K]\\
2009--2011 & NSF Astronomy and Astrophysics Postdoctoral Fellowship grant (PI): {\it Gravitational-wave astronomy: a new window on the universe} [\$249k]\\
2009-2002 & NASA ATP grant (Co-I) {\it Binary White Dwarfs: Gravitational Wave Astrophysics and Data Analysis} [\$399k]\\
\end{tabular}
%Co-I, STFC grant \it{Supporting UK Involvement in the Operation of Advanced LIGO}, 2016--2019\\
%PI, RAS Bursary \it{Studying black holes with gravitational waves}, 2015\\
%Monash University grant for sabbatical visit (Kevin Westfold Distinguished Visitor), 2015\\
%South African National Institute of Theoretical Physics (NITheP) long-term visitor grant, 2014\\
%Co-I, Marie Curie Initial Training Network grant {\it GraWIToN}, 2013--2017\\
%PI, Leverhulme Trust grant, \it{Testing general relativity with ground-based gravitational-wave observations}, 2013--2016\\
%Co-I, STFC consolidated grant {\it Gravitational wave observations of compact binary systems},2013--2016\\
%Co-I, ASPERA grant, {\it Networking and R\&D for the Einstein Telescope}, 2013--2016\\%total amount to Bham -- 59K, including 0.35 months of my salary
%PI on NSF Astronomy and Astrophysics Postdoctoral Fellowship grant ``Gravitational-wave astronomy: a new window on the universe''\\ %[total grant amount over 3 years: \$249,000]\\
%Co-I on NASA ATP grant ``Binary White Dwarfs: Gravitational Wave Astrophysics and Data Analysis''\\
%HiSPARC
\section{\sc Professional Societies}
%American Physical Society\\
%Royal Astronomical Society\\
Astronomical Society of Australia\\
International Society on General Relativity and Gravitation lifetime member\\
International Astrostatistics Association\\
International Astronomical Union
%\section{\sc Personal}
%Born in St. Petersburg, Russia, on June 11, 1979\\
%U.S.~Citizen
\newpage
\section{\sc Publications in Refereed Journals}
\begin{enumerate}
\item T.~Shenar et al. 2024. Binarity at LOw Metallicity (BLOeM): I. a spectroscopic VLT monitoring survey of massive stars in the SMC. A\&A, accepted. arXiv:2407.14593
\item J.~Zhu, L.~Liu, Y.~Yu, I.~Mandel, R.~Hirai, B.~Zhang, A.~Chen. 2024. Bumpy Superluminous Supernovae Powered by Magnetar-star Binary Engine. ApJL, accepted. arXiv:2405.01224
\item D.~J.~Price, D.~Liptai, I.~Mandel, J.~Shepherd, G.~Lodato, Y.~Levin. 2024. Eddington envelopes: The fate of stars on parabolic orbits tidally disrupted by supermassive black holes. ApJL, accepted. arXiv:2404.09381
\item L.~Picker, R.~Hirai, I.~Mandel. 2024. Fits for the convective envelope mass in massive stars. ApJ 969, 1. arXiv:2402.13180
\item M.~Lau, R.~Hirai, I.~Mandel, C.~Tout. 2024. Expansion of accreting main-sequence stars during rapid mass transfer. ApJL 966, L7. arXiv:2401.09570
\item A.~Vigna-G\'{o}mez, R.~Willcox, I.~Tamborra, I.~Mandel, M.~Renzo, T.~Wagg, H.-T.~Janka, D.~Kresse, J.~Bodensteiner, T.~Shenar. 2024. Observational evidence for neutrino natal kicks from black-hole binary VFTS 243. Phys.~Rev.~Lett.~132, 191403. arXiv:2310.01509
\item S.~J.~Miller, M.~Isi, K.~Chatziioannou, V.~Varma, I.~Mandel. 2023. GW190521: tracing imprints of spin-precession on the most massive black hole binary. Phys.~Rev.~D 109, 024024. arXiv:2310.01544
\item F.~Hu, D.~Price, I.~Mandel. 2024. Optical Appearance of Eccentric Tidal Disruption Events. ApJL 963, L27. arXiv:2312.03210
\item A.~Levan et al. 2023. JWST detection of heavy neutron capture elements in a compact object merger. Nature 7, 976. arXiv:2307.02098
\item R.~Willcox, M.~MacLeod, I.~Mandel, R.~Hirai. 2023. The Impact of Angular Momentum Loss on the Outcomes of Binary Mass Transfer. ApJ 958, 138. arXiv:2308.06666
\item O.~S.~Salafia, M.~E.~Ravasio, G.~Ghirlanda, I.~Mandel. 2023. The short gamma-ray burst population in a quasi-universal jet scenario. A \& A 680, A45. arXiv:2306.15488
\item A.~Heger, B.~Mueller, I.~Mandel. 2023. Black holes as the end state of stellar evolution: Theory and simulations. Invited contribution to the Encyclopedia of Black Holes. arXiv:2304.09350
\item I.~Romero-Shaw, R.~Hirai, A.~Bahramian, R.~Willcox, I.~Mandel. 2023. Rapid population synthesis of black-hole high-mass X-ray binaries: implications for binary stellar evolution. MNRAS 524, 245. arXiv:2303.05375
\item J.~Riley, I.~Mandel. 2023. Surrogate forward models for population inference on compact binary mergers. ApJ 950, 80. arXiv:2303.00508
\item I.~Agudo et al. 2023. Panning for gold, but finding helium: discovery of the ultra-stripped supernova SN2019wxt from gravitational-wave follow-up observations. A\&A, 675, A201. arXiv:2208.09000.
\item P.~Short et al. 2023. Delayed Appearance and Evolution of Coronal Lines in the TDE AT2019qiz. MNRAS, accepted. arXiv:2307.13674
\item A. Levan et al. 2023. A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy. Nature Astronomy 7, 976. arXiv:2303.12912
\item T.~Wilson, A.~Casey, I.~Mandel, E.~Bellinger, G.~Davies. 2023. What can rotational splittings of low-luminosity subgiants actually tell us about the rotation profile? MNRAS 521, 4122. arXiv:2111.10953
\item T.~N.~O'Doherty, A.~Bahramian, J.~C.~A.~Miller-Jones, A.~J.~Goodwin, I.~Mandel, R.~Willcox, P.~Atri, J.~Strader. 2023. An Observational Kick Distribution for 145 Neutron Stars in Binaries. MNRAS 521, 2504. arXiv:2303.01059
\item C.~Kobayashi, I.~Mandel, K.~Belczynski, S.~Goriely, T.~Janka, O.~Just, A.~Ruiter, D.~Vanbeveren, M.~Kruckow, M.~Briel, J.~Eldridge, E.~Stanway. 2023. Can neutron star mergers alone explain the r-process enrichment of the Milky Way? ApJL 943, L12. arXiv:2211.04964
\item I.~Mandel, A.~P.~Igoshev. 2023. The impact of spin-kick alignment on the inferred velocity distribution of isolated pulsars. ApJ 944, 153. arXiv:2210.12305
\item V.~Kapil, I.~Mandel, E.~Berti, B.~Mueller. 2022. Calibration of neutron star natal kick velocities to isolated pulsar observations. MNRAS 519, 5893. arXiv:2209.09252
\item M.~Tory, E.~Grishin, I.~Mandel. 2022. Empirical Stability Boundary for Hierarchical Triples. PASA, accepted. arXiv:2208.14005
\item P.~Amaro-Seoane et al. 2023. Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity 26, 2. arXiv:2203.06016
\item R.~Hirai, I.~Mandel. 2022. A two-stage formalism for common-envelope phases of massive stars. ApJL 937, L42. arXiv:2209.05328
\item O.~S.~Salafia, A.~Colombo, F.~Gabrielli, I.~Mandel. 2022. Constraints on the merging binary neutron star mass distribution and equation of state based on the fraction of jets. A\&A 666, A174. arXiv:2202.01656
\item M.~Lau, R.~Hirai, D.~Price, I.~Mandel. 2022. Common envelopes in massive stars II: The distinct roles of hydrogen and helium recombination. MNRAS 516, 4669. arXiv:2206.06411
\item A.~Mangipudi, E.~Grishin, A.~Trani, I.~Mandel. 2022. Extreme eccentricities of triple systems: Analytic results. ApJ 934, 44. arXiv:2205.08703
\item F.~Broekgaarden et al. 2022. Impact of Massive Binary Star and Cosmic Evolution on Gravitational Wave Observations II: Double Compact Object Rates and Properties. MNRAS, accepted. arXiv:2112.05763
\item L.~A.~C.~van Son, S.~E.~de Mink, T.~Callister, S.~Justham, M.~Renzo, T.~Wagg, F.~S.~Broekgaarden, F.~Kummer, R.~Pakmor, I.~Mandel. 2022. The redshift evolution of the binary black hole merger rate: a weighty matter. ApJ 931, 17. arXiv:2110.01634
\item Team COMPAS: J.~Riley et al. 2022. COMPAS: A rapid binary population synthesis suite. The Journal of Open Science Software. https://joss.theoj.org/papers/10.21105/joss.03838
\item I.~Mandel, A.~Farmer. 2022. Merging stellar-mass binary black holes. Physics Reports 955, 1. arXiv:1806.05820
\item A.~Vigna-G\'{o}mez, M.~Wassink, J.~Klencki, A.~Istrate, G.~Nelemans, I.~Mandel. 2022. Stellar response after stripping as a model for common-envelope outcomes. MNRAS 511, 2326. arXiv:2107.14526
\item M.~Y.~M.~Lau, R.~Hirai, M.~Gonz\'alez-Bol\'ivar, D.~J.~Price, O.~De Marco, I.~Mandel. 2022. Common envelopes in massive stars: towards the role of radiation pressure and recombination energy in ejecting red supergiant envelopes. MNRAS 512, 5462. arXiv:2111.00923
\item I.~Mandel, F.~S.~Broekgaarden. 2022. Rates of compact binary coalescences. Living Reviews of Relativity 25, 1. arXiv:2107.14239
\item Team COMPAS: J.~Riley et al. 2022. Rapid stellar and binary population synthesis with COMPAS. ApJ Supplements 258, 34. arXiv:2109.10352
\item I.~Mandel, R.~J.~E.~Smith. 2021. GW200115: A non-spinning black hole -- neutron star merger. ApJ Letters 922, L14. arXiv:2109.14759
\item R.~Hirai, I.~Mandel. 2021. Conditions for accretion disc formation and observability of wind-accreting X-ray binaries. PASA 38, e056. arXiv:2108.03774
\item S.~Galaudage, C.~Talbot, T.~Nagar, D.~Jain, E.~Thrane, I.~Mandel. 2021. Building better spin models for merging binary black holes: Evidence for non-spinning and rapidly spinning nearly aligned sub-populations. ApJ Letters 921, L15. arXiv:2109.02424
\item R.~Willcox, I.~Mandel, E.~Thrane, A.~Deller, S.~Stevenson, A.~Vigna-G{\'o}mez. 2021. Constraints on Weak Supernova Kicks from Observed Pulsar Velocities. ApJ Letters 930, L37. arXiv:2107.04251
\item F.~S.~Broekgaarden, E.~Berger, C.~J.~Neijssel, A.~Vigna-G\'{o}mez, D.~Chattopadhyay, S.~Stevenson, M.~Chruslinska, S.~Justham, S.~E.~de~Mink, I.~Mandel. 2021. The Impact of Massive Binary Star and Cosmic Evolution on Gravitational Wave Observations I: Black Hole - Neutron Star Mergers. MNRAS 508, 502. arXiv:2103.02608
\item G.~P.~Lamb, D.~A.~Kann, J.~J.~Fernandez, I.~Mandel, A.~J.~Levan, N.~R.~Tanvir. 2021. GRB jet structure and the jet break. MNRAS 506, 4163. arXiv:2104.11099
\item R.~Smith, S.~Borhanian, B.~Sathyaprakash, F.~Hernandez Vivanco, S.~Field, P.~Lasky, I.~Mandel, S.~Morisaki, D.~Ottaway, B.~Slagmolen, E.~Thrane, D.~T\"{o}yr\"{a}, S.~Vitale. 2021. Bayesian inference for gravitational waves from binary neutron star mergers in third-generation observatories. Phys.~Rev.~Letters 127, 081102. arXiv:2103.12274
\item E.~Grishin, A.~Bobrick, R.~Hirai, I.~Mandel, H.~Perets. 2021. Supernova explosions in active galactic nuclei discs. MNRAS 507, 156. arXiv:2105.09953
\item L.~Lin, D.~Bingham, F.~Broekgaarden, I.~Mandel. 2021. Uncertainty quantification of a computer model for binary black hole formation. Annals of Applied Statistics 15, 1604. arXiv:2106.01552
\item J.~Riley, I.~Mandel, P.~Marchant, E.~Butler, K.~Nathaniel, C.~Neijssel, S.~Shortt, A.~Vigna-G\'{o}mez. 2021. Chemically Homogeneous Evolution: A rapid population synthesis approach. MNRAS 505, 663. arXiv:2010.00002
\item J.~C.~A.~Miller-Jones, A.~Bahramian, J.~A.~Orosz, I.~Mandel, L.~Gou, T.~J.~Maccarone, C.~J.~Neijssel et al. 2021. Cygnus X-1 contains a 21-solar mass black hole -- implications for massive star winds. Science 371, 1046. arXiv:2102.09091
\item C.~J.~Neijssel, S.~Vinciguerra, A.~Vigna-G\'{o}mez, R.~Hirai, J.~C.~A.~Miller-Jones, A.~Bahramian, T.~J.~Maccarone, I.~Mandel. 2021. Wind mass-loss rates of stripped stars inferred from Cygnus X-1. ApJ 908, 118. arXiv:2102.09092
\item E.~M.~Rossi, N.~C. Stone, J.~A.~P.~Law-Smith, M.~MacLeod, G.~Lodato, J.~L.~Dai, I.~Mandel. 2021. The Process of Stellar Tidal Disruption by Supermassive Black Holes. The first pericenter passage. Space Science Reviews 217, 40. arXiv:2005.12528
\item D.~Psaltis, C.~Talbot, E.~Payne, I.~Mandel. 2021. Probing the black hole metric. I. Black hole shadows and binary black-hole inspirals. Phys.~Rev.~D 103, 104036. arXiv:2012.02117
\item C.~Wang, J.~A.~Bendle, H.~Yang, Y.~Yang, A.~Hardman, A.~Yamoah, A.~Thorpe, I.~Mandel, S.~E.~Greene, J.~Huang. 2021. Global calibration of novel 3-hydroxy fatty acid based temperature and pH proxies. Geochimica et Cosmochimica Acta 302, 101.
\item T.~Dunkley Jones, Y.~Eley, W.~Thompson, S.~Greene, I.~Mandel, K.~Edgar, J.~Bendle. 2020. OPTiMAL: A new machine learning approach for GDGT-based palaeothermometry. Climate of the Past 16, 2599. \url{https://cp.copernicus.org/articles/16/2599/2020/cp-16-2599-2020.html}
\item A.~Miglio et al. 2020. Age dissection of the Milky Way discs: red giants in the Kepler field. A\&A, accepted. arXiv:2004.14806
\item I.~Mandel, B.~M\"{u}ller, J.~Riley, S.~E.~de Mink, A.~Vigna-G\'{o}mez, D.~Chattopadhyay. 2021. Binary population synthesis with probabilistic remnant mass and kick prescriptions. MNRAS 500, 1380. arXiv:2007.03890
\item L.~du Buisson, P.~Marchant, P.~Podsiadlowski, C.~Kobayashi, F.~B.~Abdalla, P.~Taylor, I.~Mandel, S.~E.~de Mink, T.~J.~Moriya, N.~Langer. 2020. Cosmic Rates of Black Hole Mergers and Pair-Instability Supernovae from Chemically Homogeneous Binary Evolution. MNRAS, 499, 5941. arXiv:2002.11630
\item I.~Mandel and B.~M\"{u}ller. 2020. Simple recipes for compact remnant masses and natal kicks. MNRAS 499, 3214. arXiv:2006.08360
\item K.~Ackley et al. 2020. Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. PASA, accepted. arXiv:2007.03128
\item R.~Hirai, T.~Sato, P.~Podsiadlowski, A.~Vigna-G\'{o}mez, I.~Mandel. 2020. Formation pathway for lonely stripped-envelope supernova progenitors: implications for Cassiopeia A. MNRAS 499, 1154. arXiv:2008.05076
\item A.~Murguia-Berthier, A.~Batta, A.~Janiuk, E.~Ramirez-Ruiz, I.~Mandel, S.~C.~Noble, R.~W.~Everson. 2020. On the maximum stellar rotation to form a black hole without an accompanying luminous transient. ApJ Letters 901, L24. arXiv:2005.10212
\item M.~Nicholl et al. 2020. An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. MNRAS 499, 482. arXiv:2006.02454
\item K.~Ackley et al. 2020. Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger S190814bv. Astronomy \& Astrophysics 643, A113.
arXiv:2002.01950
\item A.~Vigna-G\'{o}mez, M.~MacLeod, C.~J.~Neijssel, F.~S.~Broekgaarden, S.~Justham, G.~Howitt, S.~E.~de Mink and I.~Mandel. 2020. Common-Envelope Episodes that lead to Double Neutron Star formation. PASA 37, e038. arXiv:2001.09829
\item S.~Vinciguerra, C.~J.~Neijssel, A.~Vigna-G\'{o}mez, I.~Mandel, P.~Podsiadlowski, T.~J.~Maccarone, M.~Nicholl, S.~Kingdon, A.~Perry, F.~Salemi. 2020. Be X-ray binaries in the SMC as (I) indicators of mass transfer efficiency. MNRAS 498, 4705. arXiv:2003.00195
\item V.~Korol, I.~Mandel, M.~C.~Miller, R.~P.~Church, M.~B.~Davies. 2020. Merger rates in primordial black hole clusters without initial binaries. MNRAS 496, 994. arXiv:1911.03483
\item S.~De, M.~MacLeod, R.~W.~Everson, A.~Antoni, I.~Mandel, E.~Ramirez-Ruiz. 2020. Common Envelope Wind Tunnel: The Effects of Binary Mass Ratio and Implications for the Accretion-Driven Growth of LIGO Binary Black Holes. ApJ 897, 130. arXiv:1910.13333
\item S.~L.~Schroeder, M.~MacLeod, A.~Loeb, A.~Vigna-G\'{o}mez, I.~Mandel. 2020. Explosions Driven by the Coalescence of a Compact Object with the Core of a Massive-Star Companion Inside a Common Envelope: Circumstellar Properties, Light Curves, and Population Statistics. ApJ 892, 13. arXiv:1906.04189
\item I.~Mandel, T.~Fragos. 2020. An alternative interpretation of GW190412 as a binary black hole merger with a rapidly spinning secondary. ApJ Letters 895, L28. arXiv:2004.09288
\item S.~S.~Bavera, T.~Fragos, Y.~Qin, E.~Zapartas, C.~J.~Neijssel, I.~Mandel, A.~Batta, S.~M.~Gaebel, C.~Kimball, S.~Stevenson. 2020. The origin of spin in binary black holes: Predicting the distributions of the main observables of Advanced LIGO. Astronomy \& Astrophysics 635, A97. arXiv:1906.12257
\item M.~Y.~M.~Lau, I.~Mandel, A.~Vigna-G\'{o}mez, C.~J.~Neijssel, S.~Stevenson, A.~Sesana. 2020. Detecting Double Neutron Stars with LISA. MNRAS 492, 3061. arXiv:1910.12422
\item G.~Howitt, S.~Stevenson, A.~Vigna-G\'{o}mez, S.~Justham, N.~Ivanova, T.~E.~Woods, C.~J.~Neijssel, I.~Mandel. 2020. Luminous Red Novae: population models and future prospects. MNRAS 492, 3229. arXiv:1912.07771
\item P.~Marchant, K.~Breivik, C.~P.~L.~Berry, I.~Mandel, S.~L.~Larson. 2020. Eclipses of continuous gravitational waves as a probe of stellar structure. Physical Review D 101, 024039.
arXiv: 1912.04268
\item L.~Wyrzykowski, I.~Mandel. 2020. Constraining the masses of microlensing black holes and the mass gap with Gaia DR2. Astronomy \& Astrophysics 636, A20. arXiv:1904.07789
\item O.~R.~McBrien et al. 2019. SN2018kzr: a rapidly declining transient from the destruction of a white dwarf. ApJ Letters 885, L23. arXiv:1909.04545
\item G.~Leloudas et al. 2019. The spectral evolution of AT 2018dyb and the presence of metal lines in tidal disruption events. ApJ 887, 218. arXiv:1903.03120
\item C.~J.~Neijssel, A.~Vigna-G\'{o}mez, S.~Stevenson, J.~W.~Barrett, S.~M.~Gaebel, F.~Broekgaarden, S.~E.~de Mink, D.~Szecsi, S.~Vinciguerra, I.~Mandel. 2019. The effect of the metallicity-specific star formation history on double compact object mergers. MNRAS 490, 3740. arXiv:1906.08136
\item F.~S.~Broekgaarden, S.~Justham, S.~E.~de Mink, J.~Gair, I.~Mandel, S.~Stevenson, J.~W.~Barrett, A.~Vigna-G\'{o}mez, C.~J.~Neijssel. 2019. STROOPWAFEL: Simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources. MNRAS 490, 5228. arXiv:1905.00910
\item R.~X.~Adhikari, P.~Ajith, Y.~Chen, J.~A.~Clark, V.~Dergachev, N.~V.~Fotopoulos, S.~E.~Gossan, I.~Mandel, M.~Okounkova, V.~Raymond, J.~S.~Read. 2019. Astrophysical science metrics for next-generation gravitational-wave detectors. CQG 36, 245010. arXiv:1905.02842
\item J.~J.~Andrews, I.~Mandel. 2019. Double Neutron Star Populations and Formation Channels. 2019. ApJ Letters 880, L8. arXiv:1904.12745
\item J.~Powell, S.~Stevenson, I.~Mandel, P.~Tino. 2019. Unmodelled Clustering Methods for Gravitational Wave Populations of Compact Binary Mergers. MNRAS 488, 3810. arXiv:1905.04825
\item S.~Stevenson, M.~Sampson, J.~Powell, A.~Vigna-G\'{o}mez, C.~J.~Neijssel, D.~Sz\'{e}csi, I.~Mandel. 2019. The impact of pair-instability mass loss on the binary black hole mass distribution. ApJ 882, 121. arXiv:1904.02821
\item A.~Vigna-G\'{o}mez, S.~Justham, I.~Mandel, S.~E.~de Mink, P.~Podsiadlowski. 2019. Massive Stellar Mergers as Precursors of Hydrogen-rich Pulsational Pair Instability Supernovae. ApJ Letters 876, L29. arXiv:1903.02135
\item I.~Mandel, W.~M.~Farr, J.~R.~Gair. 2019. Extracting distribution parameters from multiple uncertain observations with selection biases. MNRAS 486, 1086. arXiv:1809.02063
\item G.~P.~Lamb et al. 2019. The optical afterglow of GW170817 at one year post-merger. ApJ Letters 870, L15. arXiv:1811.11491
\item S.~Vinciguerra, M.~Branchesi, R.~Ciolfi, I.~Mandel, C.~Neijssel, G.~Stratta. 2019. saprEMo: a simplified algorithm for predicting detections of electromagnetic transients in surveys. MNRAS 484, 332. arXiv:1809.08641
\item G.~P.~Lamb, I.~Mandel, L.~Resmi. 2018. Late-time Evolution of Afterglows from Off-Axis Neutron-Star Mergers. MNRAS 481, 2581. arXiv:1806.03843
\item A.~Vigna-G\'{o}mez, C.-J.~Neijssel, S.~Stevenson, J.~W.~Barrett, K.~Belczynski, S.~Justham, S.E.~de Mink, B.~M{\"u}ller, P.~Podsiadlowski, M.~Renzo, D.~Sz{\'e}csi, I.~Mandel. 2018. On the formation history of Galactic double neutron stars. MNRAS 481, 4009. arXiv:1805.07974
\item W.~M.~Farr, I.~Mandel. 2018. Comment on ``An excess of massive stars in the local 30 Doradus starburst''. Science 361, 6400. arXiv:1807.09772
\item J.~D.~Lyman, G.~P.~Lamb, A.~J.~Levan, I.~Mandel, N.~R.~Tanvir et al. 2018. The optical afterglow of the short gamma-ray burst associated with GW170817. Nature Astronomy. arXiv:1801.02669
\item J.~W. Barrett, S.~M.~Gaebel, C.~J.~Neijssel, A.~Vigna-G\'{o}mez, S.~Stevenson, C.~P.~L.~Berry, W.~M.~Farr, I.~Mandel. 2018. Accuracy of inference on the physics of binary evolution from gravitational-wave observations. MNRAS 477, 4685. arXiv:1711.06287
\item M.~Cantiello et al. 2018. A precise distance to the host galaxy of the binary neutron star merger GW170817 using surface brightness fluctuations. ApJL 854, L31. arXiv:1801.06080
\item I.~Mandel. 2018. The orbit of GW170817 was inclined by less than 28 degrees to the line of sight. ApJL 853, L1. arXiv:1712.03958
\item I.~Mandel, A.~Sesana, A.~Vecchio. 2018. The astrophysical science case for a decihertz gravitational-wave detector. Classical and Quantum Gravity 35, 054004. arXiv:1710.11187
\item N.~R.~Tanvir, A.~J.~Levan, C.~Gonzalez-Fernandez, O.~Korobkin, I.~Mandel et al. 2017. The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars. ApJL 848, L27. arXiv:1710.05455
\item A.~J.~Levan, J.~D.~Lyman, N.~R.~Tanvir, J.~Hjorth, I.~Mandel et al. 2017. The environment of the binary neutron star merger GW170817. ApJL 848, L28. arXiv:1710.05444
\item J.~Hjorth et al. 2017. The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817. ApJL 848, L31. arXiv:1710.05866
\item B.~P.~Abbott et al. 2017. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85. arXiv:1710.05835
\item B.~P.~Abbott et al. 2017. Multi-messenger observations of a binary neutron star merger. ApJL 848, L12. arXiv:1710.05833
\item I.~Mandel, A.~Farmer. 2017. Gravitational waves: Stellar palaeontology. Nature 547, 284
\item W.~M.~Farr, S.~Stevenson, M.~C.~Miller, I.~Mandel, B.~Farr, A.~Vecchio. Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves. 2017. Nature, 548, 426. arXiv:1706.01385
\item P.~Marchant, N.~Langer, P.~Podsiadlowski, T.~Tauris, S.~de Mink, I.~Mandel, T.~Moriya. 2017. Ultra-luminous X-ray sources and neutron-star-black-hole mergers from very massive close binaries at low metallicity. A\&A 604, A55. arXiv:1705.04734
\item S.~Stevenson, A.~Vigna-G\'omez, I.~Mandel, J.~W.~Barrett, C.~J.~Neijssel, D.~Perkins, S.~E.~de Mink. 2017. Forming GW151226 and LVT151012 through isolated binary evolution. Nature Communications, 8, 14906. arXiv:1704.01352
\item S.~Stevenson, C.~P.~L.~Berry, I.~Mandel. 2017. Hierarchical analysis of gravitational-wave measurements of binary black hole spin-orbit misalignments. MNRAS 471, 2801. arXiv:1703.06873
\item B.~Bradnick, I.~Mandel, Y.~Levin. 2017. Stellar binaries in galactic nuclei: tidally stimulated mergers followed by tidal disruptions. MNRAS 469, 2042. arXiv:1703.05796
\item S.~Vinciguerra, J.~Veitch, I.~Mandel. 2017. Accelerating gravitational wave parameter estimation with multi-band template interpolation. CQG, 34, 115006. arXiv:1703.02062
\item I.~Mandel, W.~M.~Farr, A.~Colonna, S.~Stevenson, P.~Ti\v{n}o, J.~Veitch. 2017. Model-independent inference on compact-binary observations. MNRAS 465, 3254. arXiv:1608.08223
\item C.-J.~Haster, F.~Antonini, V.~Kalogera, I.~Mandel. 2016. N-body dynamics of intermediate mass-ratio inspirals in globular clusters. ApJ 832, 192. arXiv:1606.07097
\item L.~P.~Singer et al. 2016. Going the Distance: Mapping Host Galaxies of LIGO Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up. ApJL, 829, L15. arXiv:1603.07333. Supplementary material in ApJS, 226, 10, arXiv:1605.04242
\item S.~J.~Smartt et al. 2016. A search for an optical counterpart to the gravitational wave event GW151226. ApJL, 827, L40. arXiv:1606.04795
\item T.~Callister, L.~Sammut, E.~Thrane, S.~Qiu, I.~Mandel. 2016. The limits of astrophysics with gravitational wave backgrounds. Phys.~Rev.~X 6, 031018. arXiv:1604.02513
\item S.~E.~de Mink, I.~Mandel. 2016. The Chemically Homogeneous Evolutionary Channel for Binary Black Hole Mergers: Rates and Properties of Gravitational-Wave Events Detectable by Advanced LIGO. MNRAS 460, 3545. arXiv:1603.02291
\item I.~Mandel, S.~E.~de Mink. 2016. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. MNRAS 458, 2634. arXiv:1601.00007
\item P.~A.~Rosado, P.~D.~Lasky, E.~Thrane, X.~Zhu, I.~Mandel, A.~Sesana. 2016. The most distant observable massive objects. Phys.~Rev.~Lett. 116, 101102. arXiv:1512.04950
\item B.~Farr et al. 2016. Parameter estimation on gravitational waves from neutron-star binaries with spinning components. ApJ 825, 116. arXiv:1508.05336
\item S.~A.~L.~Otaibi, P.~Tino, J.~Cuevas-Tello, I.~Mandel, S.~Raychaudhury. 2016. Kernel regression estimates of time delays between gravitationally lensed fluxes. MNRAS 459, 573. arXiv:1508.03439
\item C.~Haster, Z.~Wang, C.~Berry, S.~Stevenson, J.~Veitch, I.~Mandel. 2016. Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes. MNRAS 457, 4499. arXiv:1511.01431
\item I.~Mandel. 2016. Estimates of black-hole natal kick velocities from observations of low-mass X-ray binaries. MNRAS, 456, 578. arXiv:1510.03871
\item I.~Mandel and Y.~Levin. 2015. Double tidal disruptions in galactic nuclei. ApJ Letters, 805, L4. arXiv:1504.02787
\item J.~Veitch, M.~P\"urrer, I.~Mandel. 2015. Measuring intermediate mass black hole binaries with advanced gravitational wave detectors. PRL, 115, 141101. arXiv:1503.05953
\item I.~Mandel, C.-J.~Haster, M.~Dominik, K.~Belczynski. 2015. Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers. MNRAS Letters, 450, L85. arXiv:1503.03172
\item C.~W.~F.~Everitt et al. 2015. The Gravity Probe B test of general relativity. Classical and Quantum Gravity, 32 224001.
\item A.~S.~Silbergleit, J.~W.~Conklin, M.~I.~Heifetz, T.~Holmes, J.~Li, I.~Mandel, et al. 2015.
Gravity Probe B data analysis: II. Science data and their handling prior to the final analysis. Classical and Quantum Gravity, 32 224019.
\item C.-J.~Haster, I.~Mandel, W.~M.~Farr. 2015. Efficient method for measuring the parameters encoded in a gravitational-wave signal. Classical and Quantum Gravity, 32, 235017. arXiv:1502.05407
\item W.~Vousden, W.~M.~Farr, I.~Mandel. 2016. Dynamic temperature selection for parallel-tempering in Markov chain Monte Carlo simulations. MNRAS 455, 1919. arXiv:1501.05823
\item C.~Berry, I.~Mandel, et al. 2015. Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era. ApJ, 804, 114. arXiv:1411.6934
\item J.~Veitch et al. 2015. Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using LALInference. Phys.~Rev.~D 91, 042003. arXiv:1409.7215
\item W.~Del Pozzo, K.~Grover, I.~Mandel, A.~Vecchio. 2014. Testing general relativity with compact coalescing binaries: comparing exact and predictive methods to compute the Bayes factor. Class.~Quantum Grav.~ 31, 205006. arXiv:1408.2356
\item M.~Dominik, E.~Berti, R.~O'Shaughnessy, I.~Mandel, K.~Belczynski, C.~Fryer, D.~Holz, T.~Bulik, F.~Pannarale. 2015. Double Compact Objects III: Gravitational Wave Detection Rates. ApJ, 806, 263. arXiv:1405.7016
\item L.~Singer et al. 2014. The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo. ApJ, 795, 105. arXiv:1404.5623
\item I.~Mandel, C.~P.~L.~Berry, F.~Ohme, S.~Fairhurst, W.~Farr. 2014. Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms. Class.~Quantum Grav.~31 155005. arXiv:1404.2382
\item K.~Belczynski, A.~Buonanno, M.~Cantiello, C.~Fryer, D.~Holz, I.~Mandel, M.~C.~Miller, M.~Walczak. 2014. The Formation and Gravitational-Wave Detection of Massive Stellar Black-Hole Binaries. ApJ 789, 120. arXiv:1403.0677
\item T.~Sidery et al. 2014. Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison. Phys.~Rev.~D 89, 084060. arXiv:1312.6013
\item C.~Hanna, I.~Mandel, W.~Vousden. 2014. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes. ApJ, 784, 8. arXiv:1312.2077
\item K.~Grover, S.~Fairhurst, B.~F.~Farr, I.~Mandel, C.~Rodriguez, T.~Sidery, A.~Vecchio. 2014. Comparison of Gravitational Wave Detector Network Sky Localization Approximations. Phys.~Rev.~D 89, 042004. arXiv:1310.7454
\item M.~Dominik, K.~Belczynski, C.~Fryer, D.~Holz, E.~Berti, T.~Bulik, I.~Mandel, R.~O'Shaughnessy. 2013. Double Compact Objects II: Cosmological Merger Rates. ApJ 779, 72. arXiv:1308.1546
\item C.~L.~Rodriguez, B.~Farr, W.~M.~Farr, I.~Mandel. 2013. Inadequacies of the Fisher Information Matrix in gravitational-wave parameter estimation. Phys.~Rev.~D 88, 084013. arXiv:1308.1397
\item C.~M.~F.~Mingarelli, T.~Sidery, I.~Mandel, A.~Vecchio. 2013. Characterising gravitational wave stochastic background anisotropy with Pulsar Timing Arrays. Phys.~Rev.~D 88, 062005. arXiv:1306.5394
\item R.~J.~E.~Smith, C.~Hanna, I.~Mandel, A.~Vecchio. 2014. Rapidly evaluating the compact binary likelihood function via interpolation. Phys.~Rev.~D 90, 044074. arXiv:1305.3798
\item N.~Andersson et al. 2013. The Transient Gravitational-Wave Sky. arXiv:1305.0816
\item R.~J.~E.~Smith, I.~Mandel, A.~Vecchio. 2013. Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced detectors. Phys.~Rev.~D 88, 044010. arXiv:1302.6049
\item W.~M.~Farr, J.~R.~Gair, I.~Mandel, C.~Cutler. 2015. Counting And Confusion: Bayesian Rate Estimation With Multiple Populations. Phys.~Rev.~D 91, 023005. arXiv:1302.5341
\item R.~J.~E.~Smith, K.~Cannon, C.~Hanna, D.~Keppel, I.~Mandel. 2013. Towards Rapid Parameter Estimation on Gravitational Waves from Compact Binaries using Interpolated Waveforms. Phys.~Rev.~D 87, 122002. arXiv:1211.1254
\item L.~Z.~Kelley, I.~Mandel, E.~Ramirez-Ruiz. 2013. Electromagnetic transients as triggers in searches for gravitational waves from compact binary mergers. Phys.~Rev.~D 87, 123004. arXiv:1209.3027
\item K.~Belczynski, T.~Bulik, I.~Mandel, B.~S.~Sathyaprakash, A.~Zdziarski, J.~Mikolajewska. 2013. Cyg X-3: a Galactic double black hole or black hole-neutron star progenitor. ApJ 764 96. arXiv:1209.2658
\item J.~Chennamangalam, D.~R.~Lorimer, I.~Mandel, M.~Bagchi. 2013. Constraining the luminosity function parameters and population size of radio pulsars in globular clusters. MNRAS 431, 874. arXiv:1207.5732, arXiv:1210.5472
\item M.~Dominik, K.~Belczynski, C.~Fryer, D.~Holz, E.~Berti, T.~Bulik, I.~Mandel, R.~O'Shaughnessy. 2012. Double Compact Objects I: The Significance Of The Common Envelope On Merger Rates. ApJ 759, 52. arXiv:1202.4901
\item J.~Veitch, I.~Mandel, B.~Aylott, B.~Farr, V.~Raymond, C.~Rodriguez, M.~van der Sluys, V.~Kalogera, A.~Vecchio. 2012. Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Phys.~Rev.~D 85, 104045. arXiv:1201.1195
\item C.~L.~Rodriguez, I.~Mandel, J.~R.~Gair. 2012. Verifying the no-hair property of massive compact objects with intermediate-mass-ratio-inspirals in advanced gravitational-wave detectors. Phys.~Rev.~D 85, 062002. arXiv:1112.1404
\item S.~Vitale, W.~Del Pozzo, T.~G.~F.~Li, C.~Van Den Broeck, I.~Mandel, B.~Aylott, J.~Veitch. 2011. Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the Advanced Detectors era. Phys.~Rev.~D 85, 064034. arXiv:1111.3044
\item S.~R.~Taylor, J.~R.~Gair, I.~Mandel. 2012. Hubble without the Hubble: cosmology using advanced gravitational-wave detectors alone. Phys.~Rev.~D 85:023535. arXiv:1108.5161
\item W.~Farr, I.~Mandel, D.~Stevens. 2015. An Efficient Interpolation Technique for Jump Proposals in Reversible-Jump Markov Chain Monte Carlo Calculations. Royal Society Open Science, 2, 150030. arXiv:1104.0984
\item W.~Farr, N.~Sravan, A.~Cantrell, L.~Kreidberg, C.~D.~Bailyn, I.~Mandel, V.~Kalogera. 2011. The Mass Distribution of Stellar-Mass Black Holes. ApJ 741, 103. arXiv:1011.1459
\item L.~Z.~Kelley, E.~Ramirez-Ruiz, M.~Zemp, J.~Diemand, I.~Mandel. 2010. The Distribution of Coalescing Compact Binaries in the Local Universe: Prospects for Gravitational-Wave Observations. ApJL 725, L91. arXiv:1011.1256
\item M.~Punturo et al. 2010. Third generation of gravitational wave observatories and their science reach. Class.~Quantum Grav.~27, 084007.
\item I.~Mandel. 2010. Parameter estimation on gravitational waves from multiple coalescing binaries. Phys.~Rev.~D 81, 084029. arXiv: 0912.5531
\item V.~Raymond, M.~V.~van der Sluys, I.~Mandel, V.~Kalogera, C.~Roever, N.~Christensen. 2010. The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte-Carlo analysis of gravitational-wave signals. Class.~Quantum Grav.~27, 114009. arXiv:0912.3746
\item I.~Mandel and R.~O'Shaughnessy. 2010. Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors. Class.~Quantum Grav.~27, 114007. arXiv:0912.1074
\item S.~Babak et al.~(Mock LISA Data Challenge Team). 2010. The Mock LISA Data Challenges: from Challenge 3 to Challenge 4 Class.~Quantum Grav.~27, 084009. arXiv:0912.0548
\item J.~Gair, I.~Mandel, M.~C.~Miller, M.~Volonteri. 2011. Exploring intermediate and massive black-hole binaries with the Einstein Telescope. General Relativity and Gravitation, 43, 485-518. arXiv:0907.5450
\item J.~Gair, I.~Mandel, A.~Sesana, A.~Vecchio. 2009. Probing seed black holes using the next generation of gravitational-wave detectors. Class.~Quant.~Grav.~ 26, 204009. arXiv:0907.3292
\item L.~Cadonati et al.~(NINJA collaboration). 2009. Status of NINJA: the numerical INJection Analysis project. Class.~Quant.~Grav.~26, 114008. arXiv:0905.4227
\item M.~van der Sluys, I.~Mandel, V.~Raymond, V.~Kalogera, C.~Roever, N.~Christensen. 2009. Parameter estimation for signals from compact binary inspirals injected into LIGO data. Class.~Quant.~Grav.~ 26, 204010. arXiv:0905.1323
\item A.~Sesana, J.~Gair, I.~Mandel, A.~Vecchio. 2009. Observing gravitational waves from the first generation of black holes. ApJL 698, L129. arXiv:0903.4177
\item B.~Aylott et al.~(NINJA collaboration). 2009. Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project. Class.~Quant.~Grav.~26, 165008. arXiv:0901.4399
\item V.~Raymond, M.~van der Sluys, I.~Mandel, V.~Kalogera, C. Roever, N. Christensen. 2009. Degeneracies in Sky Localisation Determination from a Spinning Coalescing Binary through Gravitational Wave Observations: a Markov-Chain Monte-Carlo Analysis for two Detectors. Class.~Quant.~Grav.~26, 114007. arXiv:0812.4302
\item K.~G.~Arun et al.~(LISA PE taskforce). 2009. Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce. Class.~Quant.~Grav.~26, 094027. arXiv: 0811.1011
\item I.~Mandel, J.~R.~Gair. 2009. Can we Detect Intermediate Mass Ratio Inspirals? Class.~Quant.~Grav.~26, 094036. arXiv:0811.0138
\item M.~van der Sluys, C.~Roever, A.~Stroeer, V.~Raymond, I.~Mandel, N.~Christensen,
V.~Kalogera, R.~Meyer, A.~Vecchio. 2008. Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries. ApJL 688, L61. arXiv:0710.1897
\item S.~Babak et al.~(Mock LISA Data Challenge Team). 2008. The Mock LISA Data Challenges: from Challenge 1B to Challenge 3. Class.~Quant.~Grav.~25, 184026.
arXiv:0806.2110
\item M.~van der Sluys, V.~Raymond, I.~Mandel, C.~Roever, N.~Christensen,
V.~Kalogera, R.~Meyer, A.~Vecchio. 2008. Parameter Estimation of
Spinning Binary Inspirals Using Markov-Chain Monte Carlo. Class.~Quant.~Grav.~25, 184011.
arXiv:0805.1689
\item J.~R.~Gair, I.~Mandel, L.~Wen. 2008. Improved Time-Frequency Analysis of
Extreme-Mass-Ratio Inspiral Signals in Mock LISA Data. Class.~Quant.~Grav.~25, 184031.
arXiv:0804.1084
\item S.~Babak et al.~(Mock LISA Data Challenge Team). 2008. Report on the
Second Mock LISA Data Challenge. Class.~Quant.~Grav.~25, 114037.
arXiv:0711.2667
\item J.~R.~Gair, C.~Li, I.~Mandel. 2008. Observable Properties of Orbits in
Exact Bumpy Spacetimes. Phys. Rev. D 77 024035. arXiv:0708.0628
\item I.~Mandel, D.~A.~Brown, J.~R.~Gair, M.~C.~Miller. 2008. Rates and
Characteristics of Intermediate-Mass-Ratio Inspirals Detectable by
Advanced LIGO. ApJ 681 1431-1447. arXiv:0705.0285
\item D.~A.~Brown, J.~Crowder, C.~Cutler, I.~Mandel, M.~Vallisneri. 2007. A
Three-Stage Search for Supermassive Black Hole Binaries in LISA data.
Class.~Quant.~Grav.~24, S595-S605. arXiv:0704.2447
\item P.~Amaro-Seoane, J.~R.~Gair, M.~Freitag, M.~C.~Miller, I.~Mandel,
C.~Cutler, S.~Babak. 2007. Intermediate and Extreme Mass-Ratio
Inspirals -- Astrophysics, Science Applications and Detection using
LISA. Class.~Quant.~Grav.~24 R113-R170. arXiv:astro-ph/0703495
\item K.~Arnaud et al.~(Mock LISA Data Challenge Team). 2007. Report on the
First Round of the Mock LISA Data Challenges. Class.~Quant.~Grav.~24,
S529-S539. arXiv:gr-qc/0701139
\item D.~A.~Brown, J.~Brink, H.~Fang, J.~R.~Gair, C.~Li, G.~Lovelace,
I.~Mandel, K.~S.~Thorne. 2007. Gravitational Waves from
Intermediate-Mass-Ratio Inspirals for Ground-based Detectors. Phys.~Rev.~Lett.~99, 201102. arXiv:gr-qc/0612060
\item I.~Mandel. 2005. The Geometry of a Naked Singularity Created by Standing
Waves Near a Schwarzschild Horizon, and Its Application to the Binary
Black Hole Problem. Phys.~Rev.~D 72 084025. arXiv:gr-qc/0505149
\item A.~Silbergleit, I.~Mandel, I.~Nemenman. 2003. Potential and Field
Singularity at a Surface Point Charge. J.~Math.~Phys.~44 (10)
4460-4466. arXiv:math-ph/0306039
%\end{enumerate}
\vspace{0.2in}
{\bf \large Publications with the LIGO Scientific Collaboration (LSC) [member 2005--2016]:}
%\begin{enumerate}
%\setcounter{enumi}{63}
\item Abbott, B. et al. 2016. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys.~Rev.~Letters 116, 241103. arXiv:1606.04855
\item Abbott, B. et al. 2016. Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys.~Rev.~X 6, 041015. arXiv:1606.04856
\item Abbott, B. et al. 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys.~Rev.~Letters 116, 061102. arXiv:1602.03837
\item Abbott, B. et al. 2016. Astrophysical Implications of the Binary Black-hole Merger GW150914. ApJL 818, L22. arXiv:1602.03846
\item Abbott, B. et al. 2016. Tests of general relativity with GW150914. Phys.~Rev.~Letters 116, 221101. arXiv:1602.03841
\item Abbott, B. et al. 2016. {\it (as internal reviewer)} GW150914: Implications for the stochastic gravitational wave background from binary black holes. Phys.~Rev.~Letters 116, 131102. arXiv:1602.03847
\item Abbott, B. et al. 2016. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Phys.~Rev.~Letters 116, 131103. arXiv:1602.03838
\item Abbott, B. et al. 2016. Properties of the binary black hole merger GW150914. Phys.~Rev.~Letters, 116, 241102. arXiv:1602.03840
\item Abbott, B. et al. 2016. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys.~Rev.~D 93, 122003. arXiv:1602.03839
\item Abbott, B. et al. 2017. Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Phys.~Rev.~D 95, 062003. arXiv:1602.03845
\item Abbott, B. et al. 2016. Localization and broadband follow-up of the gravitational-wave transient GW150914. ApJL 825, L13. arXiv:1602.08492
\item Abbott, B. et al. 2016. Observing gravitational-wave transient GW150914 with minimal assumptions. Phys.~Rev.~D 93, 122004. arXiv:1602.03843
\item Abbott, B. et al. 2016. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914. ApJL 833, L1. arXiv:1602.03842 [Supplement in ApJS 227, 2, 14. arXiv:1606.03939]
\item Abbott, B. et al. 2016. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube. Phys.~Rev.~D 93, 122010. arXiv:1602.05411
\item Abbott, B. et al. 2016. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. CQG 33, 134001. arXiv:1602.03844
\item Aasi, J. et al. 2015. A directed search for gravitational waves from Scorpius X-1 with initial LIGO. Phys. Rev. D 91, 062008
\item Aasi, J. et al. 2015. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Phys. Rev. D 91, 022004
\item Aasi, J. et al. 2015. Characterization of the LIGO detectors during their sixth science run. Class. Quantum Grav. 32, 105012.
\item Aasi, J. et al. 2015. Advanced LIGO. Classical and Quantum Gravity 32(7), 074001.
\item Aasi, J. et al. 2015. Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review Letters 91, 022003.
\item Aasi, J. et al. 2014. Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. Physical Review Letters 113(23), 231101.
\item Aartsen, M. et al. 2014. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D 90(10), 102002.
\item Aasi, J. et al. 2014. First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D 90(6), 062010.
\item Aasi, J. et al. 2014. Search for gravitational waves associated with gamma-ray bursts detected by the interplanetary network. Physical Review Letters 113(1), 011102.
\item Aasi, J. et al. 2014. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity 31(11), 115004. arXiv:1401.0939
\item Aasi, J. et al. 2014. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. Physical Review Letters 112(13), 131101.
\item Aasi, J. et al. 2014. Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity 31(8), 085014.
\item Aasi, J. et al. 2014. First searches for optical counterparts to gravitational-wave candidate events. Astrophysical Journal Supplement Series 211(1), 7.
\item Aasi, J. et al. 2014. {(\it as internal reviewer)} Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review Letters 89, 122003. arXiv:1404.2199
\item Aasi, J. et al. 2014. Implementation of an {\it F}-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity 31(16), 165014.
\item Aasi, J. et al. 2013. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D 88(12), 122004.
\item Aasi, J. et al. 2013. Directed search for continuous gravitational waves from the Galactic center. Physical Review D 88(10), 102002.
\item Aasi, J. et al. 2013. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D 88(6), 062001. arXiv:1304.1775
\item Adri\'{a}n-Mart\'{i}nez, S. et al. 2013. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics 2013(6), 008.
\item Aasi, J. et al. 2013. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D 87(4), 042001.
\item Aasi, J. et al. 2013. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics 7(8), 613-619.
\item Aasi, J. et al. 2013. Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010. Physical Review D 87(2), 022002.
\item Abadie, J. et al. 2012. Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz. Physical Review D 85(12), 122001.
\item Abadie, J. et al. 2012. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D 85(12), 122007.
\item Abadie, J. et al. 2012. First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy \& Astrophysics 541, A155.
\item Abadie, J. et al. 2012. Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 85(10), 102004.
\item Abadie, J. et al. 2012. Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. Astronomy \& Astrophysics 539, A124.
\item Abadie, J. et al. 2012. All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D 85(2), 022001.
\item Abadie, J. et al. 2012. Implications for the origin of GRB 051103 from LIGO observations. Astrophysical Journal 755(1), 2.
\item Abadie, J. et al. 2012. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D 85(8), 082002.
\item Aasi, J. et al. 2012. The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity 29(15), 155002.
\item Evans, P. et al. 2012. SWIFT follow up observations of candidate gravitational-wave transient events. The Astrophysical Journal Supplement Series 203(2), 28.
\item Abadie, J. et al. 2012. Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3. Astrophysical Journal 760(1), 12.
\item Abadie, J. et al. 2011. Directional limits on persistent gravitational waves using LIGO S5 science data. Physical Review Letters 107(27), 271102.
\item Abadie, J. et al. 2011. {\it (as internal reviewer)} Search for gravitational waves from binary black hole inspiral, merger and ringdown. Phys.~Rev.~D 83:122005. arXiv:1102.3781
\item Abadie, J. et al. 2011. Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D 83(4), 042001.
\item Abadie, J. et al. 2011. Search for gravitational wave bursts from six magnetars. The Astrophysical Journal 734(2), L35.
\item Abadie, J. et al. 2011. Beating the spin-down limit on gravitational wave emission from the Vela pulsar. Astrophysical Journal 737(2), 93.
\item Abadie, J. et al. 2010. {\it (as lead author)} Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors. Class.~Quant.~Grav.~27, 173001. arXiv:1003.2480
\item Abbott, B. et al. 2010. Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO science run 5 and Virgo science run 1. Astrophysical Journal 715(2), 1438-1452.
\item Abbott, B. et al. 2010. Searches for gravitational waves from known pulsars with science run 5 LIGO data. Astrophysical Journal 713(1), 671-685.
\item Abadie, J. et al. 2010. All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D 81(10), 102001.
\item Abadie, J. et al. 2010. First search for gravitational waves from the youngest known neutron star. Astrophysical Journal 722(2), 1504-1513.
\item Abadie, J. et al. 2010. Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research Section A, 624(1), 223-240.
\item Abadie, J. et al. 2010. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D 82(10), 102001.
\item Abadie, J. et al. 2010. Search for gravitational-wave inspiral signals associated with short gamma-ray bursts during LIGO's fifth and Virgo's first science run. The Astrophysical Journal 715(2), 1453-1461.
\item Abbott, B. et al. 2009. Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D 80(6), 062001.
\item Abbott, B. et al. 2009. First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D 80(6), 062002.
\item Abbott, B. et al. 2009. LIGO: the laser interferometer gravitational-wave observatory. Reports on Progress in Physics 72(7), 076901.
\item Abbott, B. et al. 2009. Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D 80(4), 042003.
\item Abbott, B. et al. 2009. Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D 79(12), 122001.
\item Abbott, B. et al. 2009. Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm. Astrophysical Journal 701(2), L68-L74.
\item Abbott, B. et al. 2009. Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D 80(10), 102002.
\item Abbott, B. et al. 2009. All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters 102(11), 111102.
\item Abbott, B. et al. 2009. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 460(7258), 990-994.
\item Abbott, B. et al. 2009. Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D 80(10), 102001.
\item Abbott, B. et al. 2009. Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics 11(7), 073032.
\item Abbott, B. et al. 2009. Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D 80(4), 047101.
\end{enumerate}
\section{\sc Recently submitted publications, conference proceedings}
\begin{enumerate}
\item M.~Shikauchi, R.~Hirai, I.~Mandel. 2024. Evolution of the Convective Core Mass during the Main Sequence. arXiv:2409.00460
\item C.~Hoy, S.~Fairhurst, I.~Mandel. 2024. Precession and higher order multipoles in binary black holes (and lack thereof). arXiv:2408.03410
\item Z.~Xing et al. 2024. Formation of Wind-Fed Black Hole High-mass X-ray Binaries: The Role of Roche-lobe-Overflow Post Black-Hole Formation. arXiv:2407.00200
\item C.~Adamcewicz, P.~D.~Lasky, E.~Thrane, I.~Mandel. 2024. No evidence for a dip in the binary black hole mass spectrum. arXiv:2406.11111
\item R.~Valli, L.~Graziani and the LISA Synthetic UCB Catalogue Group. 2023. BinCodex: a common output format for binary population synthesis. arXiv:2311.03431
\item LISA Consortium Waveform Working Group: Afshordi, N.~et al. 2023. Waveform Modelling for the Laser Interferometer Space Antenna. arXiv:2311.01300
\item P.~Marchant, P.~Podsiadslowski, I.~Mandel. 2023. An upper limit on the spins of merging binary black holes formed through binary evolution. arXiv:2311.14041
\item M.~Lau, M.~Cantiello, A.~Jermyn, M.~MacLeod, I.~Mandel, D.~Price. 2022. Hot Jupiter engulfment by a red giant in 3D hydrodynamics. arXiv:2210.15848
\item V.~Kalogera et al. 2021. The Next Generation Global Gravitational Wave Observatory: The Science Book. arXiv:2111.06990
\item I.~Mandel. 2021. An accurate analytical fit to the gravitational-wave inspiral duration for eccentric binaries. RNAAS 5, 223. arXiv:2110.09254
\item L.~Urias, T.~J.~Maccarone, V.~Antoniou, I.~Mandel, S.~Vinciguerra. 2021. Candidate Type II Be X-Ray Binary Outbursts in NGC 6744. Res.~Notes AAS 5, 209.
\item A.~Casey, I.~Mandel, P.~Ray. 2021. The impact of the COVID-19 pandemic on academic productivity. arXiv:2109.06591
\item S.~L.~Schr{\o}der, M.~MacLeod, E.~Ramirez-Ruiz, I.~Mandel, T.~Fragos, A.~Loeb, R.~W.~Everson. 2021. The Evolution of Binaries under the Influence of Radiation-Driven Winds
from a Stellar Companion. arXiv:2107.09675
\item ``I 'heart' Pluto'' -- we 'heart' it, mostly'' (book review). I.~Mandel. 2020. Crystallography Reviews
\item M.~Bailes et al. 2019. Ground-Based Gravitational-Wave Astronomy in Australia: 2019 White Paper. arXiv:1912.06305
\item D.~Liptai, D.~J. Price, I.~Mandel, G.~Lodato. 2019. Disc formation from tidal disruption of stars on eccentric orbits by Kerr black holes using GRSPH. arXiv:1910.10154
\item P.~F.~Michelson, R.~L.~Byer, S.~Buchman, I.~Mandel, J.~Lipa, S.~Saraf. 2019. MFB: A Mid-Frequency-Band Space Gravitational Wave Observer for the 2020 Decade (Decadal Instrument White Paper). arXiv:1908.02861
\item V.~Kalogera, C.~P.~L.~Berry, M.~Colpi, S.~Fairhurst, S.~Justham, I.~Mandel, A.~Mangiagli, M.~Mapelli, C.~Mills, B.~S.~Sathyaprakash, R.~Schneider, T.~Tauris, R.~Valiante. 2019. Deeper, Wider, Sharper: Next-Generation Ground-Based Gravitational-Wave Observations of Binary Black Holes (Decadal White Paper). arXiv:1903.09220
\item J.~W.~Barrett, I.~Mandel, C.~J.~Neijssel, S.~Stevenson, A.~Vigna-G\'{o}mez. 2017. Exploring the Parameter Space of Compact Binary Population Synthesis. IAU Symposium 325, 46. arXiv:1704.03781
\item I.~Mandel. 2017. The astrophysics of LIGO gravitational-wave observations, in {\it 11th INTEGRAL conference proceedings}, edited by Ed van den Heuvel, \url{https://pos.sissa.it/285/002}
\item C.~P.~L.~Berry et al. 2016. Early Advanced LIGO binary neutron-star sky localization and parameter estimation. Journal of Physics: Conference Series; 76(1):012031(4). arXiv:1606.01095
\item W.~M.~Farr, I.~Mandel, C.~Aldridge, K.~Stroud. 2015. The Occurrence of Earth-Like Planets Around Other Stars. arXiv:1412.4849
\item M.~Hendry et al. 2014. Education and public outreach on gravitational-wave astronomy. General Relativity and Gravitation, 46:1764.
\item R.~M.~Shannon et al. 2014. Summary of session C1: pulsar timing arrays. General Relativity and Gravitation, 46:1765.
\item M.~Branchesi et al. 2014. C7 multi-messenger astronomy of GW sources.
General Relativity and Gravitation, 46:1771.
\item I.~Mandel et al. 2014. Relativistic astrophysics at GR20. General Relativity and Gravitation, 46:1688.
\item D.~Buskulic and I.~Mandel. 2013. LIGO and Virgo Gravitational-wave Detectors and Their Science Reach. Acta Physica Polonica B 44, 12, 2413.
\item I.~Mandel, L.~Z.~Kelley, E.~Ramirez-Ruiz. 2011. Towards improving the prospects for coordinated gravitational-wave and electromagnetic observations. arXiv:1111.0005
\item I.~Mandel, R.~O'Shaughnessy, V.~Kalogera. 2010. Unravelling Binary Evolution from Gravitational-Wave Signals and Source Statistics. arXiv:1001.2583
\item I.~Mandel, J.~R.~Gair, M.~C.~Miller. 2010. Detecting coalescences of intermediate-mass black holes in globular clusters with the Einstein Telescope. arXiv:0912.4925
\item J.~R.~Gair, I.~Mandel, L.~Wen. 2008. Time-Frequency Analysis of
Extreme-Mass-Ratio Inspiral Signals in Mock LISA Data.
J. Phys.: Conf. Ser. 122 012037. arXiv:0710.5250
\item I.~Mandel. 2007. Spin Distribution Following Minor Mergers and the
Effect of Spin on the Detection Range for Low-Mass-Ratio Inspirals.
arXiv:0707.0711
\item A.~Silbergleit, I.~Nemenman, I.~Mandel. 2003. On the Interaction of
Point Charges in an Arbitrary Domain. J.~Tech.~Phys.~ 48 (2), 146-151.
arXiv:physics/0105052
\end{enumerate}
\newpage
\section{\sc Selected Presentations}
9/2006 Talk at LISA Astro-GR@AEI, Golm, Germany. ``Using EMRIs to probe bumpy black-hole spacetimes''
1/2007 Seminar at Leyden, Netherlands. ``Gravitational waves from intermediate-mass-ratio inspirals in ground-based detectors''
4/2007 Talk at APS, Jacksonville, FL. ``Intermediate-mass-ratio inspirals into intermediate-mass black holes''
7/2007 Talk at Amaldi 7, Sydney, Australia. ``Time-Frequency Analysis of Extreme-Mass-Ratio Inspiral Signals: Mock LISA Data Challenge, Round 2''
10/2007 Astrophysics Seminar at Northwestern University, Evanston, IL. ``Testing the No-Hair Theorem with Gravitational-Wave Observations''
11/2007 Talk at 17th Midwest Relativity Meeting, St Louis, MO. ``Black-Hole Spins Following Minor Mergers''
12/2007 Talk at GWDAW-12, Boston, MA. ``Extracting Extreme Mass Ratio Inspiral Parameters via Time-Frequency Methods''
2/2008 Seminar at Center for Gravitation and Cosmology, University of Wisconsin-Milwaukee. ``Ground-based detection of gravitational waves from intermediate-mass-ratio inspirals''
3/2008 Talk at 24th Pacific-Coast Gravity Meeting , Santa Barbara, CA. ``Extracting Extreme Mass Ratio Inspiral Parameters via Time-Frequency Methods''
6/2008 Talk at 7th LISA Symposium, Barcelona, Spain. ``Can we detect IMRIs?''
9/2008 Short seminar at Institute of Astronomy, Cambridge, UK. ``Ground-based detection of gravitational waves from intermediate-mass-ratio inspirals''