-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsaliency_unsupervised.py
274 lines (226 loc) · 12.3 KB
/
saliency_unsupervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
####### In this script the saliency map is implemented for the unsupervised analysis.
####### The saliency map, as we have implemented it, returns a rgb code for each gene.
####### The code represents the importance of the gene in the analysis.
import os
from vis.visualization import visualize_saliency
from vis.utils import utils
import numpy as np
import pandas as pd
from keras import backend as K
from keras import metrics, optimizers
from keras.callbacks import Callback
from keras.layers import Input, Dense, Lambda, Layer, Activation
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras_tqdm import TQDMCallback
from sklearn.model_selection import StratifiedShuffleSplit
conf = K.tf.ConfigProto(device_count={'CPU': 1},
intra_op_parallelism_threads=4,
inter_op_parallelism_threads=4)
K.set_session(K.tf.Session(config=conf))
files = {'Adipose_Subcutaneous': 'Adipose_Subcutaneous.output_predicted_expression.txt',
'Adipose_Visceral_Omentum': 'Adipose_Visceral_Omentum.output_predicted_expression.txt',
'Adrenal_Gland': 'Adrenal_Gland.output_predicted_expression.txt',
'Artery_Aorta': 'Artery_Aorta.output_predicted_expression.txt',
'Artery_Coronary': 'Artery_Coronary.output_predicted_expression.txt',
'Artery_Tibial': 'Artery_Tibial.output_predicted_expression.txt',
'Brain_Amygdala': 'Brain_Amygdala.output_predicted_expression.txt',
'Brain_Anterior_cingulate': 'Brain_Anterior_cingulate_cortex_BA24.output_predicted_expression.txt',
'Brain_Caudate_basal_ganglia': 'Brain_Caudate_basal_ganglia.output_predicted_expression.txt',
'Brain_Cerebellar': 'Brain_Cerebellar_Hemisphere.output_predicted_expression.txt',
'Brain_Cerebellum': 'Brain_Cerebellum.output_predicted_expression.txt',
'Brain_Cortex': 'Brain_Cortex.output_predicted_expression.txt',
'Brain_Frontal_Cortex': 'Brain_Frontal_Cortex_BA9.output_predicted_expression.txt',
'Brain_Hippocampus': 'Brain_Hippocampus.output_predicted_expression.txt',
'Brain_Hypothalamus': 'Brain_Hypothalamus.output_predicted_expression.txt',
'Brain_Nucleus': 'Brain_Nucleus_accumbens_basal_ganglia.output_predicted_expression.txt',
'Brain_Putamen': 'Brain_Putamen_basal_ganglia.output_predicted_expression.txt',
'Brain_Spinal_cord': 'Brain_Spinal_cord_cervical_c-1.output_predicted_expression.txt',
'Brain_Substantia_nigra': 'Brain_Substantia_nigra.output_predicted_expression.txt',
'Cells_EBV': 'Cells_EBV-transformed_lymphocytes.output_predicted_expression.txt',
'Cells_Transformed': 'Cells_Transformed_fibroblasts.output_predicted_expression.txt',
'Colon_Sigmoid': 'Colon_Sigmoid.output_predicted_expression.txt',
'Colon_Transverse': 'Colon_Transverse.output_predicted_expression.txt',
'Esophagus_Gastroesophageal': 'Esophagus_Gastroesophageal_Junction.output_predicted_expression.txt',
'Esophagus_Mucosa': 'Esophagus_Mucosa.output_predicted_expression.txt',
'Esophagus_Muscularis': 'Esophagus_Muscularis.output_predicted_expression.txt',
'Heart_Atrial': 'Heart_Atrial_Appendage.output_predicted_expression.txt',
'Heart_Left_Ventricle': 'Heart_Left_Ventricle.output_predicted_expression.txt',
'Liver': 'Liver.output_predicted_expression.txt',
'Lung': 'Lung.output_predicted_expression.txt',
'Minor_Salivary': 'Minor_Salivary_Gland.output_predicted_expression.txt',
'Muscle_Skeletal': 'Muscle_Skeletal.output_predicted_expression.txt',
'Nerve_Tibial': 'Nerve_Tibial.output_predicted_expression.txt',
'Pancreas': 'Pancreas.output_predicted_expression.txt',
'Pituitary': 'Pituitary.output_predicted_expression.txt',
'Skin_Not_Sun': 'Skin_Not_Sun_Exposed_Suprapubic.output_predicted_expression.txt',
'Skin_Sun_Exposed': 'Skin_Sun_Exposed_Lower_leg.output_predicted_expression.txt',
'Small_Intestine': 'Small_Intestine_Terminal_Ileum.output_predicted_expression.txt',
'Spleen': 'Spleen.output_predicted_expression.txt',
'Stomach': 'Stomach.output_predicted_expression.txt',
'Thyroid': 'Thyroid.output_predicted_expression.txt',
'Whole_Blood': 'Whole_Blood.output_predicted_expression.txt'
}
# Function for reparameterisation trick to make model differentiable
def sampling(args):
import tensorflow as tf
# Function with args required for Keras Lambda function
z_mean, z_log_var = args
# Draw epsilon of the same shape from a standard normal distribution
epsilon = K.random_normal(shape=tf.shape(z_mean), mean=0.,
stddev=epsilon_std)
# The latent vector is non-deterministic and differentiable
# in respect to z_mean and z_log_var
z = z_mean + K.exp(z_log_var / 2) * epsilon
return z
class CustomVariationalLayer(Layer):
"""
Define a custom layer that learns and performs the training
This function is borrowed from:
https://github.com/fchollet/keras/blob/master/examples/variational_autoencoder.py
"""
def __init__(self, **kwargs):
# https://keras.io/layers/writing-your-own-keras-layers/
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
def vae_loss(self, x_input, x_decoded):
reconstruction_loss = original_dim * metrics.binary_crossentropy(x_input, x_decoded)
kl_loss = - 0.5 * K.sum(1 + z_log_var_encoded - K.square(z_mean_encoded) -
K.exp(z_log_var_encoded), axis=-1)
return K.mean(reconstruction_loss + (K.get_value(beta) * kl_loss))
def call(self, inputs):
x = inputs[0]
x_decoded = inputs[1]
loss = self.vae_loss(x, x_decoded)
self.add_loss(loss, inputs=inputs)
# We won't actually use the output.
return x
class WarmUpCallback(Callback):
def __init__(self, beta, kappa):
self.beta = beta
self.kappa = kappa
# Behavior on each epoch
def on_epoch_end(self, epoch, logs={}):
if K.get_value(self.beta) <= 1:
K.set_value(self.beta, K.get_value(self.beta) + self.kappa)
# Creating the big pandas dataframe
status0_data = pd.read_csv("ADNI0_cc_status.txt", header=None, sep=' ')
status0_data.set_index(0, inplace=True)
status0_data.rename(columns={1: 'status'}, inplace=True)
status0_data.index.names = ['id']
all_pandas = []
for f in sorted(files.items()):
pd_tmp = pd.read_csv("data_adni_1/" + f[1], sep="\t").drop(columns=["FID"]).set_index("IID")
pd_tmp = pd_tmp.join(status0_data)
pd_tmp.rename(index=lambda x: x + "_" + f[0], inplace=True)
all_pandas.append(pd_tmp)
all_df_before = pd.concat(all_pandas,sort=True)
print("DataFrame creation done")
all_df_ad = all_df_before[all_df_before['status'] == 1]
all_df_ad.drop(columns="status", inplace=True)
all_df_ctr = all_df_before[all_df_before['status'] == 0]
all_df_ctr.drop(columns="status", inplace=True)
# Running separately for the control and AD people
for (cur_status, all_df) in [('ad', all_df_ad), ('ctr', all_df_ctr)]:
# Manually making the scaling because of NaNs
all_df = all_df.sub(all_df.min()).div((all_df.max() - all_df.min()))
print("DataFrame scalling done")
all_df.fillna(0, inplace=True)
print("DataFrame fillna done")
# Uncomment to save a pickle with the dataframe for control and AD
# all_df.to_pickle("all_df" + cur_status + ".pkl")
# Split 20% test set randomly but keeping the ratio of each tissue
# First, getting data's labels
y_labels = []
# Function used below to get the class labels in y_labels variable
def label_race(row):
global y_labels
splitted = row.name.split('_')
term = ""
for i in range(3, len(splitted)):
term += "_" + splitted[i]
y_labels.append(term)
return None
# Run on our data
all_df.apply(lambda row: label_race(row), axis=1)
# Hyperparameters
original_dim = all_df.shape[1]
epsilon_std = 1.0
batch_size = 500
beta = K.variable(0)
epochs = 75
learning_rate = 0.001
kappa = 1
latent_dim = 42
grads_ = []
all_result = []
# Creating and running 75 VAEs
for step in range(75):
print("---------------------------------------------")
print("\n\n")
print("step",step)
# Getting our data divided into stratified train/test parts
# Be careful with StratifiedShuffleSplit class with n_splits > 2, might not be exactly what wanted
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2)
for train_index, test_index in sss.split(np.zeros(len(y_labels)), y_labels):
pass
gene_test_df = all_df.iloc[test_index].copy()
gene_train_df = all_df.iloc[train_index].copy()
# Encoder part as in tybalt's repository
gene_input = Input(shape=(original_dim,), name="input")
z_mean_dense_linear = Dense(latent_dim, kernel_initializer='glorot_uniform')(gene_input)
z_mean_dense_batchnorm = BatchNormalization()(z_mean_dense_linear)
z_mean_encoded = Activation('relu')(z_mean_dense_batchnorm)
z_log_var_dense_linear = Dense(latent_dim, kernel_initializer='glorot_uniform')(gene_input)
z_log_var_dense_batchnorm = BatchNormalization()(z_log_var_dense_linear)
z_log_var_encoded = Activation('relu')(z_log_var_dense_batchnorm)
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean_encoded, z_log_var_encoded])
# Single decoding layer as in tybalt's repository
decoder_to_reconstruct = Dense(original_dim, kernel_initializer='glorot_uniform', activation='sigmoid', name="output")
gene_reconstruct = decoder_to_reconstruct(z)
adam = optimizers.Adam(lr=learning_rate)
vae_layer = CustomVariationalLayer()([gene_input, gene_reconstruct])
vae = Model(gene_input, vae_layer)
vae.compile(optimizer=adam, loss=None, loss_weights=[beta])
hist = vae.fit(np.array(gene_train_df),
shuffle=True,
epochs=epochs,
verbose=0,
batch_size=batch_size,
validation_data=(np.array(gene_test_df), None),
callbacks=[WarmUpCallback(beta, kappa),
TQDMCallback(leave_inner=True, leave_outer=True)])
##### saliency-map
layer_idx = utils.find_layer_idx(vae, 'input')
seed = gene_train_df.values
for m in range(original_dim):
for l in range(len(seed)):
grads = visualize_saliency(vae, layer_idx, filter_indices=[m], seed_input=seed[l])
grads_.append(grads)
result = ["status", cur_status, "step", str(step), "gene", str(m), "sample", str(l), "grads", str(grads)]
result = '\t'.join(result)
print(result)
all_result.append(result)
# Model to compress input
encoder = Model(gene_input, z_mean_encoded)
# Encode gene into the hidden/latent representation - and save output
encoded_gene_df = encoder.predict_on_batch(all_df)
encoded_gene_df = pd.DataFrame(encoded_gene_df, index=all_df.index)
encoded_gene_df.columns.name = 'sample_id'
encoded_gene_df.columns = encoded_gene_df.columns + 1
encoded_file = os.path.join('multiple_vaes',
"latent_" + cur_status + '_' + str(latent_dim) + '_' + str(step) + '_' + str(
batch_size) + '_' + str(epochs) + '_' + str(learning_rate) + '_' + str(
kappa) + '_encoded_gene_onehidden_warmup_batchnorm.tsv')
# Saving the embedding space
encoded_gene_df.to_csv(encoded_file, sep='\t')
# Build a generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
_x_decoded_mean = decoder_to_reconstruct(decoder_input)
decoder = Model(decoder_input, _x_decoded_mean)
with open('vae_saliency_'+cur_status+'.txt', 'w') as f:
for item in all_result:
f.write("%s\n" % item)
with open('vae_grad_'+cur_status+'.txt', 'w') as f:
for item in grads_:
f.write("%s\n" % item)