-
Notifications
You must be signed in to change notification settings - Fork 1
/
Putany.py
308 lines (258 loc) · 11.5 KB
/
Putany.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# %% [markdown]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# %% [markdown]
# # Putany
# %%
import os
import math
import time
import scipy as sp
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import sklearn
import torch
import torch.nn as nn
import torch.optim as optim
import scikit_wrappers
from tasks.clustering import perform_clustering, get_pca_tsne, plot_clustersing, plot_clustersing_paper
from tasks.anomaly_detection import anomaly_detection, plot_anomaly_detection, plot_confusion_matrix, get_prec_rec_f1, get_confusion_matrix, get_ad_metrics_paper
from tasks.classification import classification, cross_validation
import datetime
import argparse
print(f'torch vesion: {torch.__version__}')
parser = argparse.ArgumentParser()
######################## Model parameters ########################
parser.add_argument('--dataset_dir', default='boat', type=str,
help='dataset path')
parser.add_argument('--dataset_name', default='boat', type=str,
help='Full name of the dataset')
parser.add_argument('--device', default='cuda', type=str,
help='cpu or cuda')
parser.add_argument('--gpu', default=0, type=int,
help='gpu number')
parser.add_argument('--batch_size', default=256, type=int,
help='batch size (default=256)')
parser.add_argument('--cnn_output_size', default=80, type=int,
help='output size of causal dilated cnn \
representation (default=80)')
parser.add_argument('--out_channels', default=100, type=int,
help='out_channels for the network')
parser.add_argument('--clustering_task', action='store_true',
help='whether to run clustering task (default=False)')
parser.add_argument('--anomaly_detection_task', action='store_true',
help='whether to run anomaly_detection task (default=False)')
parser.add_argument('--classification_task', action='store_true',
help='whether to run classification task (default=False)')
parser.add_argument('--save_memory', action='store_true',
help='whether to run backward pass on postive representation \
first to save memory (default=False)')
args = parser.parse_args()
# %%
cuda = False
if torch.cuda.is_available():
print("Using CUDA...")
cuda = True
# arg reading
gpu = args.gpu # GPU number
batch_size = args.batch_size
reduced_size = args.cnn_output_size
out_channels = args.out_channels
clustering_task = args.clustering_task
anomaly_detection_task = args.anomaly_detection_task
classification_task = args.classification_task
save_memory = args.save_memory
# %%
output = './output/'
output_dir = os.path.join(output, datetime.datetime.now().strftime('%m_%d_%H_%M_%S'))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# To store representations or models
models_dir = './models/'
if not os.path.exists(models_dir):
os.makedirs(models_dir)
# %% [markdown]
# ## Dataset
# %%
train_dataset = np.load(os.path.join(args.dataset_dir, f"{args.dataset_name}_training_set.npz"))
test_dataset = np.load(os.path.join(args.dataset_dir, f"{args.dataset_name}_test_set.npz"))
val_test_dataset = np.load(os.path.join(args.dataset_dir, f"{args.dataset_name}_val_test_set.npz"))
# %%
train_data, train_labels = train_dataset['data'], train_dataset['labels']
print(f'train_data: {train_data.shape}, train_labels: {train_labels.shape}')
test_data, test_labels = test_dataset['data'], test_dataset['labels']
print(f'test_data: {test_data.shape}, test_labels: {test_labels.shape}')
val_test_data, val_test_labels = val_test_dataset['data'], val_test_dataset['labels']
print(f'val_test_data: {val_test_data.shape}, val_test_labels: {val_test_labels.shape}')
# convert from (batch, seq_len, features) to (batch, features, seq_len)
train_data = np.transpose(train_data, (0,2,1))
test_data = np.transpose(test_data, (0,2,1))
val_test_data = np.transpose(val_test_data, (0,2,1))
# %% [markdown]
# ### Learning Parameters
# %%
# Set to True to train a new model
training = True
# Prefix to path to the saved model
model = f'{output_dir}/Putany'
# %%
hyperparameters = {
"batch_size": batch_size,
"channels": 40,
"compared_length": None,
"depth": 10,
"nb_steps": 2000,
"in_channels": 6,
"kernel_size": 3,
"penalty": None,
"early_stopping": None,
"lr": 0.001,
"nb_random_samples": 10,
"negative_penalty": 1,
"out_channels": out_channels,
"reduced_size": reduced_size,
"cuda": cuda,
"gpu": gpu,
"latent_shape": (len(train_data), out_channels)
}
# %%
true_num_clusters=8
# %% [markdown]
# ### Training
# %%
encoder = scikit_wrappers.CausalCNNEncoderClassifier()
encoder.set_params(**hyperparameters)
# %%
t = time.time()
if training:
encoder.fit_encoder(train_data,save_memory=save_memory, verbose=True)
encoder.save_encoder(model)
else:
encoder.load_encoder(model)
# %%
torch.cuda.empty_cache()
# %% [markdown]
# ## Computing Representations
# We compute in the following (or load them from local storage if they are already precomputed) the learned representations.
# %%
compute_representations = True
train_encoded = 'models/Putany_train_encoded.npy'
# %%
if compute_representations:
train_features = encoder.encode(train_data, 100)
np.save(train_encoded, train_features)
else:
train_features = np.load(train_encoded)
t = time.time() - t
print(f"\nTraining time: {datetime.timedelta(seconds=t)}\n")
# %%
epoch=50 # it runs for 50 epochs # TODO: it's just for print but fix this!
if clustering_task:
print('\n Performing Clustering Task...\n')
clustering_preds, clustering_metrics = perform_clustering(train_features, train_labels, true_num_clusters)
# get pca and tsne representations for plotting
x_pca, x_tsne = get_pca_tsne(train_features)
# get plt and fig
plt, fig= plot_clustersing(x_tsne, train_labels, clustering_preds, clustering_metrics, epoch, 0)
# log clustering epoch plot to neptune
fig_spec = f'{output_dir}/epoch_plot_{epoch}'
plt.savefig(f'{fig_spec}.eps', format='eps')
print(f'{fig_spec}.eps')
# #generate plot for the paper
plt, fig = plot_clustersing_paper(x_tsne, train_labels, plot_axis_label=False) # X-axis label
fig_spec = f'{output_dir}/true_label_plot_{epoch}'
plt.savefig(f'{fig_spec}.eps', format='eps')
# log NMI, AMI, SS, DBI
clustering_metrics_df = pd.DataFrame([clustering_metrics['GMM']])
file_path = f'{output_dir}/clustering_metrics.csv'
clustering_metrics_df.to_csv (file_path, index = False, header=True)
# log train feature representation for future
output_rep_name = f'{output_dir}/feature_rep_train'
np.savez(f'{output_rep_name}.npz', data = train_features, labels=train_labels, clustering_preds=clustering_preds["GMM"])
# %%
if anomaly_detection_task:
print('\n Performing Anomaly Detection Task...\n')
# perform anomaly detection
x_latent_train,x_latent_test,true_labels, pred_labels_dict, ad_metrics_dict = anomaly_detection(\
encoder, train_data, train_labels, val_test_data, val_test_labels, dataset_name="Putany")
# log anomaly detection plot
_,x_train_tsne = get_pca_tsne(x_latent_train)
_,x_test_tsne = get_pca_tsne(x_latent_test)
plt, fig = plot_anomaly_detection(x_train_tsne, x_test_tsne, true_labels, pred_labels_dict)
#save anomaly detetion figure
fig_spec = f'{output_dir}/anomaly_detection'
plt.savefig(f'{fig_spec}.png') #TODO: make it eps once results are ready!
# log anomaly detection metrics
conf_mats_dict = {}
# check for both default labels and gauss labels
for pred_key in list(pred_labels_dict.keys()):
pred_labels = pred_labels_dict[pred_key]
prec_rec_f1_dict = get_prec_rec_f1(true_labels, pred_labels)
conf_mat_pred, conf_mat_dict = get_confusion_matrix(true_labels, pred_labels)
conf_mats_dict.update({pred_key: conf_mat_pred}) # create a dict with pred_key and conf_mat_pred and append it
# log prec, recall, f1
prec_rec_f1_df = pd.DataFrame([prec_rec_f1_dict])
file_path = f'{output_dir}/prec_rec_f1_ad.csv'
prec_rec_f1_df.to_csv(file_path, index = False, header=True)
# log ad metrics auroc, aupr, fpr@95tpr
ad_metric_processed_dict = get_ad_metrics_paper(true_labels, ad_metrics_dict['raw_pred_score'])
ad_metric_processed_df = pd.DataFrame([ad_metric_processed_dict])
file_path = f'{output_dir}/ad_metrics.csv'
ad_metric_processed_df.to_csv(file_path, index = False, header=True)
# log val_test feature representations
val_test_features = encoder.encode(val_test_data, 100)
output_rep_name = f'{output_dir}/feature_rep_val_test'
np.savez(f'{output_rep_name}.npz', data = val_test_features, labels=val_test_labels, raw_ad_pred=ad_metrics_dict['raw_pred_score'],
default_pred=ad_metrics_dict['default_pred']) # gauss_pred can be calculated from raw score
# %%
# Classification
if classification_task:
print('\n Performing Classification Task...\n')
test_features = encoder.encode(test_data, 100)
# For Clasification Test we evaluate on the holdout data so taking test data and labels.
test_acc = classification(train_features, train_labels, test_features, test_labels)
if not anomaly_detection_task:
val_test_features = encoder.encode(val_test_data, 100)
# For Cross-Validaion we need all the data so taking val_test data and labels.
cv_acc = cross_validation(train_features, train_labels, val_test_features, val_test_labels)
acc_dict = {"test_acc": test_acc, "cv_acc": cv_acc}
# log cv_acc, test_acc
classification_metrics_df = pd.DataFrame([acc_dict])
file_path = f'{output_dir}/classification_metrics.csv'
classification_metrics_df.to_csv (file_path, index = False, header=True)
# log test feature representations
output_rep_name = f'{output_dir}/feature_rep_test'
np.savez(f'{output_rep_name}.npz', data = test_features, labels=test_labels)
# %%
# log model state
weights_path = f'{output_dir}/Putany_CausalCNN_encoder'
if not clustering_task:
# log train feature representation for future
output_rep_name = f'{output_dir}/feature_rep_train'
np.savez(f'{output_rep_name}.npz', data = train_features, labels=train_labels)
if not anomaly_detection_task:
# log val_test feature representations
val_test_features = encoder.encode(val_test_data, 100)
output_rep_name = f'{output_dir}/feature_rep_val_test'
np.savez(f'{output_rep_name}.npz', data = val_test_features, labels=val_test_labels)
if not classification_task:
# log test feature representations
test_features = encoder.encode(test_data, 100)
output_rep_name = f'{output_dir}/feature_rep_test'
np.savez(f'{output_rep_name}.npz', data = test_features, labels=test_labels)