-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate.py
198 lines (170 loc) · 7.7 KB
/
simulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import sys
import random
import numpy as np
import pandas as pd
import anndata as ad
from anndata import AnnData
import scanpy as sc
from configs.main_config import config
import shutil
from tqdm import tqdm
import json
def check_dataset(config, sparsemat=False):
adata = sc.read(config["reference"])
if sparsemat:
adata.X = np.array(adata.X.todense())
columns = adata.obs.columns
if "Celltype" not in columns:
sys.exit("No column Celltype found in {}. The column with celltypes should be Celltype".format(config["reference"]))
if config["simulation_params"]["normalize"]=="cpm":
sc.pp.normalize_total(adata, target_sum=1e6)
print("{} cells, {} genes".format(adata.shape[0], adata.shape[1]))
df_X = pd.DataFrame(adata.X, columns=adata.var_names.tolist(), index=adata.obs.index.tolist())
df_y = pd.DataFrame(adata.obs.Celltype.tolist(), columns=["Celltype"])
return df_X, df_y, df_y.Celltype.unique().tolist()
def create_fractions(no_celltypes):
"""
Borrowed from SCADEN (Menden et. al., 2020)
Create random fractions
:param no_celltypes: number of fractions to create
:return: list of random fractions of length no_celltypes
"""
fracs = np.random.rand(no_celltypes)
fracs_sum = np.sum(fracs)
fracs = np.divide(fracs, fracs_sum)
return fracs
def create_subsample(x, y, celltypes, sparse=False, sample_size=100, reference_type="sc",
n_celltypes=None):
"""
Borrowed from SCADEN (Menden et. al., 2020)
Generate artifical bulk subsample with random fractions of celltypes
If sparse is set to true, add random celltypes to the missing celltypes
@param x:
@param y:
@param celltypes:
@param sparse:
@return:
"""
available_celltypes = celltypes
n = len(available_celltypes)
if n_celltypes:
n = n_celltypes
if sparse:
no_keep = np.random.randint(1, n)
keep = np.random.choice(
list(range(len(available_celltypes))), size=no_keep, replace=False
)
available_celltypes = [available_celltypes[i] for i in keep]
no_avail_cts = len(available_celltypes)
# Create fractions for available celltypes
fracs = create_fractions(no_celltypes=no_avail_cts)
samp_fracs = np.multiply(fracs, sample_size)
samp_fracs = list(map(int, samp_fracs))
# Make complete fracions
fracs_complete = [0] * len(celltypes)
for i, act in enumerate(available_celltypes):
idx = celltypes.index(act)
fracs_complete[idx] = fracs[i]
artificial_samples = []
for i in range(no_avail_cts):
ct = available_celltypes[i]
cells_sub = x.loc[np.array(y["Celltype"] == ct), :]
if reference_type=="sc":
cells_fraction = np.random.randint(0, cells_sub.shape[0], samp_fracs[i])
cells_sub = cells_sub.iloc[cells_fraction, :]
elif reference_type=="bulk":
cells_fraction = np.random.randint(0, cells_sub.shape[0], 1)
cells_sub = cells_sub.iloc[cells_fraction, :]*fracs_complete[ct]
artificial_samples.append(cells_sub)
df_samp = pd.concat(artificial_samples, axis=0)
df_samp = df_samp.sum(axis=0)
return df_samp, fracs_complete
def simulate(config, save_config=True, sparsemat=False):
random.seed(42)
np.random.seed(42)
if not os.path.exists(config["experiment_folder"]):
os.mkdir(config["experiment_folder"])
else:
sys.exit("Path {} already exists. Please choose a folder in which datasets folder doesn't exist.".format(config["experiment_folder"]))
df_X, df_y, celltypes = check_dataset(config, sparsemat)
#if copy:
# shutil.copyfile("configs/main_config.py", os.path.join(config["experiment_folder"], "main_config.py"))
if save_config:
with open(os.path.join(config["experiment_folder"], "main_config.py"), "w") as f:
json.dump(config, f)
n_samples = config["simulation_params"]["n_samples"]
sparse_prop = config["simulation_params"]["sparse"]
sparse_num = int(sparse_prop*n_samples)
regular_num = int(n_samples - sparse_num)
if config["simulation_params"]["unknown"]:
unknown_celltypes = config["simulation_params"]["unknown"]
df_y.loc[df_y.Celltype.isin(unknown_celltypes),"Celltype"] = "unknown"
celltypes = df_y.Celltype.unique().tolist()
sim_x, sim_y = [], []
print("Simulating")
print("Generating regular samples")
for i in tqdm(range(regular_num)):
if config["simulation_params"]["cells_range"]:
cells_range = config["simulation_params"]["cells_range"].copy()
sample_size = np.random.choice(list(range(int(cells_range[0]),
int(cells_range[1]))))
else:
sample_size = 100
print("No sample size is provided in config. Default 100 is selected.")
if config["simulation_params"]["celltypes_range"]:
celltypes_range = config["simulation_params"]["celltypes_range"]
n_celltypes = np.random.choice(list(range(int(celltypes_range[0]),
int(celltypes_range[1]))))
else:
n_celltypes = None
sample, label = create_subsample(df_X, df_y, celltypes, sample_size=sample_size, n_celltypes=n_celltypes)
sim_x.append(sample)
sim_y.append(label)
print("Generating sparse samples")
for i in tqdm(range(sparse_num)):
if config["simulation_params"]["cells_range"]:
cells_range = config["simulation_params"]["cells_range"].copy()
sample_size = np.random.choice(list(range(int(cells_range[0]),
int(cells_range[1]))))
else:
sample_size = 100
print("No sample size is provided in config. Default 100 is selected.")
if config["simulation_params"]["celltypes_range"]:
celltypes_range = config["simulation_params"]["celltypes_range"]
n_celltypes = np.random.choice(list(range(int(celltypes_range[0]),
int(celltypes_range[1]))))
else:
n_celltypes = None
sample, label = create_subsample(df_X, df_y, celltypes, sample_size=sample_size, sparse=True, n_celltypes=n_celltypes)
sim_x.append(sample)
sim_y.append(label)
sim_x = pd.concat(sim_x, axis=1).T
sim_y = pd.DataFrame(sim_y, columns=celltypes)
adata = AnnData(sim_x, obs=sim_y)
adata.uns["cell_types"] = np.array(adata.obs.columns, dtype=object)
if config["simulation_params"]["unknown"]:
adata.uns["unknown"] = np.array(config["simulation_params"]["unknown"], dtype=object)
else:
adata.uns["unknown"] = np.array(["unknown"], dtype=object) # dummy
adata.obs["ds"] = [config["simulation_params"]["name"]]*adata.shape[0]
if config["simulation_params"]["downsample"]:
sc.pp.downsample_counts(adata, counts_per_cell=np.array(adata.X.sum(1))*config["simulation_params"]["downsample"])
savepath = os.path.join(config["experiment_folder"], config["simulation_params"]["name"]+".h5ad")
adata.write(savepath)
print("Done")
import glob
def merge(batch):
folders = os.listdir(batch)
ls_datasets = []
for folder in folders:
for f in os.listdir(os.path.join(batch, folder)):
if "h5ad" in f:
ls_datasets.append(os.path.join(batch, folder, f))
adata = sc.read(ls_datasets[0])
if len(ls_datasets)>1:
for i in range(1, len(ls_datasets)):
adata = adata.concatenate(sc.read(ls_datasets[i]), uns_merge="same")
adata.write(os.path.join(batch, "data.h5ad"))
if __name__ == "__main__":
simulate(config, save_config=True)