-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
232 lines (202 loc) · 7.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import time
import pandas as pd
import numpy as np
import argparse
import yaml
import json
import tensorflow as tf
from tensorflow import keras
import wandb
from wandb.integration.keras import WandbMetricsLogger
AUTOTUNE = tf.data.experimental.AUTOTUNE
from datasets import inat_dataset
from nets import nets
class LRLogger(tf.keras.callbacks.Callback):
def on_epoch_begin(self, epoch, logs):
lr = self.model.optimizer.learning_rate
print("learning rate is {}".format(lr))
wandb.log({"lr": lr}, commit=False)
def make_training_callbacks(config):
def lr_scheduler_fn(epoch):
return config["INITIAL_LEARNING_RATE"] * tf.math.pow(
config["LR_DECAY_FACTOR"], epoch // config["EPOCHS_PER_LR_DECAY"]
)
checkpoint_file_name = "checkpoint-{epoch:02d}-{val_accuracy:.2f}"
callbacks = [
keras.callbacks.TensorBoard(
log_dir=config["TENSORBOARD_LOG_DIR"],
histogram_freq=0,
write_graph=False,
write_images=False,
update_freq=20,
profile_batch=0,
embeddings_freq=0,
embeddings_metadata={},
write_steps_per_second=True,
),
tf.keras.callbacks.LearningRateScheduler(lr_scheduler_fn, verbose=1),
tf.keras.callbacks.ModelCheckpoint(
filepath=os.path.join(config["CHECKPOINT_DIR"], checkpoint_file_name),
save_weights_only=True,
save_best_only=False,
monitor="val_accuracy",
verbose=1,
),
tf.keras.callbacks.BackupAndRestore(
backup_dir=config["BACKUP_DIR"],
),
WandbMetricsLogger(log_freq=config["WANDB_LOG_FREQ"]),
LRLogger(),
]
return callbacks
def main():
# get command line args
parser = argparse.ArgumentParser(description="Train an iNat model.")
parser.add_argument(
"--config_file", required=True, help="YAML config file for training."
)
args = parser.parse_args()
# read in config file
if not os.path.exists(args.config_file):
print("No config file.")
return
with open(args.config_file, "r") as f:
config = yaml.safe_load(f)
wandb.init(
project=config["WANDB_PROJECT"],
config=config
)
if config["TRAIN_MIXED_PRECISION"]:
policy = tf.keras.mixed_precision.Policy("mixed_float16")
tf.keras.mixed_precision.set_global_policy(policy)
if config["MULTIGPU"]:
strategy = tf.distribute.MirroredStrategy()
else:
strategy = tf.distribute.get_strategy()
# load train & val datasets
if not os.path.exists(config["TRAINING_DATA"]):
print("Training data file doesn't exist.")
return
(train_ds, num_train_examples) = inat_dataset.make_dataset(
config["TRAINING_DATA"],
label_column_name=config["LABEL_COLUMN_NAME"],
image_size=config["IMAGE_SIZE"],
batch_size=config["BATCH_SIZE"],
shuffle_buffer_size=config["SHUFFLE_BUFFER_SIZE"],
repeat_forever=True,
augment=True,
)
if train_ds is None:
print("No training dataset.")
return
if num_train_examples == 0:
print("No training examples.")
return
if not os.path.exists(config["VAL_DATA"]):
print("Validation data file doesn't exist.")
return
(val_ds, num_val_examples) = inat_dataset.make_dataset(
config["VAL_DATA"],
label_column_name=config["LABEL_COLUMN_NAME"],
image_size=config["IMAGE_SIZE"],
batch_size=config["BATCH_SIZE"],
shuffle_buffer_size=config["SHUFFLE_BUFFER_SIZE"],
repeat_forever=True,
augment=False,
)
if val_ds is None:
print("No val dataset.")
return
if num_val_examples == 0:
print("No val examples.")
return
with strategy.scope():
# create optimizer for neural network
optimizer = keras.optimizers.RMSprop(
learning_rate=config["INITIAL_LEARNING_RATE"],
rho=config["RMSPROP_RHO"],
momentum=config["RMSPROP_MOMENTUM"],
epsilon=config["RMSPROP_EPSILON"],
)
# loss scale optimizer to prevent numeric underflow
if config["TRAIN_MIXED_PRECISION"]:
pass
# this should be built into the mp policy now?
#optimizer = tf.keras.mixed_precision.LossScaleOptimizer(optimizer)
# create neural network
model = nets.make_neural_network(
base_arch_name="xception",
weights=config["PRETRAINED_MODEL"],
image_size=config["IMAGE_SIZE"],
n_classes=config["NUM_CLASSES"],
input_dtype=tf.float32,
#input_dtype=tf.float16 if config["TRAIN_MIXED_PRECISION"] else tf.float32,
train_full_network=config["TRAIN_FULL_MODEL"],
ckpt=config["CHECKPOINT"] if "CHECKPOINT" in config else None,
factorize=config["FACTORIZE_FINAL_LAYER"] if "FACTORIZE_FINAL_LAYER" in config else False,
fact_rank=config["FACT_RANK"] if "FACT_RANK" in config else None,
activation=config["ACTIVATION"] if "ACTIVATION" in config else None,
)
if model is None:
assert False, "No model to train."
if config["ACTIVATION"] is None:
from_logits = True
else:
from_logits = False
if config["DO_LABEL_SMOOTH"]:
if config["LABEL_SMOOTH_MODE"] == "flat":
# with flat label smoothing we can do it all
# in the loss function
loss = tf.keras.losses.CategoricalCrossentropy(
label_smoothing=config["LABEL_SMOOTH_PCT"],
from_logits=from_logits
)
else:
# with parent/heirarchical label smoothing
# we can't do it in the loss function, we have
# to adjust the labels in the dataset
assert False, "Unsupported label smoothing mode."
else:
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=from_logits)
# compile the network for training
model.compile(
loss=loss,
optimizer=optimizer,
metrics=[
"accuracy",
tf.keras.metrics.TopKCategoricalAccuracy(k=3, name="top3 accuracy"),
tf.keras.metrics.TopKCategoricalAccuracy(k=10, name="top10 accuracy"),
],
)
# setup callbacks
training_callbacks = make_training_callbacks(config)
# training & val step counts
STEPS_PER_EPOCH = np.ceil(num_train_examples / config["BATCH_SIZE"])
VAL_IMAGE_COUNT = (
config["VALIDATION_PASS_SIZE"]
if config["VALIDATION_PASS_SIZE"] is not None
else num_val_examples
)
VAL_STEPS = np.ceil(VAL_IMAGE_COUNT / config["BATCH_SIZE"])
print(
"{} val steps for {} val pass images of {} total val images.".format(
VAL_STEPS, VAL_IMAGE_COUNT, num_val_examples
)
)
start = time.time()
history = model.fit(
train_ds,
validation_data=val_ds,
validation_steps=VAL_STEPS,
epochs=config["NUM_EPOCHS"],
steps_per_epoch=STEPS_PER_EPOCH,
callbacks=training_callbacks,
)
end = time.time()
print("time elapsed during fit: {:.1f}".format(end - start))
print(history.history)
model.save(config["FINAL_SAVE_DIR"])
wandb.finish()
if __name__ == "__main__":
main()