-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloops_V2.py
404 lines (353 loc) · 22.4 KB
/
loops_V2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import numpy as np
import time
from tqdm import tqdm
from numba import jit
#choose 'n' for unimproved antion and 'y' otherwise
improve = 'y'
#atoms per side of lattice
N = 8
#parameter for creation of SU(3) matrices, affects lattice creation and metropolis acceptance ratio
eps = 0.24
#action parameter
beta = 5.5 #includes tadpole improvement
#improved action parameter
beta_improved = 1.719
#tadpole improvement for imporved action
u_0 = 0.797
#lattice spacing
a = 0.25
#number of lattice evolutions before acquiring a measurement to avoid correlations
Ncor = 50
#space+time dimensions
dim = 4
#size of pool of SU(3) matrices (includes just as many hermitian conjugates of them)
N_mat = 100
#number of aquisitions performed
Ncf = 10
#fucntion to check if a matrix is unitary
def is_unitary(m):
return np.allclose(np.eye(m.shape[0]), m.conj().T @ m)
#homemade factorial function for numba
@jit(nopython=True)
def factorial(x):
fact: float = 1
for i in np.arange(2, x+1, 1):
i = float(i)
fact *= i
return fact
#function to calculate adjoint of matrix
@jit(nopython=True)
def dag(M):
return M.conj().T
#generate a random SU(3) matrix
@jit(nopython=True)
def SU3(steps=30):
#matrix with entries between -1 and 1 to initialise
ones = (np.random.rand(3, 3)*2 - 1)*1 + (np.random.rand(3, 3)*2 - 1)*1j
#make it hermitian
H = (1/2)*(ones + dag(ones))
#make it unitary
U = np.zeros((3, 3), np.complex128)
for i in range(steps):
U = U + ((1j*eps)**i/factorial(i))*np.linalg.matrix_power(H, i)
#make it special
SU = U/(np.linalg.det(U))**(1/3)
return SU
#create an array of SU3 matrices OF LENGHT 2*N_mat and store them away, make sure it also contains the hermitian conjugate of each
@jit(nopython=True)
def matrices(N_mat):
Ms = np.empty((2*N_mat, 3, 3), np.complex128)
for i in range(N_mat):
M = SU3()
Ms[i] = M
Ms[N_mat+i] = dag(M)
return Ms
#generate lattice with identity matrices on each node
@jit(nopython=True)
def initialise_lattice(lattice_size, dimensions):
lat = np.empty((lattice_size, lattice_size, lattice_size, lattice_size, dimensions, 3, 3), np.complex128)
for t in range(lattice_size):
for x in range(lattice_size):
for y in range(lattice_size):
for z in range(lattice_size):
for dim in range(dimensions):
lat[t][x][y][z][dim] = np.identity(3, np.complex128)
return lat
#BOTH UP AND DOWN FUNCTIONS KEEP MEMORY OF THE NEW POSITION OF THE POINT
#move a coordinate point up a direction in the lattice
@jit(nopython=True)
def up(coordinate, direction):
coordinate[direction] = (coordinate[direction] + 1)%N
return coordinate
#move a coordinate point down a direction in the lattice
@jit(nopython=True)
def down(coordinate, direction):
coordinate[direction] = (coordinate[direction] - 1)%N
return coordinate
#call a link SU(3) at a certain point in the lattice given a direction or its hermitian conjugate if direction is negative
@jit(nopython=True)
def call_link(point, direction, lattice, dagger:bool):
if dagger == False:
return lattice[point[0], point[1], point[2], point[3], direction]
elif dagger == True:
return dag(lattice[point[0], point[1], point[2], point[3], direction])
#calculate the main part of the variation in action for the unimproved action
@jit(nopython=True)
def gamma_plaquette(lattice, point, starting_direction):
point_clockwise = point.copy()
point_anticlockwise = point.copy()
up(point_clockwise, starting_direction) #move up initial link
up(point_anticlockwise, starting_direction) #move up initial link
clockwise = np.zeros((3, 3), np.complex128)
anticlockwise = np.zeros((3, 3), np.complex128)
gamma = np.zeros((3, 3), np.complex128)
for direction in range(dim): #cycle over directions other than the starting_direction
if direction != starting_direction:
link_right = call_link(point_clockwise, direction, lattice, dagger=False) #take link pointing "right"
link_right = np.ascontiguousarray(link_right)
up(point_clockwise, direction) #move "up"
down(point_clockwise, starting_direction) #move "down"
link_right_down = call_link(point_clockwise, starting_direction, lattice, dagger=True) #take link pointing "down"
link_right_down = np.ascontiguousarray(link_right_down)
down(point_clockwise, direction) #move "left"
link_right_down_left = call_link(point_clockwise, direction, lattice, dagger=True) #take link pointing "left"
link_right_down_left = np.ascontiguousarray(link_right_down_left)
up(point_clockwise, starting_direction) #back to initial position
down(point_anticlockwise, direction)
link_left = call_link(point_anticlockwise, direction, lattice, dagger=True)
link_left = np.ascontiguousarray(link_left)
down(point_anticlockwise, starting_direction)
link_left_down = call_link(point_anticlockwise, starting_direction, lattice, dagger=True)
link_left_down = np.ascontiguousarray(link_left_down)
link_left_down_right = call_link(point_anticlockwise, direction, lattice, dagger=False)
link_left_down_right = np.ascontiguousarray(link_left_down_right)
up(point_anticlockwise, direction)
up(point_anticlockwise, starting_direction)
clockwise += (link_right @ link_right_down) @ link_right_down_left
anticlockwise += (link_left @ link_left_down) @ link_left_down_right
gamma = clockwise + anticlockwise
return gamma
#another part in the variation of the action for the imporved case, much longer but same basic reasoning as plaquette
@jit(nopython=True)
def gamma_rectangle(lattice, point, starting_direction):
point_clockwise_vertical_down = point.copy()
point_anticlockwise_vertical_down = point.copy()
point_clockwise_vertical_up = point.copy()
point_anticlockwise_vertical_up = point.copy()
point_clockwise_horizontal = point.copy()
point_anticlockwise_horizontal = point.copy()
up(point_clockwise_vertical_down, starting_direction) #move up initial link
up(point_clockwise_vertical_up, starting_direction) #move up initial link
up(point_anticlockwise_vertical_down, starting_direction) #move up initial link
up(point_anticlockwise_vertical_up, starting_direction) #move up initial link
up(point_clockwise_horizontal, starting_direction) #move up initial link
up(point_anticlockwise_horizontal, starting_direction) #move up initial link
clockwise_vertical_up = np.zeros((3, 3), np.complex128)
clockwise_vertical_down = np.zeros((3, 3), np.complex128)
anticlockwise_vertical_up = np.zeros((3, 3), np.complex128)
anticlockwise_vertical_down = np.zeros((3, 3), np.complex128)
clockwise_horizonal = np.zeros((3, 3), np.complex128)
anticlockwise_horizontal = np.zeros((3, 3), np.complex128)
gamma = np.zeros((3, 3), np.complex128)
for direction in range(dim): #cycle over directions other than the starting_direction
if direction != starting_direction:
####################################################################################################################
link_up = call_link(point_clockwise_vertical_up, starting_direction, lattice, dagger=False) #take link pointing "right"
link_up = np.ascontiguousarray(link_up)
#clockwise vertical up
up(point_clockwise_vertical_up, starting_direction)
link_up_right = call_link(point_clockwise_vertical_up, direction, lattice, dagger=False)
link_up_right = np.ascontiguousarray(link_up_right)
up(point_clockwise_vertical_up, direction) #move "right"
down(point_clockwise_vertical_up, starting_direction)
link_up_right_down = call_link(point_clockwise_vertical_up, starting_direction, lattice, dagger=True) #take link moving "down"
link_up_right_down = np.ascontiguousarray(link_up_right_down)
down(point_clockwise_vertical_up, starting_direction) #move "down"
link_up_right_down_down = call_link(point_clockwise_vertical_up, starting_direction, lattice, dagger=True) #take link moving "down"
link_up_right_down_down = np.ascontiguousarray(link_up_right_down_down)
down(point_clockwise_vertical_up, direction)
link_up_right_down_down_left = call_link(point_clockwise_vertical_up, direction, lattice, dagger=True)
link_up_right_down_down_left = np.ascontiguousarray(link_up_right_down_down_left)
up(point_clockwise_vertical_up, starting_direction)
#anticlockwise vertical up
up(point_anticlockwise_vertical_up, starting_direction)
down(point_anticlockwise_vertical_up, direction)
link_up_left = call_link(point_anticlockwise_vertical_up, direction, lattice, dagger=True)
link_up_left = np.ascontiguousarray(link_up_left)
down(point_anticlockwise_vertical_up, starting_direction)
link_up_left_down = call_link(point_anticlockwise_vertical_up, starting_direction, lattice, dagger=True) #take link moving "down"
link_up_left_down = np.ascontiguousarray(link_up_left_down)
down(point_anticlockwise_vertical_up, starting_direction) #move "down"
link_up_left_down_down = call_link(point_anticlockwise_vertical_up, starting_direction, lattice, dagger=True) #take link moving "down"
link_up_left_down_down = np.ascontiguousarray(link_up_left_down_down)
link_up_left_down_down_right = call_link(point_anticlockwise_vertical_up, direction, lattice, dagger=False)
link_up_left_down_down_right = np.ascontiguousarray(link_up_left_down_down_right)
up(point_anticlockwise_vertical_up, direction)
up(point_anticlockwise_vertical_up, starting_direction)
#########################################################################################################################################
#########################################################################################################################################
link_right = call_link(point_clockwise_vertical_down, direction, lattice, dagger=False) #take link pointing "right"
link_right = np.ascontiguousarray(link_right)
#clockwise vertical down
up(point_clockwise_vertical_down, direction)
down(point_clockwise_vertical_down, starting_direction) #move "right"
link_right_down = call_link(point_clockwise_vertical_down, starting_direction, lattice, dagger=True) #take link moving "down"
link_right_down = np.ascontiguousarray(link_right_down)
down(point_clockwise_vertical_down, starting_direction) #move "down"
link_right_down_down = call_link(point_clockwise_vertical_down, starting_direction, lattice, dagger=True) #take link moving "left"
link_right_down_down = np.ascontiguousarray(link_right_down_down)
down(point_clockwise_vertical_down, direction)
link_right_down_down_left = call_link(point_clockwise_vertical_down, direction, lattice, dagger=True)
link_right_down_down_left = np.ascontiguousarray(link_right_down_down_left)
link_right_down_down_left_up = call_link(point_clockwise_vertical_down, starting_direction, lattice, dagger=False)
link_right_down_down_left_up = np.ascontiguousarray(link_right_down_down_left_up)
up(point_clockwise_vertical_down, starting_direction)
up(point_clockwise_vertical_down, starting_direction)
#clockwise horizonal
up(point_clockwise_horizontal, direction)
link_right_right = call_link(point_clockwise_horizontal, direction, lattice, dagger=False) #take link pointing "right"
link_right_right = np.ascontiguousarray(link_right_right)
up(point_clockwise_horizontal, direction)
down(point_clockwise_horizontal, starting_direction) #move "right"
link_right_right_down = call_link(point_clockwise_horizontal, starting_direction, lattice, dagger=True) #take link moving "down"
link_right_right_down = np.ascontiguousarray(link_right_right_down)
down(point_clockwise_horizontal, direction) #move "down"
link_right_right_down_left = call_link(point_clockwise_horizontal, direction, lattice, dagger=True) #take link moving "left"
link_right_right_down_left = np.ascontiguousarray(link_right_right_down_left)
down(point_clockwise_horizontal, direction) #move "down"
link_right_right_down_left_left = call_link(point_clockwise_horizontal, direction, lattice, dagger=True) #take link moving "left"
link_right_right_down_left_left = np.ascontiguousarray(link_right_right_down_left_left)
up(point_clockwise_horizontal, starting_direction)
################################################################################################################################
###################################################################################################################################
down(point_anticlockwise_vertical_down, direction)
down(point_anticlockwise_horizontal, direction)
link_left = call_link(point_anticlockwise_vertical_down, direction, lattice, dagger=True)
link_left = np.ascontiguousarray(link_left)
#anticlockwise vertical down
down(point_anticlockwise_vertical_down, starting_direction)
link_left_down = call_link(point_anticlockwise_vertical_down, starting_direction, lattice, dagger=True)
link_left_down = np.ascontiguousarray(link_left_down)
down(point_anticlockwise_vertical_down, starting_direction)
link_left_down_down = call_link(point_anticlockwise_vertical_down, starting_direction, lattice, dagger=True)
link_left_down_down = np.ascontiguousarray(link_left_down_down)
link_left_down_down_right = call_link(point_anticlockwise_vertical_down, direction, lattice, dagger=False)
link_left_down_down_right = np.ascontiguousarray(link_left_down_down_right)
up(point_anticlockwise_vertical_down, direction)
link_left_down_down_right_up = call_link(point_anticlockwise_vertical_down, starting_direction, lattice, dagger=False)
link_left_down_down_right_up = np.ascontiguousarray(link_left_down_down_right_up)
up(point_anticlockwise_vertical_down, starting_direction)
up(point_anticlockwise_vertical_down, starting_direction)
#anticlockwise horizontal
down(point_anticlockwise_horizontal, direction)
link_left_left = call_link(point_anticlockwise_horizontal, direction, lattice, dagger=True)
link_left_left = np.ascontiguousarray(link_left_left)
down(point_anticlockwise_horizontal, starting_direction)
link_left_left_down = call_link(point_anticlockwise_horizontal, starting_direction, lattice, dagger=True)
link_left_left_down = np.ascontiguousarray(link_left_left_down)
link_left_left_down_right = call_link(point_anticlockwise_horizontal, direction, lattice, dagger=False)
link_left_left_down_right = np.ascontiguousarray(link_left_left_down_right)
up(point_anticlockwise_horizontal, direction)
link_left_left_down_right_right = call_link(point_anticlockwise_horizontal, direction, lattice, dagger=False)
link_left_left_down_right_right = np.ascontiguousarray(link_left_left_down_right_right)
up(point_anticlockwise_horizontal, direction)
up(point_anticlockwise_horizontal, starting_direction)
###########################################################################################################################################
clockwise_vertical_up += link_up @ link_up_right @ link_up_right_down @ link_up_right_down_down @ link_up_right_down_down_left
clockwise_vertical_down += link_right @ link_right_down @ link_right_down_down @ link_right_down_down_left @ link_right_down_down_left_up
anticlockwise_vertical_up += link_up @ link_up_left @ link_up_left_down @ link_up_left_down_down @ link_up_left_down_down_right
anticlockwise_vertical_down += link_left @ link_left_down @ link_left_down_down @ link_left_down_down_right @ link_left_down_down_right_up
clockwise_horizonal += link_right @ link_right_right @ link_right_right_down @ link_right_right_down_left @ link_right_right_down_left_left
anticlockwise_horizontal += link_left @ link_left_left @ link_left_left_down @ link_left_left_down_right @ link_left_left_down_right_right
gamma = clockwise_vertical_up + clockwise_vertical_down + anticlockwise_vertical_up + anticlockwise_vertical_down + clockwise_horizonal + anticlockwise_horizontal
return gamma
#metropolis update function
@jit(nopython=True)
def metropolis_update(lattice, matrices, hits=10):
for t in range(N):
for x in range(N):
for y in range(N):
for z in range(N):
for mu in range(dim):
point = [t, x, y, z]
if improve == 'n':
gamma_P = gamma_plaquette(lattice, point, mu)
for i in range(hits): #update a number of times before acquiring measurements
rand = np.random.randint(2*N_mat)
M = matrices[rand]
old_link = call_link(point, mu, lattice, dagger=False)
old_link = np.ascontiguousarray(old_link)
new_link = M @ old_link
dS = -(beta/3)*np.real(np.trace((new_link - old_link) @ gamma_P))
if dS < 0 or np.exp(-dS) > np.random.uniform(0, 1):
lattice[point[0], point[1], point[2], point[3], mu] = new_link
elif improve == 'y':
gamma_P = gamma_plaquette(lattice, point, mu)
gamma_R = gamma_rectangle(lattice, point, mu)
for i in range(hits):
rand = np.random.randint(2*N_mat)
M = matrices[rand]
old_link = call_link(point, mu, lattice, dagger=False)
old_link = np.ascontiguousarray(old_link)
new_link = M @ old_link
dS = -(beta_improved/3)*(5/(3*u_0**4)*np.real(np.trace((new_link-old_link) @ gamma_P))-1/(12*u_0**6)*np.real(np.trace((new_link - old_link) @ gamma_R)))
if dS < 0 or np.exp(-dS) > np.random.uniform(0, 1):
lattice[point[0], point[1], point[2], point[3], mu] = new_link
#calculate width x heigth planar wilson loop
@jit(nopython=True)
def planar_loops(lattice, point, width, heigth):
w_planar=0
for direction_1 in range(dim):
for direction_2 in range(direction_1):
loop = np.identity(3, np.complex128)
for h in range(heigth):
link = call_link(point, direction_1, lattice, dagger=False)
link = np.ascontiguousarray(link)
loop = loop @ link
up(point, direction_1)
for w in range(width):
link = call_link(point, direction_2, lattice, dagger=False)
link = np.ascontiguousarray(link)
loop = loop @ link
up(point, direction_2)
for h_reverse in range(heigth):
down(point, direction_1)
link = call_link(point, direction_1, lattice, dagger=True)
link = np.ascontiguousarray(link)
loop = loop @ link
for w_reverse in range(width):
down(point, direction_2)
link = call_link(point, direction_2, lattice, dagger=True)
link = np.ascontiguousarray(link)
loop = loop @ link
w_planar += (1/3)*np.real(np.trace(loop))
return w_planar/6
#calculate wichever shape of wilson loops opver the whole lattice and average
@jit(nopython=True)
def wilson_over_lattice(lattice, matrices, width, heigth):
W_plaquettes = np.zeros(Ncf, dtype=np.float64)
for alpha in range(Ncf):
for skip in range(Ncor):
metropolis_update(lattice, matrices, hits=10)
for t in range(N):
for x in range(N):
for y in range(N):
for z in range(N):
point = np.array([t, x, y, z])
W_plaquettes[alpha] += planar_loops(lattice, point, width, heigth)
print(W_plaquettes[alpha] / N**dim)
return W_plaquettes/N**dim
def main():
time_start = time.perf_counter()
Ms = matrices(N_mat) #generate SU(3) matrix pool
lattice = initialise_lattice(N, dim) #initialize lattice
for i in tqdm(range(2*Ncor)):
metropolis_update(lattice , Ms) #thermalize lattice for 2*Ncor steps
width = 1
heigth = 1
loop = wilson_over_lattice(lattice, Ms, width, heigth) #compute wilson loops
np.savetxt(f'data/loop {width}ax{heigth}a, a={a}, improved={improve}.csv', loop) #store results
time_elapsed = (time.perf_counter() - time_start)
print ("checkpoint %5.1f secs" % (time_elapsed))
if __name__ == '__main__':
main()