-
Notifications
You must be signed in to change notification settings - Fork 44
/
train.py
264 lines (237 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 8 15:31:39 2018
@author: initial-h
"""
from __future__ import print_function
import random
import numpy as np
import os
import time
from collections import defaultdict, deque
from game_board import Board,Game
from mcts_pure import MCTSPlayer as MCTS_Pure
from mcts_alphaZero import MCTSPlayer
from policy_value_net_tensorlayer import PolicyValueNet
class TrainPipeline():
def __init__(self, init_model=None,transfer_model=None):
self.resnet_block = 19 # num of block structures in resnet
# params of the board and the game
self.board_width = 11
self.board_height = 11
self.n_in_row = 5
self.board = Board(width=self.board_width,
height=self.board_height,
n_in_row=self.n_in_row)
self.game = Game(self.board)
# training params
self.learn_rate = 1e-3
self.n_playout = 400 # num of simulations for each move
self.c_puct = 5
self.buffer_size = 500000 # memory size
self.batch_size = 512 # mini-batch size for training
self.data_buffer = deque(maxlen=self.buffer_size)
self.play_batch_size = 1 # play n games for each network training
self.check_freq = 50
self.game_batch_num = 50000000 # total game to train
self.best_win_ratio = 0.0
# num of simulations used for the pure mcts, which is used as
# the opponent to evaluate the trained policy
self.pure_mcts_playout_num = 200
if (init_model is not None) and os.path.exists(init_model+'.index'):
# start training from an initial policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,self.board_height,block=self.resnet_block,init_model=init_model,cuda=True)
elif (transfer_model is not None) and os.path.exists(transfer_model+'.index'):
# start training from a pre-trained policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,self.board_height,block=self.resnet_block,transfer_model=transfer_model,cuda=True)
else:
# start training from a new policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,self.board_height,block=self.resnet_block,cuda=True)
self.mcts_player = MCTSPlayer(policy_value_function=self.policy_value_net.policy_value_fn_random,
action_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test,
c_puct=self.c_puct,
n_playout=self.n_playout,
is_selfplay=True)
def get_equi_data(self, play_data):
'''
augment the data set by rotation and flipping
play_data: [(state, mcts_prob, winner_z), ..., ...]
'''
extend_data = []
for state, mcts_porb, winner in play_data:
for i in [1, 2, 3, 4]:
# rotate counterclockwise
equi_state = np.array([np.rot90(s, i) for s in state])
#rotate counterclockwise 90*i
equi_mcts_prob = np.rot90(np.flipud(
mcts_porb.reshape(self.board_height, self.board_width)), i)
#np.flipud like A[::-1,...]
#https://docs.scipy.org/doc/numpy-1.6.0/reference/generated/numpy.flipud.html
# change the reshaped numpy
# 0,1,2,
# 3,4,5,
# 6,7,8,
# as
# 6 7 8
# 3 4 5
# 0 1 2
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
# flip horizontally
equi_state = np.array([np.fliplr(s) for s in equi_state])
#这个np.fliplr like m[:, ::-1]
#https://docs.scipy.org/doc/numpy/reference/generated/numpy.fliplr.html
equi_mcts_prob = np.fliplr(equi_mcts_prob)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
return extend_data
def collect_selfplay_data(self, n_games=1):
'''
collect self-play data for training
'''
for i in range(n_games):
winner, play_data = self.game.start_self_play(self.mcts_player,is_shown=False)
play_data = list(play_data)[:]
self.episode_len = len(play_data)
# augment the data
play_data = self.get_equi_data(play_data)
self.data_buffer.extend(play_data)
def policy_update(self):
'''
update the policy-value net
'''
# play_data: [(state, mcts_prob, winner_z), ..., ...]
# train an epoch
tmp_buffer = np.array(self.data_buffer)
np.random.shuffle(tmp_buffer)
steps = len(tmp_buffer)//self.batch_size
print('tmp buffer: {}, steps: {}'.format(len(tmp_buffer),steps))
for i in range(steps):
mini_batch = tmp_buffer[i*self.batch_size:(i+1)*self.batch_size]
state_batch = [data[0] for data in mini_batch]
mcts_probs_batch = [data[1] for data in mini_batch]
winner_batch = [data[2] for data in mini_batch]
old_probs, old_v = self.policy_value_net.policy_value(state_batch=state_batch,
actin_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test)
loss, entropy = self.policy_value_net.train_step(state_batch,
mcts_probs_batch,
winner_batch,
self.learn_rate)
new_probs, new_v = self.policy_value_net.policy_value(state_batch=state_batch,
actin_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test)
kl = np.mean(np.sum(old_probs * (
np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
axis=1)
)
explained_var_old = (1 -
np.var(np.array(winner_batch) - old_v.flatten()) /
np.var(np.array(winner_batch)))
explained_var_new = (1 -
np.var(np.array(winner_batch) - new_v.flatten()) /
np.var(np.array(winner_batch)))
if steps<10 or (i%(steps//10)==0):
# print some information, not too much
print('batch: {},length: {}'
'kl:{:.5f},'
'loss:{},'
'entropy:{},'
'explained_var_old:{:.3f},'
'explained_var_new:{:.3f}'.format(i,
len(mini_batch),
kl,
loss,
entropy,
explained_var_old,
explained_var_new))
return loss, entropy
def policy_evaluate(self, n_games=10):
'''
Evaluate the trained policy by playing against the pure MCTS player
Note: this is only for monitoring the progress of training
'''
current_mcts_player = MCTSPlayer(policy_value_function=self.policy_value_net.policy_value_fn_random,
action_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test,
c_puct=5,
n_playout=400,
is_selfplay=False)
test_player = MCTS_Pure(c_puct=5,
n_playout=self.pure_mcts_playout_num)
win_cnt = defaultdict(int)
for i in range(n_games):
winner = self.game.start_play(player1=current_mcts_player,
player2=test_player,
start_player=i % 2,
is_shown=0,
print_prob=False)
win_cnt[winner] += 1
win_ratio = 1.0*(win_cnt[1] + 0.5*win_cnt[-1]) / n_games
print("num_playouts:{}, win: {}, lose: {}, tie:{}".format(
self.pure_mcts_playout_num,
win_cnt[1], win_cnt[2], win_cnt[-1]))
return win_ratio
def run(self):
'''
run the training pipeline
'''
# make dirs first
if not os.path.exists('tmp'):
os.makedirs('tmp')
if not os.path.exists('model'):
os.makedirs('model')
# record time for each part
start_time = time.time()
collect_data_time = 0
train_data_time = 0
evaluate_time = 0
try:
for i in range(self.game_batch_num):
# collect self-play data
collect_data_start_time = time.time()
self.collect_selfplay_data(self.play_batch_size)
collect_data_time += time.time()-collect_data_start_time
print("batch i:{}, episode_len:{}".format(
i+1, self.episode_len))
if len(self.data_buffer) > self.batch_size*5:
# train collected data
train_data_start_time = time.time()
loss, entropy = self.policy_update()
train_data_time += time.time()-train_data_start_time
# print some training information
print('now time : {}'.format((time.time() - start_time) / 3600))
print('collect_data_time : {}, train_data_time : {},evaluate_time : {}'.format(
collect_data_time / 3600, train_data_time / 3600,evaluate_time/3600))
if (i+1) % self.check_freq == 0 :
# save current model for evaluating
self.policy_value_net.save_model('tmp/current_policy.model')
if (i+1) % (self.check_freq*2) == 0:
print("current self-play batch: {}".format(i + 1))
evaluate_start_time = time.time()
# evaluate current model
win_ratio = self.policy_evaluate(n_games=10)
evaluate_time += time.time()-evaluate_start_time
if win_ratio > self.best_win_ratio:
# save best model
print("New best policy!!!!!!!!")
self.best_win_ratio = win_ratio
self.policy_value_net.save_model('model/best_policy.model')
if (self.best_win_ratio == 1.0 and self.pure_mcts_playout_num < 5000):
# increase playout num and reset the win ratio
self.pure_mcts_playout_num += 100
self.best_win_ratio = 0.0
if self.pure_mcts_playout_num ==5000:
# reset mcts pure playout num
self.pure_mcts_playout_num = 1000
self.best_win_ratio = 0.0
except KeyboardInterrupt:
print('\n\rquit')
if __name__ == '__main__':
training_pipeline = TrainPipeline(init_model='model/best_policy.model',transfer_model=None)
# training_pipeline = TrainPipeline(init_model=None, transfer_model='transfer_model/best_policy.model')
# training_pipeline = TrainPipeline()
training_pipeline.run()