-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcharts3.c
891 lines (777 loc) · 31.1 KB
/
charts3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
** Astrolog (Version 5.41G) File: charts3.c
**
** IMPORTANT NOTICE: The graphics database and chart display routines
** used in this program are Copyright (C) 1991-1998 by Walter D. Pullen
** ([email protected], http://www.magitech.com/~cruiser1/astrolog.htm).
** Permission is granted to freely use and distribute these routines
** provided one doesn't sell, restrict, or profit from them in any way.
** Modification is allowed provided these notices remain with any
** altered or edited versions of the program.
**
** The main planetary calculation routines used in this program have
** been Copyrighted and the core of this program is basically a
** conversion to C of the routines created by James Neely as listed in
** Michael Erlewine's 'Manual of Computer Programming for Astrologers',
** available from Matrix Software. The copyright gives us permission to
** use the routines for personal use but not to sell them or profit from
** them in any way.
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby
** ([email protected]). Conditions are identical to those above.
**
** The extended accurate ephemeris databases and formulas are from the
** calculation routines in the library SWISS EPHEMERIS and are programmed and
** copyright 1998 by Astrodienst AG.
** The use of that source code is subject to
** the Swiss Ephemeris Public License, available at
** http://www.astro.ch/swisseph. This copyright notice must not be
** changed or removed by any user of this program.
**
** Initial programming 8/28,30, 9/10,13,16,20,23, 10/3,6,7, 11/7,10,21/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 12/20/1998.
** Modifications from version 5.40 to 5.41 are by Alois Treindl.
*/
#include "astrolog.h"
real lonz1[objMax], lonz2[objMax], latz1[objMax], latz2[objMax];
/*
******************************************************************************
** Multiple Chart Scanning Routines.
******************************************************************************
*/
/* Search through a day, and print out the times of exact aspects among the */
/* planets during that day, as specified with the -d switch, as well as the */
/* times when a planet changes sign or direction. To do this, we cast charts */
/* for the beginning and end of the day, or a part of a day, and do a linear */
/* equation check to see if anything exciting happens during the interval. */
/* (This is probably the single most complicated procedure in the program.) */
void ChartInDaySearch(fProg)
bool fProg;
{
byte sz[cchSzDef];
int source[MAXINDAY], aspect[MAXINDAY], dest[MAXINDAY],
sign1[MAXINDAY], sign2[MAXINDAY], D1, D2, counttotal = 0, occurcount,
division, div, fYear, yea0, yea1, yea2, i, j, k, l, s1, s2;
real time[MAXINDAY], divsiz, d1, d2, e1, e2, f1, f2, g, time1, time2;
CI ciT;
/* If parameter 'fProg' is set, look for changes in a progressed chart. */
ciT = ciTran;
fYear = us.fInDayMonth && (MonT == 0);
division = (fYear || fProg) ? 1 : us.nDivision;
divsiz = 24.0 / (real)division*60.0;
/* If -dY in effect, then search through a range of years. */
yea1 = fProg ? YeaT : Yea;
yea2 = fYear ? (yea1 + us.nEphemYears - 1) : yea1;
for (yea0 = yea1; yea0 <= yea2; yea0++) {
/* If -dm in effect, then search through the whole month, day by day. */
if (us.fInDayMonth) {
D1 = 1;
if (fYear) {
MonT = 1; D2 = DayInYearHi(yea0);
} else
D2 = DayInMonth(fProg ? MonT : Mon, yea0);
} else
D1 = D2 = Day;
/* Start searching the day or days in question for exciting stuff. */
for (DayT = D1; DayT <= D2; DayT = AddDay(Mon, DayT, yea0, 1)) {
occurcount = 0;
/* Cast chart for beginning of day and store it for future use. */
SetCI(ciCore, fYear ? MonT : Mon, DayT, yea0, 0.0, Dst, Zon, Lon, Lat);
if (us.fProgress = fProg) {
is.JDp = MdytszToJulian(MonT, DD, yea0, 0.0, Dst, Zon);
ciCore = ciMain;
}
CastChart(fTrue);
cp2 = cp0;
/* Now divide the day into segments and search each segment in turn. */
/* More segments is slower, but has slightly better time accuracy. */
for (div = 1; div <= division; div++) {
/* Cast the chart for the ending time of the present segment. The */
/* beginning time chart is copied from the previous end time chart. */
SetCI(ciCore, fYear ? MonT : Mon, DayT, yea0,
DegToDec(24.0*(real)div/(real)division), Dst, Zon, Lon, Lat);
if (fProg) {
is.JDp = MdytszToJulian(MonT, DD+1, yea0, 0.0, Dst, Zon);
ciCore = ciMain;
}
CastChart(fTrue);
cp1 = cp2; cp2 = cp0;
if (us.fParallel) {
for (i = 0; i <= cObj; i++) if (!ignore[i]) {
if (us.fEquator) {
lonz1[i] = cp1.obj[i];
latz1[i] = cp1.alt[i];
lonz2[i] = cp2.obj[i];
latz2[i] = cp2.alt[i];
} else {
lonz1[i] = RFromD(Tropical(cp1.obj[i]));
latz1[i] = RFromD(cp1.alt[i]);
EclToEqu(&lonz1[i], &latz1[i]);
latz1[i] = DFromR(latz1[i]);
lonz2[i] = RFromD(Tropical(cp2.obj[i]));
latz2[i] = RFromD(cp2.alt[i]);
EclToEqu(&lonz2[i], &latz2[i]);
latz2[i] = DFromR(latz2[i]);
}
}
}
/* Now search through the present segment for anything exciting. */
for (i = 0; i <= cObj; i++) if (!FIgnore(i) && (fProg || FThing(i))) {
s1 = SFromZ(cp1.obj[i])-1;
s2 = SFromZ(cp2.obj[i])-1;
if(!us.fParallel) {
/* Does the current planet change into the next or previous sign? */
if (s1 != s2 && !us.fIgnoreSign) {
source[occurcount] = i;
aspect[occurcount] = aSig;
dest[occurcount] = s2+1;
time[occurcount] = MinDistance(cp1.obj[i],
(real)(cp1.dir[i] >= 0.0 ? s2 : s1) * 30.0) /
MinDistance(cp1.obj[i], cp2.obj[i])*divsiz + (real)(div-1)*divsiz;
sign1[occurcount] = sign2[occurcount] = s1+1;
occurcount++;
}
/* Does the current planet go retrograde or direct? */
if ((cp1.dir[i] < 0.0) != (cp2.dir[i] < 0.0) && !us.fIgnoreDir) {
source[occurcount] = i;
aspect[occurcount] = aDir;
dest[occurcount] = cp2.dir[i] < 0.0;
time[occurcount] = RAbs(cp1.dir[i])/(RAbs(cp1.dir[i])+
RAbs(cp2.dir[i]))*divsiz + (real)(div-1)*divsiz;
sign1[occurcount] = sign2[occurcount] = s1+1;
occurcount++;
}
/* Now search for anything making an aspect to the current planet. */
for (j = i+1; j <= cObj; j++) if (!FIgnore(j) && (fProg || FThing(j)))
for (k = 1; k <= us.nAsp; k++) if (FAcceptAspect(i, k, j)) {
d1 = cp1.obj[i]; d2 = cp2.obj[i];
e1 = cp1.obj[j]; e2 = cp2.obj[j];
if (MinDistance(d1, d2) < MinDistance(e1, e2)) {
SwapR(&d1, &e1);
SwapR(&d2, &e2);
}
/* We are searching each aspect in turn. Let's subtract the */
/* size of the aspect from the angular difference, so we can */
/* then treat it like a conjunction. */
if (MinDistance(e1, Mod(d1-rAspAngle[k])) <
MinDistance(e2, Mod(d2+rAspAngle[k]))) {
e1 = Mod(e1+rAspAngle[k]);
e2 = Mod(e2+rAspAngle[k]);
} else {
e1 = Mod(e1-rAspAngle[k]);
e2 = Mod(e2-rAspAngle[k]);
}
/* Check to see if the aspect actually occurs during our */
/* segment, making sure we take into account if one or both */
/* planets are retrograde or if they cross the Aries point. */
f1 = e1-d1;
if (RAbs(f1) > rDegHalf)
f1 -= RSgn(f1)*rDegMax;
f2 = e2-d2;
if (RAbs(f2) > rDegHalf)
f2 -= RSgn(f2)*rDegMax;
if (MinDistance(Midpoint(d1, d2), Midpoint(e1, e2)) < rDegQuad &&
RSgn(f1) != RSgn(f2)) {
source[occurcount] = i;
aspect[occurcount] = k;
dest[occurcount] = j;
/* Horray! The aspect occurs sometime during the interval. */
/* Now we just have to solve an equation in two variables to */
/* find out where the "lines" cross, i.e. the aspect's time. */
f1 = d2-d1;
if (RAbs(f1) > rDegHalf)
f1 -= RSgn(f1)*rDegMax;
f2 = e2-e1;
if (RAbs(f2) > rDegHalf)
f2 -= RSgn(f2)*rDegMax;
g = (RAbs(d1-e1) > rDegHalf ?
(d1-e1)-RSgn(d1-e1)*rDegMax : d1-e1)/(f2-f1);
time[occurcount] = g*divsiz + (real)(div-1)*divsiz;
sign1[occurcount] = (int)(Mod(cp1.obj[i]+
RSgn(cp2.obj[i]-cp1.obj[i])*
(RAbs(cp2.obj[i]-cp1.obj[i]) > rDegHalf ? -1 : 1)*
RAbs(g)*MinDistance(cp1.obj[i], cp2.obj[i]))/30.0)+1;
sign2[occurcount] = (int)(Mod(cp1.obj[j]+
RSgn(cp2.obj[j]-cp1.obj[j])*
(RAbs(cp2.obj[j]-cp1.obj[j]) > rDegHalf ? -1 : 1)*
RAbs(g)*MinDistance(cp1.obj[j], cp2.obj[j]))/30.0)+1;
occurcount++;
}
}
} else {
/* Now search for anything making an parallel to the current planet. */
for (j = i+1; j <= cObj; j++) if (!FIgnore(j) && (fProg || FThing(j))) {
if (FCusp(i) && FCusp(j))
continue;
k = 0;
d1 = latz1[i]; d2 = latz2[i];
e1 = latz1[j]; e2 = latz2[j];
if (RAbs(d2 - d1) < RAbs(e2 - e1)) {
SwapR(&d1, &e1);
SwapR(&d2, &e2);
}
if (((d2 > d1) && (FBetween(e1, d1, d2) || FBetween(e2, d1, d2))) ||
((d2 < d1) && (FBetween(e1, d2, d1) || FBetween(e2, d2, d1)))) {
if ((d2 - d1) != (e2 - e1))
k = 1;
}
if (k == 0) {
e1 = - e1;
e2 = - e2;
if (((d2 > d1) && (FBetween(e1, d1, d2) || FBetween(e2, d1, d2))) ||
((d2 < d1) && (FBetween(e1, d2, d1) || FBetween(e2, d2, d1)))) {
if ((d2 - d1) != (e2 - e1))
k=2;
}
}
if (k) {
f1 = d2 - d1;
f2 = e2 - e1;
g = (e1 - d1) / (f1 -f2);
time[occurcount] = g*divsiz + (real)(div-1)*divsiz;
time1 = divsiz*(real)(div-1);
time2 = divsiz*(real)div;
if (time[occurcount] >= time1 && time[occurcount] <= time2) {
source[occurcount] = i;
aspect[occurcount] = k;
dest[occurcount] = j;
sign1[occurcount] = (int)(Mod(cp1.obj[i]+
RSgn(cp2.obj[i]-cp1.obj[i])*
(RAbs(cp2.obj[i]-cp1.obj[i]) > rDegHalf ? -1 : 1)*
RAbs(g)*MinDistance(cp1.obj[i], cp2.obj[i]))/30.0)+1;
sign2[occurcount] = (int)(Mod(cp1.obj[j]+
RSgn(cp2.obj[j]-cp1.obj[j])*
(RAbs(cp2.obj[j]-cp1.obj[j]) > rDegHalf ? -1 : 1)*
RAbs(g)*MinDistance(cp1.obj[j], cp2.obj[j]))/30.0)+1;
occurcount++;
}
}
}
}
}
}
/* After all the aspects, etc, in the day have been located, sort */
/* them by time at which they occur, so we can print them in order. */
for (i = 1; i < occurcount; i++) {
j = i-1;
while (j >= 0 && time[j] > time[j+1]) {
SwapN(source[j], source[j+1]);
SwapN(aspect[j], aspect[j+1]);
SwapN(dest[j], dest[j+1]);
SwapR(&time[j], &time[j+1]);
SwapN(sign1[j], sign1[j+1]); SwapN(sign2[j], sign2[j+1]);
j--;
}
}
/* Finally, loop through and display each aspect and when it occurs. */
for (i = 0; i < occurcount; i++) {
s1 = (int)time[i]/60;
s2 = (int)time[i]-s1*60;
j = DayT;
if (fYear || fProg) {
l = MonT;
while (j > (k = DayInMonth(l, yea0))) {
j -= k;
l++;
}
}
SetCI(ciSave, fYear || fProg ? l : Mon, j, yea0,
DegToDec(time[i] / 60.0), Dst, Zon, Lon, Lat);
k = DayOfWeek(fYear || fProg ? l : Mon, j, yea0);
AnsiColor(kRainbowA[k + 1]);
sprintf(sz, "(%c%c%c) ", chDay3(k)); PrintSz(sz);
AnsiColor(kDefault);
sprintf(sz, "%s %s ",
SzDate(fYear || fProg ? l : Mon, j, yea0, 2*MonthFormat),
SzTime(s1, s2, -1)); PrintSz(sz);
PrintAspect(source[i], sign1[i],
(int)RSgn(cp1.dir[source[i]])+(int)RSgn(cp2.dir[source[i]]),
aspect[i], dest[i], sign2[i],
(int)RSgn(cp1.dir[dest[i]])+(int)RSgn(cp2.dir[dest[i]]),
(byte)(fProg ? 'e' : 'd'));
PrintInDay(source[i], aspect[i], dest[i]);
}
counttotal += occurcount;
}
}
if (counttotal == 0)
PrintSz("No transit events found.\n");
/* Recompute original chart placements as we've overwritten them. */
ciCore = ciMain;
ciTran = ciT;
CastChart(fTrue);
}
/* Search through a month, year, or years, and print out the times of exact */
/* transits where planets in the time frame make aspect to the planets in */
/* some other chart, as specified with the -t switch. To do this, we cast */
/* charts for the start and end of each month, or within a month, and do an */
/* equation check for aspects to the other base chart during the interval. */
void ChartTransitSearch(fProg)
bool fProg;
{
real planet3[objMax], house3[cSign+1], ret3[objMax], time[MAXINDAY];
byte sz[cchSzDef];
int source[MAXINDAY], aspect[MAXINDAY], dest[MAXINDAY], sign[MAXINDAY],
isret[MAXINDAY], M1, M2, Y1, Y2, counttotal = 0, occurcount, division,
div, nAsp, fCusp, i, j, k, s1, s2, s3;
real lonn[objMax], latn[objMax];
real divsiz, daysiz, d, e1, e2, f1, f2;
CI ciT;
/* Save away natal chart and initialize things. */
#ifdef WIN
if (MM == -1) {
cp3 = cp0;
fCP3 = 1;
}
#endif
ciT = ciTran;
for (i = 1; i <= cSign; i++)
house3[i] = chouse[i];
for (i = 0; i <= cObj; i++) {
planet3[i] = planet[i];
ret3[i] = ret[i];
}
if (fProg)
fCusp = fFalse;
else {
fCusp = fTrue;
for (i = cuspLo; i <= cuspHi; i++)
fCusp &= ignore2[i];
}
division = us.nDivision;
if (!fProg && !fCusp)
division = Max(division, 96);
nAsp = is.fReturn ? aCon : us.nAsp;
if (us.fParallel) {
for (i = 0; i <= cObj; i++) if (!ignore[i]) {
if (us.fEquator) {
lonn[i] = planet[i];
latn[i] = planetalt[i];
} else {
lonn[i] = RFromD(Tropical(planet[i]));
latn[i] = RFromD(planetalt[i]);
EclToEqu(&lonn[i], &latn[i]);
latn[i] = DFromR(latn[i]);
}
}
}
/* Hacks: Searching month number zero means to search the whole year */
/* instead, month by month. Searching a negative month means to search */
/* multiple years, with the span of the year stored in the "day" field. */
Y1 = Y2 = YeaT;
M1 = M2 = MonT;
if (MonT < 1) {
M1 = 1; M2 = 12;
if (MonT < 0) {
if (DayT < 1) {
Y1 = YeaT + DayT + 1; Y2 = YeaT;
} else {
Y1 = YeaT; Y2 = YeaT + DayT - 1;
}
}
}
/* Start searching the year or years in question for any transits. */
for (YeaT = Y1; YeaT <= Y2; YeaT++)
/* Start searching the month or months in question for any transits. */
for (MonT = M1; MonT <= M2; MonT++) {
daysiz = (real)DayInMonth(MonT, YeaT)*24.0*60.0;
divsiz = daysiz / (real)division;
/* Cast chart for beginning of month and store it for future use. */
SetCI(ciCore, MonT, 1, YeaT, 0.0, DstT, ZonT, LonT, LatT);
if (us.fProgress = fProg) {
is.JDp = MdytszToJulian(MM, DD, YY, 0.0, DstT, ZonT);
ciCore = ciMain;
}
for (i = 0; i <= oNorm; i++)
SwapN(ignore[i], ignore2[i]);
CastChart(fTrue);
for (i = 0; i <= oNorm; i++)
SwapN(ignore[i], ignore2[i]);
cp2 = cp0;
/* Divide our month into segments and then search each segment in turn. */
for (div = 1; div <= division; div++) {
occurcount = 0;
/* Cast the chart for the ending time of the present segment, and */
/* copy the start time chart from the previous end time chart. */
d = 1.0 + (daysiz/24.0/60.0)*(real)div/(real)division;
SetCI(ciCore, MonT, (int)d, YeaT,
DegToDec(RFract(d)*24.0), DstT, ZonT, LonT, LatT);
if (fProg) {
is.JDp = MdytszToJulian(MM, DD, YY, 0.0, DstT, ZonT);
ciCore = ciMain;
}
for (i = 0; i <= oNorm; i++)
SwapN(ignore[i], ignore2[i]);
CastChart(fTrue);
for (i = 0; i <= oNorm; i++)
SwapN(ignore[i], ignore2[i]);
cp1 = cp2; cp2 = cp0;
if (us.fParallel) {
for (i = 0; i <= cObj; i++) if (!ignore[i]) {
if (us.fEquator) {
lonz1[i] = cp1.obj[i];
latz1[i] = cp1.alt[i];
lonz2[i] = cp2.obj[i];
latz2[i] = cp2.alt[i];
} else {
lonz1[i] = RFromD(Tropical(cp1.obj[i]));
latz1[i] = RFromD(cp1.alt[i]);
EclToEqu(&lonz1[i], &latz1[i]);
latz1[i] = DFromR(latz1[i]);
lonz2[i] = RFromD(Tropical(cp2.obj[i]));
latz2[i] = RFromD(cp2.alt[i]);
EclToEqu(&lonz2[i], &latz2[i]);
latz2[i] = DFromR(latz2[i]);
}
}
}
/* Now search through the present segment for any transits. Note that */
/* stars can be transited, but they can't make transits themselves. */
for (i = 0; i <= cObj; i++) if (!FIgnore(i)) {
for (j = 0; j <= oNorm; j++) {
if ((is.fReturn ? i != j : FIgnore2(j)) || (fCusp && !FThing(j)))
continue;
/* Between each pair of planets, check if they make any aspects. */
if(!us.fParallel) {
for (k = 1; k <= nAsp; k++) if (FAcceptAspect(i, k, j)) {
d = planet3[i]; e1 = cp1.obj[j]; e2 = cp2.obj[j];
if (MinDistance(e1, Mod(d-rAspAngle[k])) <
MinDistance(e2, Mod(d+rAspAngle[k]))) {
e1 = Mod(e1+rAspAngle[k]);
e2 = Mod(e2+rAspAngle[k]);
} else {
e1 = Mod(e1-rAspAngle[k]);
e2 = Mod(e2-rAspAngle[k]);
}
/* Check to see if the present aspect actually occurs during the */
/* segment, making sure we check any Aries point crossings. */
f1 = e1-d;
if (RAbs(f1) > rDegHalf)
f1 -= RSgn(f1)*rDegMax;
f2 = e2-d;
if (RAbs(f2) > rDegHalf)
f2 -= RSgn(f2)*rDegMax;
if (MinDistance(d, Midpoint(e1, e2)) < rDegQuad &&
RSgn(f1) != RSgn(f2) && occurcount < MAXINDAY) {
/* Ok, we have found a transit. Now determine the time */
/* and save this transit in our list to be printed. */
source[occurcount] = j;
aspect[occurcount] = k;
dest[occurcount] = i;
time[occurcount] = RAbs(f1)/(RAbs(f1)+RAbs(f2))*divsiz +
(real)(div-1)*divsiz;
sign[occurcount] = (int)(Mod(
MinDistance(cp1.obj[j], Mod(d-rAspAngle[k])) <
MinDistance(cp2.obj[j], Mod(d+rAspAngle[k])) ?
d-rAspAngle[k] : d+rAspAngle[k])/30.0)+1;
isret[occurcount] = (int)RSgn(cp1.dir[j]) +
(int)RSgn(cp2.dir[j]);
occurcount++;
}
}
} else {
k = 0;
d = latn[i];
e1 = latz1[j];
e2 = latz2[j];
if (((e2 > e1) && FBetween(d, e1, e2)) ||
((e2 < e1) && FBetween(d, e2, e1)))
k = 1; /* Found parallel. */
if (!k) {
d = -d;
if (((e2 > e1) && FBetween(d, e1, e2)) ||
((e2 < e1) && FBetween(d, e2, e1)))
k = 2; /* Found contra-parallel. */
}
if (k) {
source[occurcount] = j;
aspect[occurcount] = k;
dest[occurcount] = i;
f1 = RAbs(d - e1) / RAbs(e2 - e1);
time[occurcount] = divsiz * f1 + (real)(div - 1) * divsiz;
sign[occurcount] = (int)(Mod(cp1.obj[j]+
RSgn(cp2.obj[j]-cp1.obj[j])*
(RAbs(cp2.obj[j]-cp1.obj[j]) > rDegHalf ? -1 : 1)*
RAbs(f1)*MinDistance(cp1.obj[j], cp2.obj[j]))/30.0)+1;
isret[occurcount] = 1;
occurcount++;
}
}
}
}
/* After all transits located, sort them by time at which they occur. */
for (i = 1; i < occurcount; i++) {
j = i-1;
while (j >= 0 && time[j] > time[j+1]) {
SwapN(source[j], source[j+1]);
SwapN(aspect[j], aspect[j+1]);
SwapN(dest[j], dest[j+1]);
SwapR(&time[j], &time[j+1]);
SwapN(sign[j], sign[j+1]);
SwapN(isret[j], isret[j+1]);
j--;
}
}
/* Now loop through list and display all the transits. */
for (i = 0; i < occurcount; i++) {
s1 = (_int)time[i]/24/60;
s3 = (_int)time[i]-s1*24*60;
s2 = s3/60;
s3 = s3-s2*60;
SetCI(ciSave, MonT, s1+1, YeaT, DegToDec((real)
((_int)time[i]-s1*24*60) / 60.0), DstT, ZonT, LonT, LatT);
sprintf(sz, "%s %s ",
SzDate(MonT, s1+1, YeaT, 2*MonthFormat), SzTime(s2, s3, -1)); PrintSz(sz);
PrintAspect(source[i], sign[i], isret[i], aspect[i],
dest[i], SFromZ(planet3[dest[i]]), (int)RSgn(ret3[dest[i]]),
(byte)(fProg ? 'u' : 't'));
/* Check for a Solar, Lunar, or any other return. */
if (aspect[i] == aCon && source[i] == dest[i]) {
AnsiColor(kWhite);
sprintf(sz, " (%s Return)", source[i] == oSun ? "Solar" :
(source[i] == oMoo ? "Lunar" : szObjName[source[i]]));
PrintSz(sz);
}
PrintL();
#ifdef INTERPRET
if (us.fInterpret)
InterpretTransit(source[i], aspect[i], dest[i]);
#endif
AnsiColor(kDefault);
}
counttotal += occurcount;
}
}
if (counttotal == 0)
PrintSz("No transits found.\n");
/* Recompute original chart placements as we've overwritten them. */
#ifdef WIN
if (fCP3) {
cp0 = cp3;
fCP3 = 0;
}
#endif
ciCore = ciMain; ciTran = ciT;
us.fProgress = fFalse;
CastChart(fTrue);
}
/* Display a list of planetary rising times relative to the local horizon */
/* for the day indicated in the chart information, as specified with the */
/* -Zd switch. For the day, the time each planet rises (transits horizon */
/* in East half of sky), sets (transits horizon in West), reaches its */
/* zenith point (transits meridian in South half of sky), and nadirs */
/* transits meridian in North), is displayed. */
/* In this context more correct termin instead "zenith" and "nadir" is */
/* astronomical termin "culmination" which means transit over meridian. */
/* There are two culminations: "upper culmination" when planet has */
/* highest position and "lower culmination" when planet has lowest */
/* position. In chart below termins "zeniths" and "nadirs" are replaced */
/* by "culm.(up)" and "culm.(lo)" respectively. V.A. */
void ChartInDayHorizon()
{
byte sz[cchSzDef];
int source[MAXINDAY], type[MAXINDAY], sign[MAXINDAY],
fRet[MAXINDAY], occurcount, division, div, i, j, fT;
real time[MAXINDAY], rgalt1[objMax], rgalt2[objMax], azialt[MAXINDAY],
azi1, azi2, alt1, alt2, lon, lat, mc1, mc2, xA, yA, xV, yV, d, k, se, azia;
CI ciT;
byte EquT, MCpolarT;
fT = us.fSidereal; us.fSidereal = fFalse;
EquT = us.fEquator; us.fEquator = fFalse;
MCpolarT = PolarMCflip; PolarMCflip = fFalse;
lon = RFromD(Mod(RealCoord(Lon))); lat = RFromD(RealCoord(Lat));
division = us.nDivision * 4;
occurcount = 0;
ciT = ciTwin; ciCore = ciMain; ciCore.tim = 0.0;
CastChart(fTrue);
mc2 = RFromD(planet[oMC]); k = RFromD(planetalt[oMC]);
EclToEqu(&mc2, &k);
cp2 = cp0;
for (i = 1; i <= cObj; i++) {
rgalt2[i] = planetalt[i];
}
/* Loop through the day, dividing it into a certain number of segments. */
/* For each segment we get the planet positions at its endpoints. */
for (div = 1; div <= division; div++) {
ciCore = ciMain; ciCore.tim = DegToDec(24.0*(real)div/(real)division);
CastChart(fTrue);
mc1 = mc2;
mc2 = RFromD(planet[oMC]); k = RFromD(planetalt[oMC]);
EclToEqu(&mc2, &k);
cp1 = cp2; cp2 = cp0;
for (i = 1; i <= cObj; i++) {
rgalt1[i] = rgalt2[i]; rgalt2[i] = planetalt[i];
}
/* For our segment, check to see if each planet during it rises, sets, */
/* reaches its zenith, or reaches its nadir. */
for (i = 1; i <= cObj; i++) if (!ignore[i] && FThing(i)) {
EclToHorizon(&azi1, &alt1, cp1.obj[i], rgalt1[i], lon, lat, mc1);
EclToHorizon(&azi2, &alt2, cp2.obj[i], rgalt2[i], lon, lat, mc2);
j = 0;
/* Check for transits to the horizon. */
if ((alt1 > 0.0) != (alt2 > 0.0)) {
d = RAbs(alt1)/(RAbs(alt1)+RAbs(alt2));
k = Mod(azi1 + d*MinDifference(azi1, azi2));
j = 1 + 2*(MinDistance(k, rDegHalf) < rDegQuad);
/* Check for transits to the meridian. */
} else if (RSgn(MinDifference(azi1, rDegQuad)) !=
RSgn(MinDifference(azi2, rDegQuad))) {
j = 2 + 2*(MinDistance(azi1, rDegQuad) < rDegQuad);
d = RAbs(azi1 - (j > 2 ? rDegQuad : 270.0))/MinDistance(azi1, azi2);
k = alt1 + d*(alt2-alt1);
if (MCpolarT && hRevers)
j = 2 + 2*(MinDistance(azi1, rDegQuad) > rDegQuad);
}
if (j && !ignorez[j-1] && occurcount < MAXINDAY) {
source[occurcount] = i;
type[occurcount] = j;
time[occurcount] = 24.0*((real)(div-1)+d)/(real)division*60.0;
sign[occurcount] = (int)Mod(cp1.obj[i] +
d*MinDifference(cp1.obj[i], cp2.obj[i]))/30 + 1;
fRet[occurcount] = (int)RSgn(cp1.dir[i]) + (int)RSgn(cp2.dir[i]);
azialt[occurcount] = k;
ciSave = ciMain;
ciSave.tim = DegToDec(time[occurcount] / 60.0);
occurcount++;
}
}
}
/* Sort each event in order of time when it happens during the day. */
for (i = 1; i < occurcount; i++) {
j = i-1;
while (j >= 0 && time[j] > time[j+1]) {
SwapN(source[j], source[j+1]);
SwapN(type[j], type[j+1]);
SwapR(&time[j], &time[j+1]);
SwapN(sign[j], sign[j+1]);
SwapN(fRet[j], fRet[j+1]);
SwapR(&azialt[j], &azialt[j+1]);
j--;
}
}
/* Finally display the list showing each event and when it occurs. */
for (i = 0; i < occurcount; i++) {
ciSave = ciMain;
ciSave.tim = DegToDec(time[i] / 60.0);
j = DayOfWeek(Mon, Day, Yea);
AnsiColor(kRainbowA[j + 1]);
sprintf(sz, "(%c%c%c) ", chDay3(j)); PrintSz(sz);
AnsiColor(kDefault);
sprintf(sz, "%s %s ", SzDate(Mon, Day, Yea, 2*MonthFormat), SzTim(DegToDec(time[i]/60.0)) );
PrintSz(sz);
AnsiColor(kObjA[source[i]]);
sprintf(sz, "%7.7s ", szObjName[source[i]]); PrintSz(sz);
AnsiColor(kSignA(sign[i]));
sprintf(sz, "%c%c%c%c%c ",
fRet[i] > 0 ? '(' : (fRet[i] < 0 ? '[' : '<'), chSig3(sign[i]),
fRet[i] > 0 ? ')' : (fRet[i] < 0 ? ']' : '>')); PrintSz(sz);
AnsiColor(kElemA[type[i]-1]);
if (type[i] == 1)
PrintSz("rises ");
else if (type[i] == 2)
PrintSz("culm.(up)");
else if (type[i] == 3)
PrintSz("sets ");
else
PrintSz("culm.(lo)");
AnsiColor(kDefault);
PrintSz(" at ");
if (type[i] & 1) {
if (fNESW)
azia = Mod(rDegQuad - azialt[i]);
else
azia = azialt[i];
j = (int)(RFract(azia)*60.0);
se = RFract(azia)*60.0; se = RFract(se)*60.0;
if (!us.fSeconds)
sprintf(sz, "%3d%c%02d'", (int)azia, chDeg1, j);
else
sprintf(sz, "%3d%c%02d'%02d\"", (int)azia, chDeg1, j, (int)se);
PrintSz(sz);
/* For rising and setting events, we'll also display a direction */
/* vector to make the 360 degree azimuth value thought of easier. */
xA = RCosD(azialt[i]); yA = RSinD(azialt[i]);
if (RAbs(xA) < RAbs(yA)) {
xV = RAbs(xA / yA); yV = 1.0;
} else {
yV = RAbs(yA / xA); xV = 1.0;
}
sprintf(sz, " (%.2f%c %.2f%c)",
yV, yA < 0.0 ? 's' : 'n', xV, xA > 0.0 ? 'e' : 'w'); PrintSz(sz);
} else
PrintAltitude(azialt[i]);
PrintL();
}
if (occurcount == 0)
PrintSz("No horizon events found.\n");
/* Recompute original chart placements as we've overwritten them. */
ciCore = ciMain; ciTwin = ciT;
us.fSidereal = fT;
us.fEquator = EquT;
PolarMCflip = MCpolarT;
CastChart(fTrue);
}
/* Print out an ephemeris - the positions of the planets (at the time in the */
/* current chart) each day during a specified month, as done with the -E */
/* switch. Display the ephemeris for the whole year if -Ey is in effect. */
void ChartEphemeris()
{
byte sz[cchSzDef];
int yea, yea1, yea2, mon, mon1, mon2, daysiz, i, j, s, d, m;
/* If -Ey is in effect, then loop through all months in the whole year. */
if (us.nEphemYears) {
yea1 = Yea; yea2 = yea1 + us.nEphemYears - 1; mon1 = 1; mon2 = 12;
} else {
yea1 = yea2 = Yea; mon1 = mon2 = Mon;
}
/* Loop through the year or years in question. */
for (yea = yea1; yea <= yea2; yea++)
/* Loop through the month or months in question, printing each ephemeris. */
for (mon = mon1; mon <= mon2; mon++) {
daysiz = DayInMonth(mon, yea);
PrintSz(us.fEuroDate ? "Dy/Mo/Yr" : "Mo/Dy/Yr");
for (j = 1; j <= cObj; j++) {
if (!ignore[j] && FThing(j)) {
sprintf(sz, " %s%c%c%c%c", is.fSeconds ? " " : "", chObj3(j),
szObjName[j][3] != 0 ? szObjName[j][3] : ' '); PrintSz(sz);
PrintTab(' ', us.fParallel ? 2 + is.fSeconds : 1 + 3*is.fSeconds);
}
}
PrintL();
for (i = 1; i <= daysiz; i = AddDay(mon, i, yea, 1)) {
/* Loop through each day in the month, casting a chart for that day. */
SetCI(ciCore, mon, i, yea, Tim, Dst, Zon, Lon, Lat);
CastChart(fTrue);
PrintSz(SzDate(mon, i, yea, -1));
PrintCh(' ');
for (j = 0; j <= cObj; j++)
if (!FIgnore(j) && FThing(j)) {
if (!us.fParallel) {
if (is.fSeconds)
PrintZodiac(planet[j]);
else {
AnsiColor(kObjA[j]);
s = SFromZ(planet[j]);
d = (int)planet[j] - (s-1)*30;
m = (int)(RFract(planet[j])*60.0);
sprintf(sz, "%2d%s%02d", d, szSignAbbrev[s], m); PrintSz(sz);
}
} else {
AnsiColor(kObjA[j]);
PrintAltitude(planetalt[j]);
}
PrintCh((byte)(ret[j] >= 0.0 ? ' ' : '.'));
}
PrintL();
AnsiColor(kDefault);
}
if (mon < mon2 || yea < yea2)
PrintL();
}
ciCore = ciMain; /* Recast original chart. */
CastChart(fTrue);
}
/* charts3.c */