-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtumor.py
294 lines (259 loc) · 11.2 KB
/
tumor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import logging
import os
import time
from argparse import ArgumentParser
import numpy as np
import pandas as pd
import torch
from ignite.metrics import Accuracy
from torch.optim import SGD, lr_scheduler
from torchvision import datasets, models
from torchvision.transforms import Compose, Normalize, ToTensor, Resize
import monai
from monai.data import DataLoader, PatchWSIDataset, CSVDataset, Dataset, IterableDataset
from monai.engines import SupervisedEvaluator, SupervisedTrainer
from monai.handlers import (
CheckpointSaver,
LrScheduleHandler,
StatsHandler,
TensorBoardStatsHandler,
ValidationHandler,
from_engine,
)
from monai.networks.nets import TorchVisionFCModel
from monai.optimizers import Novograd
from monai.transforms import (
Activationsd,
AsDiscreted,
CastToTyped,
Compose,
GridSplitd,
Lambdad,
RandFlipd,
RandRotate90d,
RandZoomd,
ScaleIntensityRanged,
ToNumpyd,
TorchVisiond,
ToTensord,
)
from monai.utils import first, set_determinism
torch.backends.cudnn.enabled = True
set_determinism(seed=0, additional_settings=None)
def create_log_dir(cfg):
timestamp = time.strftime("%y%m%d-%H%M%S")
run_folder_name = (
f"{timestamp}_resnet18_ps{cfg['patch_size']}_bs{cfg['batch_size']}_ep{cfg['n_epochs']}_lr{cfg['lr']}"
)
log_dir = os.path.join(cfg["logdir"], run_folder_name)
print(f"Logs and model are saved at '{log_dir}'.")
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def set_device(cfg):
# Define the device, GPU or CPU
gpus = [int(n.strip()) for n in cfg["gpu"].split(",")]
gpus = set(gpus) & set(range(16)) # limit to 16-gpu machines
if gpus and torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(n) for n in gpus])
device = torch.device("cuda")
print(f'CUDA is being used with GPU Id(s): {os.environ["CUDA_VISIBLE_DEVICES"]}')
else:
device = torch.device("cpu")
print("CPU only!")
return device
def train(cfg):
log_dir = create_log_dir(cfg)
device = set_device(cfg)
# --------------------------------------------------------------------------
# Data Loading and Preprocessing
# --------------------------------------------------------------------------
# __________________________________________________________________________
# Build MONAI preprocessing
train_preprocess = Compose(
[
Lambdad(keys="label", func=lambda x: x.reshape((1, cfg["grid_shape"], cfg["grid_shape"]))),
GridSplitd(
keys=("image", "label"),
grid=(cfg["grid_shape"], cfg["grid_shape"]),
size={"image": cfg["patch_size"], "label": 1},
),
ToTensord(keys=("image")),
TorchVisiond(
keys="image", name="ColorJitter", brightness=64.0 / 255.0, contrast=0.75, saturation=0.25, hue=0.04
),
ToNumpyd(keys="image"),
RandFlipd(keys="image", prob=0.5),
RandRotate90d(keys="image", prob=0.5, max_k=3, spatial_axes=(-2, -1)),
CastToTyped(keys="image", dtype=np.float32),
RandZoomd(keys="image", prob=0.5, min_zoom=0.9, max_zoom=1.1),
ScaleIntensityRanged(keys="image", a_min=0.0, a_max=255.0, b_min=-1.0, b_max=1.0),
ToTensord(keys=("image", "label")),
]
)
valid_preprocess = Compose(
[
Lambdad(keys="label", func=lambda x: x.reshape((1, cfg["grid_shape"], cfg["grid_shape"]))),
GridSplitd(
keys=("image", "label"),
grid=(cfg["grid_shape"], cfg["grid_shape"]),
size={"image": cfg["patch_size"], "label": 1},
),
CastToTyped(keys="image", dtype=np.float32),
ScaleIntensityRanged(keys="image", a_min=0.0, a_max=255.0, b_min=-1.0, b_max=1.0),
ToTensord(keys=("image", "label")),
]
)
# __________________________________________________________________________
# Create MONAI dataset
'''
train_data_list = CSVDataset(
cfg["train_file"],
col_groups={"image": 0, "location": [2, 1], "label": [3, 6, 9, 4, 7, 10, 5, 8, 11]},
kwargs_read_csv={"header": None},
transform=Lambdad("image", lambda x: os.path.join(cfg["root"], "training/images", x + ".tif")),
)
'''
train_data_list = IterableDataset(datasets.ImageFolder(os.path.join('data', 'train')))
train_dataset = PatchWSIDataset(
data=train_data_list,
patch_size=cfg["region_size"],
patch_level=0,
transform=train_preprocess,
reader="openslide" if cfg["use_openslide"] else "cuCIM",
)
'''
valid_data_list = CSVDataset(
cfg["valid_file"],
col_groups={"image": 0, "location": [2, 1], "label": [3, 6, 9, 4, 7, 10, 5, 8, 11]},
kwargs_read_csv={"header": None},
transform=Lambdad("image", lambda x: os.path.join(cfg["root"], "training/images", x + ".tif")),
)
'''
valid_data_list = IterableDataset(datasets.ImageFolder(os.path.join('data', 'val'), train_preprocess))
valid_dataset = PatchWSIDataset(
data=valid_data_list,
patch_size=cfg["region_size"],
patch_level=0,
transform=valid_preprocess,
reader="openslide" if cfg["use_openslide"] else "cuCIM",
)
# __________________________________________________________________________
# DataLoaders
train_dataloader = DataLoader(
train_dataset, num_workers=cfg["num_workers"], batch_size=cfg["batch_size"], pin_memory=True
)
valid_dataloader = DataLoader(
valid_dataset, num_workers=cfg["num_workers"], batch_size=cfg["batch_size"], pin_memory=True
)
# Check first sample
first_sample = first(train_dataloader)
if first_sample is None:
raise ValueError("First sample is None!")
print("image: ")
print(" shape", first_sample["image"].shape)
print(" type: ", type(first_sample["image"]))
print(" dtype: ", first_sample["image"].dtype)
print("labels: ")
print(" shape", first_sample["label"].shape)
print(" type: ", type(first_sample["label"]))
print(" dtype: ", first_sample["label"].dtype)
print(f"batch size: {cfg['batch_size']}")
print(f"train number of batches: {len(train_dataloader)}")
print(f"valid number of batches: {len(valid_dataloader)}")
# --------------------------------------------------------------------------
# Deep Learning Classification Model
# --------------------------------------------------------------------------
# __________________________________________________________________________
# initialize model
model = TorchVisionFCModel("resnet18", num_classes=1, use_conv=True, pretrained=cfg["pretrain"])
model = model.to(device)
# loss function
loss_func = torch.nn.BCEWithLogitsLoss()
loss_func = loss_func.to(device)
# optimizer
if cfg["novograd"]:
optimizer = Novograd(model.parameters(), cfg["lr"])
else:
optimizer = SGD(model.parameters(), lr=cfg["lr"], momentum=0.9)
# AMP scaler
if cfg["amp"]:
cfg["amp"] = True if monai.utils.get_torch_version_tuple() >= (1, 6) else False
else:
cfg["amp"] = False
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg["n_epochs"])
# --------------------------------------------
# Ignite Trainer/Evaluator
# --------------------------------------------
# Evaluator
val_handlers = [
CheckpointSaver(save_dir=log_dir, save_dict={"net": model}, save_key_metric=True),
StatsHandler(output_transform=lambda x: None),
TensorBoardStatsHandler(log_dir=log_dir, output_transform=lambda x: None),
]
val_postprocessing = Compose([Activationsd(keys="pred", sigmoid=True), AsDiscreted(keys="pred", threshold=0.5)])
evaluator = SupervisedEvaluator(
device=device,
val_data_loader=valid_dataloader,
network=model,
postprocessing=val_postprocessing,
key_val_metric={"val_acc": Accuracy(output_transform=from_engine(["pred", "label"]))},
val_handlers=val_handlers,
amp=cfg["amp"],
)
# Trainer
train_handlers = [
LrScheduleHandler(lr_scheduler=scheduler, print_lr=True),
CheckpointSaver(
save_dir=cfg["logdir"], save_dict={"net": model, "opt": optimizer}, save_interval=1, epoch_level=True
),
StatsHandler(tag_name="train_loss", output_transform=from_engine(["loss"], first=True)),
ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
TensorBoardStatsHandler(
log_dir=cfg["logdir"], tag_name="train_loss", output_transform=from_engine(["loss"], first=True)
),
]
train_postprocessing = Compose([Activationsd(keys="pred", sigmoid=True), AsDiscreted(keys="pred", threshold=0.5)])
trainer = SupervisedTrainer(
device=device,
max_epochs=cfg["n_epochs"],
train_data_loader=train_dataloader,
network=model,
optimizer=optimizer,
loss_function=loss_func,
postprocessing=train_postprocessing,
key_train_metric={"train_acc": Accuracy(output_transform=from_engine(["pred", "label"]))},
train_handlers=train_handlers,
amp=cfg["amp"],
)
trainer.run()
def main():
logging.basicConfig(level=logging.INFO)
parser = ArgumentParser(description="Tumor detection on whole slide pathology images.")
parser.add_argument(
"--root",
type=str,
default="/workspace/data/medical/pathology",
help="path to image folder containing training/validation",
)
parser.add_argument("--train-file", type=str, default="training.csv", help="path to training data file")
parser.add_argument("--valid-file", type=str, default="validation.csv", help="path to training data file")
parser.add_argument("--logdir", type=str, default="./logs/", dest="logdir", help="log directory")
parser.add_argument("--rs", type=int, default=256 * 3, dest="region_size", help="region size")
parser.add_argument("--gs", type=int, default=3, dest="grid_shape", help="image grid shape e.g 3 means 3x3")
parser.add_argument("--ps", type=int, default=224, dest="patch_size", help="patch size")
parser.add_argument("--bs", type=int, default=64, dest="batch_size", help="batch size")
parser.add_argument("--ep", type=int, default=10, dest="n_epochs", help="number of epochs")
parser.add_argument("--lr", type=float, default=1e-3, dest="lr", help="initial learning rate")
parser.add_argument("--openslide", action="store_true", dest="use_openslide", help="use OpenSlide")
parser.add_argument("--no-amp", action="store_false", dest="amp", help="deactivate amp")
parser.add_argument("--no-novograd", action="store_false", dest="novograd", help="deactivate novograd optimizer")
parser.add_argument("--no-pretrain", action="store_false", dest="pretrain", help="deactivate Imagenet weights")
parser.add_argument("--cpu", type=int, default=8, dest="num_workers", help="number of workers")
parser.add_argument("--gpu", type=str, default="0", dest="gpu", help="which gpu to use")
args = parser.parse_args()
config_dict = vars(args)
print(config_dict)
train(config_dict)
if __name__ == "__main__":
main()