-
Notifications
You must be signed in to change notification settings - Fork 267
/
Copy pathinsar_vs_gnss.py
300 lines (268 loc) · 13.9 KB
/
insar_vs_gnss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""Class for comparing InSAR with GNSS."""
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Zhang Yunjun, 2018 #
############################################################
# Recommend import:
# from mintpy.objects.insar_vs_gnss import insar_vs_gnss
import datetime as dt
import sys
import numpy as np
from scipy import stats
from scipy.interpolate import griddata
from mintpy.defaults.plot import *
from mintpy.objects import giantTimeseries, gnss, timeseries
from mintpy.utils import readfile, utils as ut
############################## beginning of insar_vs_gnss class ##############################
class insar_vs_gnss:
""" Comparing InSAR time-series with GNSS time-series in LOS direction
Parameters: ts_file - str, time-series HDF5 file
geom_file - str, geometry HDF5 file
temp_coh_file - str, temporal coherence HDF5 file
site_names - list of str, GNSS site names
gnss_source - str, program or institution that processed the GNSS data
gnss_dir - str, directory of the local GNSS data files
ref_site - str, common reference site in space for InSAR and GNSS
start/end_date - str, date in YYYYMMDD format for the start/end date
min_ref_date - str, date in YYYYMMDD format for the earliest common
reference date between InSAR and GNSS
Returns: ds - dict, each element has the following components:
'GV03': {
'name' : 'GV03',
'lat' : -0.7977926892712729,
'lon' : -91.13294444114553,
'gnss_datetime' : array([datetime.datetime(2014, 11, 1, 0, 0),
datetime.datetime(2014, 11, 2, 0, 0),
...,
datetime.datetime(2018, 6, 25, 0, 0),
], dtype=object),
'gnss_dis' : array([-2.63673663e-02, ..., 6.43612206e-01], dtype=float32),
'gnss_std' : array([0.00496152, ..., 0.00477411], dtype=float32),
'reference_site': 'GV01',
'insar_datetime': array([datetime.datetime(2014, 12, 13, 0, 0),
datetime.datetime(2014, 12, 25, 0, 0),
...,
datetime.datetime(2018, 6, 19, 0, 0),
], dtype=object),
'insar_dis_linear': array([-0.01476493, ..., 0.62273948]),
'temp_coh' : 0.9961861392598478,
'gnss_std_mean' : 0.004515478,
'comm_dis_gnss' : array([-0.02635017, ..., 0.61315614], dtype=float32),
'comm_dis_insar' : array([-0.01476493, ..., 0.60640174], dtype=float32),
'r_square' : 0.9993494518609801,
'dis_rmse' : 0.008023425326946351,
}
"""
def __init__(self, ts_file, geom_file, temp_coh_file, site_names, gnss_source='UNR',
gnss_dir='./GNSS', ref_site='GV01', start_date=None, end_date=None,
min_ref_date=None):
self.insar_file = ts_file
self.geom_file = geom_file
self.temp_coh_file = temp_coh_file
self.site_names = site_names
self.gnss_source = gnss_source
self.gnss_dir = gnss_dir
self.ref_site = ref_site
self.num_site = len(site_names)
self.ds = {}
self.start_date = start_date
self.end_date = end_date
self.min_ref_date = min_ref_date
def open(self):
atr = readfile.read_attribute(self.insar_file)
k = atr['FILE_TYPE']
if k == 'timeseries':
ts_obj = timeseries(self.insar_file)
elif k == 'giantTimeseries':
ts_obj = giantTimeseries(self.insar_file)
else:
raise ValueError(f'Un-supported time-series file: {k}')
ts_obj.open(print_msg=False)
self.metadata = dict(ts_obj.metadata)
self.num_date = ts_obj.numDate
# remove time info from insar_datetime to be consistent with gnss_datetime
self.insar_datetime = np.array([i.replace(hour=0, minute=0, second=0, microsecond=0)
for i in ts_obj.times])
# default start/end_date & min_ref_date
dt_buffer = dt.timedelta(days=30)
self.start_date = self.start_date if self.start_date else (ts_obj.times[0] - dt_buffer).strftime('%Y%m%d')
self.end_date = self.end_date if self.end_date else (ts_obj.times[-1] + dt_buffer).strftime('%Y%m%d')
self.min_ref_date = self.min_ref_date if self.min_ref_date else ts_obj.times[5].strftime('%Y%m%d')
if self.min_ref_date not in ts_obj.dateList:
msg = f'min_ref_date {self.min_ref_date} does NOT exist in InSAR file: {self.insar_file}'
raise ValueError(msg)
self.read_gnss()
self.read_insar()
self.calculate_rmse()
return
def read_gnss(self):
# define GNSS station object based on processing source
GNSS = gnss.get_gnss_class(self.gnss_source)
# read data for each GNSS site
for sname in self.site_names:
site = {}
site['name'] = sname
gnss_obj = GNSS(sname, data_dir=self.gnss_dir)
gnss_obj.open(print_msg=False)
site['lat'] = gnss_obj.site_lat
site['lon'] = gnss_obj.site_lon
dates, dis, dis_std = gnss_obj.get_los_displacement(
self.geom_file,
start_date=self.start_date,
end_date=self.end_date,
ref_site=self.ref_site,
gnss_comp='enu2los',
)[0:3]
site['gnss_datetime'] = dates
site['gnss_dis'] = dis
site['gnss_std'] = dis_std
site['reference_site'] = self.ref_site
self.ds[sname] = site
sys.stdout.write(f'\rreading GNSS {sname}')
sys.stdout.flush()
print()
return
def read_insar(self):
# 2.1 prepare interpolation
coord = ut.coordinate(self.metadata, lookup_file=self.geom_file)
lats = [self.ds[k]['lat'] for k in self.ds.keys()]
lons = [self.ds[k]['lon'] for k in self.ds.keys()]
geo_box = (min(lons), max(lats), max(lons), min(lats)) #(W, N, E, S)
pix_box = coord.bbox_geo2radar(geo_box) #(400, 1450, 550, 1600)
src_lat = readfile.read(self.geom_file, datasetName='latitude', box=pix_box)[0].reshape(-1,1)
src_lon = readfile.read(self.geom_file, datasetName='longitude', box=pix_box)[0].reshape(-1,1)
src_pts = np.hstack((src_lat, src_lon))
dest_pts = np.zeros((self.num_site, 2))
for i in range(self.num_site):
site = self.ds[self.site_names[i]]
dest_pts[i,:] = site['lat'], site['lon']
# 2.2 interpolation - displacement / temporal coherence
interp_method = 'linear' #nearest, linear, cubic
src_value, atr = readfile.read(self.insar_file, box=pix_box)
src_value = src_value.reshape(self.num_date, -1)
if atr['FILE_TYPE'] == 'giantTimeseries':
src_value *= 0.001
insar_dis = np.zeros((self.num_site, self.num_date))
for i in range(self.num_date):
insar_dis[:,i] = griddata(src_pts, src_value[i,:], dest_pts, method=interp_method)
sys.stdout.write(('\rreading InSAR acquisition {}/{}'
' with {} interpolation').format(i+1, self.num_date, interp_method))
sys.stdout.flush()
print()
print('reading temporal coherence')
src_value = readfile.read(self.temp_coh_file, box=pix_box)[0].flatten()
temp_coh = griddata(src_pts, src_value, dest_pts, method=interp_method)
# 2.3 write interpolation result
self.insar_dis_name = f'insar_dis_{interp_method}'
insar_dis_ref = insar_dis[self.site_names.index(self.ref_site),:]
for i in range(self.num_site):
site = self.ds[self.site_names[i]]
site['insar_datetime'] = self.insar_datetime
# reference insar to the precise location in space
site[self.insar_dis_name] = insar_dis[i,:] - insar_dis_ref
site['temp_coh'] = temp_coh[i]
# 2.4 reference insar and gnss to a common date
print('reference insar and gnss to a common date')
for i in range(self.num_site):
site = self.ds[self.site_names[i]]
gnss_date = site['gnss_datetime']
insar_date = site['insar_datetime']
# find common reference date
ref_date = dt.datetime.strptime(self.min_ref_date, "%Y%m%d")
ref_idx = insar_date.tolist().index(ref_date)
while ref_idx < self.num_date:
if insar_date[ref_idx] not in gnss_date:
ref_idx += 1
else:
break
if ref_idx == self.num_date:
msg = f"InSAR and GNSS do not share ANY date for site: {site['name']}"
raise RuntimeError(msg)
comm_date = insar_date[ref_idx]
# reference insar in time
site[self.insar_dis_name] -= site[self.insar_dis_name][ref_idx]
# reference gnss dis/std in time
ref_idx_gnss = np.where(gnss_date == comm_date)[0][0]
site['gnss_dis'] -= site['gnss_dis'][ref_idx_gnss]
site['gnss_std'] = np.sqrt(site['gnss_std']**2 + site['gnss_std'][ref_idx_gnss]**2)
site['gnss_std_mean'] = np.mean(site['gnss_std'])
return
def calculate_rmse(self):
## 3. calculate RMSE
for i in range(self.num_site):
site = self.ds[self.site_names[i]]
gnss_date = site['gnss_datetime']
insar_date = site['insar_datetime']
comm_dates = np.array(sorted(list(set(gnss_date) & set(insar_date))))
num_comm_date = len(comm_dates)
# get displacement at common dates
comm_dis_insar = np.zeros(num_comm_date, np.float32)
comm_dis_gnss = np.zeros(num_comm_date, np.float32)
for j in range(num_comm_date):
idx1 = np.where(gnss_date == comm_dates[j])[0][0]
idx2 = np.where(insar_date == comm_dates[j])[0][0]
comm_dis_gnss[j] = site['gnss_dis'][idx1]
comm_dis_insar[j] = site[self.insar_dis_name][idx2]
site['comm_dis_gnss'] = comm_dis_gnss
site['comm_dis_insar'] = comm_dis_insar
site['r_square'] = stats.linregress(comm_dis_gnss, comm_dis_insar)[2]
site['dis_rmse'] = np.sqrt(np.sum(np.square(comm_dis_gnss - comm_dis_insar)) / (num_comm_date - 1))
#print('site: {}, RMSE: {:.1f} cm'.format(self.site_names[i], dis_rmse*100.))
def sort_by_velocity(ds):
## 4. calculate velocity to sort plotting order
site_vel = {}
site_names = sorted(list(ds.keys()))
for sname in site_names:
site = ds[sname]
# design matrix
yr_diff = np.array([i.year + (i.timetuple().tm_yday - 1) / 365.25 for i in site['gnss_datetime']])
yr_diff -= yr_diff[0]
A = np.ones([len(site['gnss_datetime']), 2], dtype=np.float32)
A[:, 0] = yr_diff
# LS estimation
ts = np.array(site['gnss_dis'])
ts -= ts[0]
X = np.dot(np.linalg.pinv(A), ts)[0]
site_vel[sname] = X
site_names2plot = [i[0] for i in sorted(site_vel.items(), key=lambda kv: kv[1], reverse=True)]
site_names2plot = [i for i in site_names2plot if site_vel[i] != 0]
return site_names2plot
def print_stats(ds):
site_names = sorted(list(ds.keys()))
for sname in site_names:
site = ds[sname]
print('{}, rmse: {:.1f} cm, r_square: {:.2f}, temp_coh: {:.2f}'.format(
sname,
site['dis_rmse']*100.,
site['r_square'],
site['temp_coh'],
))
return
def plot_one_site(ax, site, offset=0.):
# GNSS
ax.errorbar(site['gnss_datetime'],
site['gnss_dis']-offset,
yerr=site['gnss_std']*3.,
ms=marker_size*0.2, lw=0, alpha=1., fmt='-o',
elinewidth=edge_width*0.5, ecolor='C0',
capsize=marker_size*0.25, markeredgewidth=edge_width*0.5,
label='GNSS', zorder=1)
# InSAR
ecolor = 'gray' if site['temp_coh'] < 0.7 else 'C1'
insar_dis_name = [i for i in site.keys() if i.startswith('insar_dis')][0]
ax.scatter(site['insar_datetime'],
site[insar_dis_name]-offset,
s=5**2, label='InSAR',
facecolors='none', edgecolors=ecolor, linewidth=1., alpha=0.7, zorder=2)
# Label
ax.annotate('{:.1f} / {:.2f} / {:.2f}'.format(site['dis_rmse']*100., site['r_square'], site['temp_coh']),
xy=(1.03, site[insar_dis_name][-1] - offset - 0.02),
xycoords=ax.get_yaxis_transform(), # y in data untis, x in axes fraction
color='k', fontsize=font_size)
ax.annotate('{}'.format(site['name']),
xy=(0.05, site[insar_dis_name][0] - offset + 0.1),
xycoords=ax.get_yaxis_transform(), # y in data untis, x in axes fraction
color='k', fontsize=font_size)
return ax
############################## end of insar_vs_gnss class ####################################