diff --git a/.Rbuildignore b/.Rbuildignore index 44da23252..74936f9bb 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -3,11 +3,14 @@ ^\.pre-commit-config\.yaml$ ^data-raw ^temp$ -^.github$ -^staged_dependencies.yaml$ -_pkgdown.yaml +^\.github$ +^staged_dependencies\.yaml$ +_pkgdown\.yaml docs -^.lintr -^.gitlab-ci.yml -CODE_OF_CONDUCT.md -SECURITY.md +^\.lintr +^\.gitlab-ci\.yml +CODE_OF_CONDUCT\.md +SECURITY\.md +^doc$ +^Meta$ +^\.vscode$ diff --git a/.gitignore b/.gitignore index 9e15e1d9d..f5d3dcb81 100644 --- a/.gitignore +++ b/.gitignore @@ -10,3 +10,6 @@ temp .Renviron .Rprofile .vscode +doc/ +Meta/ +*pdf \ No newline at end of file diff --git a/DESCRIPTION b/DESCRIPTION index 3e7a5b6f9..d76c5ae16 100755 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -30,11 +30,14 @@ Imports: magrittr, methods, nestcolor (>= 0.1.1), + purrr, + stringr, rlang, rlistings (>= 0.2.1), rtables (>= 0.6.0), tern (>= 0.8.1), - tibble + tibble, + utils Suggests: knitr, rmarkdown, @@ -92,7 +95,10 @@ Collate: 'package.R' 'pdt01.R' 'pdt02.R' + 'reexports.R' 'rmpt01.R' 'rspt01.R' + 'rtables_utils.R' + 'standard_rules.R' 'vst01.R' 'vst02.R' diff --git a/NAMESPACE b/NAMESPACE old mode 100755 new mode 100644 index 641070d4d..e83038fb3 --- a/NAMESPACE +++ b/NAMESPACE @@ -1,166 +1,102 @@ # Generated by roxygen2: do not edit by hand +S3method(assert_valid_var,character) +S3method(assert_valid_var,default) +S3method(assert_valid_var,factor) +S3method(assert_valid_var,logical) +S3method(assert_valid_var,numeric) S3method(droplevels,character) S3method(lvls,character) +S3method(lvls,default) S3method(lvls,factor) export("datasets<-") export("main<-") export("postprocess<-") export("preprocess<-") -export(ael01_nollt_1) -export(ael01_nollt_1_check) -export(ael01_nollt_1_main) -export(ael01_nollt_1_pre) -export(aet01_1) -export(aet01_1_check) -export(aet01_1_lyt) -export(aet01_1_main) -export(aet01_1_pre) -export(aet01_2) -export(aet01_2_check) -export(aet01_2_lyt) -export(aet01_2_main) -export(aet01_2_pre) -export(aet01_aesi_1) -export(aet01_aesi_1_check) -export(aet01_aesi_1_lyt) -export(aet01_aesi_1_main) -export(aet01_aesi_1_pre) +export(ael01_nollt) +export(ael01_nollt_main) +export(ael01_nollt_pre) +export(aet01) +export(aet01_aesi) +export(aet01_aesi_main) export(aet01_aesi_post) +export(aet01_aesi_pre) +export(aet01_main) export(aet01_post) -export(aet02_1) -export(aet02_1_check) -export(aet02_1_lyt) -export(aet02_1_main) -export(aet02_1_post) -export(aet02_1_pre) -export(aet02_2) -export(aet02_2_lyt) -export(aet02_2_main) -export(aet02_2_post) -export(aet02_2_pre) -export(aet02_3) -export(aet02_3_lyt) -export(aet02_3_main) -export(aet02_3_post) -export(aet02_3_pre) -export(aet03_1) -export(aet03_1_lyt) -export(aet03_1_main) -export(aet03_1_post) -export(aet03_1_pre) -export(aet04_1) -export(aet04_1_lyt) -export(aet04_1_main) -export(aet04_1_post) -export(aet04_1_pre) -export(aet10_1) -export(aet10_1_check) -export(aet10_1_lyt) -export(aet10_1_main) -export(aet10_1_post) -export(aet10_1_pre) +export(aet01_pre) +export(aet02) +export(aet02_main) +export(aet02_post) +export(aet02_pre) +export(aet03) +export(aet03_main) +export(aet03_post) +export(aet03_pre) +export(aet04) +export(aet04_main) +export(aet04_post) +export(aet04_pre) +export(aet10) +export(aet10_main) +export(aet10_post) +export(aet10_pre) export(args_ls) export(assert_all_tablenames) export(assert_colnames) -export(assert_single_paramcd) +export(assert_single_value) +export(assert_valid_var) +export(assert_valid_variable) export(check_col_contains) export(chevron_g) export(chevron_l) export(chevron_t) -export(cmt01a_1) -export(cmt01a_1_lyt) -export(cmt01a_1_main) -export(cmt01a_1_post) -export(cmt01a_1_pre) -export(cmt01a_2) -export(cmt01a_2_main) -export(cmt01a_2_post) -export(cmt01a_2_pre) -export(cmt01a_3) -export(cmt01a_3_lyt) -export(cmt01a_3_main) -export(cmt01a_3_post) -export(cmt01a_3_pre) -export(cmt02_pt_1) -export(cmt02_pt_1_lyt) -export(cmt02_pt_1_main) -export(cmt02_pt_1_post) -export(cmt02_pt_1_pre) -export(coxt02_1) -export(coxt02_1_check) -export(coxt02_1_lyt) -export(coxt02_1_main) -export(coxt02_1_post) -export(coxt02_1_pre) +export(cmt01a) +export(cmt01a_main) +export(cmt01a_post) +export(cmt01a_pre) +export(cmt02_pt) +export(cmt02_pt_main) +export(cmt02_pt_post) +export(cmt02_pt_pre) +export(coxt02) +export(coxt02_main) +export(coxt02_post) +export(coxt02_pre) export(datasets) -export(dmt01_1) -export(dmt01_1_lyt) -export(dmt01_1_main) -export(dmt01_1_post) -export(dmt01_1_pre) -export(dst01_1) -export(dst01_1_lyt) -export(dst01_1_main) -export(dst01_1_post) -export(dst01_1_pre) -export(dst01_2) -export(dst01_2_lyt) -export(dst01_2_main) -export(dst01_2_post) -export(dst01_2_pre) -export(dst01_3) -export(dst01_3_lyt) -export(dst01_3_main) -export(dst01_3_post) -export(dst01_3_pre) -export(dtht01_1) -export(dtht01_1_lyt) -export(dtht01_1_main) -export(dtht01_1_opt_lyt) -export(dtht01_1_post) -export(dtht01_1_pre) -export(egt01_1) -export(egt01_1_lyt) -export(egt01_1_main) -export(egt01_1_post) -export(egt01_1_pre) +export(dmt01) +export(dmt01_main) +export(dmt01_post) +export(dmt01_pre) +export(dst01) +export(dst01_main) +export(dst01_post) +export(dst01_pre) +export(dtht01) +export(dtht01_main) +export(dtht01_post) +export(dtht01_pre) +export(egt01) +export(egt01_main) +export(egt01_post) +export(egt01_pre) export(egt02_1) -export(egt02_1_lyt) export(egt02_1_main) -export(egt02_1_post) -export(egt02_1_pre) export(egt02_2) -export(egt02_2_lyt) export(egt02_2_main) -export(egt02_2_post) -export(egt02_2_pre) -export(egt03_1) -export(egt03_1_check) -export(egt03_1_lyt) -export(egt03_1_main) -export(egt03_1_post) -export(egt03_1_pre) -export(egt03_2) -export(egt03_2_lyt) -export(egt03_2_main) -export(egt03_2_post) -export(egt03_2_pre) -export(egt05_qtcat_1) -export(egt05_qtcat_1_lyt) -export(egt05_qtcat_1_main) -export(egt05_qtcat_1_post) -export(egt05_qtcat_1_pre) -export(ext01_1) -export(ext01_1_lyt) -export(ext01_1_main) -export(ext01_1_post) -export(ext01_1_pre) -export(ext01_2) -export(ext01_2_lyt) -export(ext01_2_main) -export(ext01_2_post) -export(ext01_2_pre) +export(egt02_post) +export(egt02_pre) +export(egt03) +export(egt03_main) +export(egt03_post) +export(egt03_pre) +export(egt05_qtcat) +export(egt05_qtcat_main) +export(egt05_qtcat_post) +export(egt05_qtcat_pre) +export(ext01) +export(ext01_main) +export(ext01_post) +export(ext01_pre) export(get_adam_datasets) export(get_main) export(get_postprocess) @@ -168,102 +104,78 @@ export(get_preprocess) export(gg_list) export(grob_list) export(h_format_dec) -export(kmg01_1) -export(kmg01_1_main) -export(kmg01_1_post) -export(kmg01_1_pre) -export(lbt01_1) -export(lbt01_1_lyt) -export(lbt01_1_main) -export(lbt01_1_post) -export(lbt01_1_pre) -export(lbt04_1) -export(lbt04_1_check) -export(lbt04_1_lyt) -export(lbt04_1_main) -export(lbt04_1_post) -export(lbt04_1_pre) -export(lbt05_1) -export(lbt05_1_check) -export(lbt05_1_lyt) -export(lbt05_1_main) -export(lbt05_1_post) -export(lbt05_1_pre) -export(lbt07_1) -export(lbt07_1_check) -export(lbt07_1_lyt) -export(lbt07_1_main) -export(lbt07_1_post) -export(lbt07_1_pre) -export(lbt14_1) -export(lbt14_1_check) -export(lbt14_1_lyt) -export(lbt14_1_main) -export(lbt14_1_post) -export(lbt14_1_pre) -export(lbt14_2) -export(lbt14_2_check) -export(lbt14_2_lyt) -export(lbt14_2_main) -export(lbt14_2_post) -export(lbt14_2_pre) +export(kmg01) +export(kmg01_main) +export(kmg01_post) +export(kmg01_pre) +export(lbt01) +export(lbt01_main) +export(lbt01_post) +export(lbt01_pre) +export(lbt04) +export(lbt04_main) +export(lbt04_post) +export(lbt04_pre) +export(lbt05) +export(lbt05_main) +export(lbt05_post) +export(lbt05_pre) +export(lbt07) +export(lbt07_main) +export(lbt07_post) +export(lbt07_pre) +export(lbt14) +export(lbt14_main) +export(lbt14_post) +export(lbt14_pre) export(lvls) export(main) -export(mht01_1) -export(mht01_1_lyt) -export(mht01_1_main) -export(mht01_1_post) -export(mht01_1_pre) -export(mng01_1) -export(mng01_1_main) -export(mng01_1_pre) +export(mht01) +export(mht01_main) +export(mht01_post) +export(mht01_pre) +export(missing_rule) +export(mng01) +export(mng01_main) +export(mng01_pre) +export(nocoding) export(null_listing) export(null_report) -export(pdt01_1) -export(pdt01_1_lyt) -export(pdt01_1_main) -export(pdt01_1_post) -export(pdt01_1_pre) -export(pdt02_1) -export(pdt02_1_lyt) -export(pdt02_1_main) -export(pdt02_1_post) -export(pdt02_1_pre) +export(pdt01) +export(pdt01_main) +export(pdt01_post) +export(pdt01_pre) +export(pdt02) +export(pdt02_main) +export(pdt02_post) +export(pdt02_pre) export(postprocess) export(preprocess) -export(proportion_lyt) +export(reformat) export(report_null) -export(rmpt01_1) -export(rmpt01_1_check) -export(rmpt01_1_lyt) -export(rmpt01_1_main) -export(rmpt01_1_post) -export(rmpt01_1_pre) -export(rspt01_1) -export(rspt01_1_lyt) -export(rspt01_1_main) -export(rspt01_1_post) -export(rspt01_1_pre) +export(rmpt01) +export(rmpt01_main) +export(rmpt01_post) +export(rmpt01_pre) +export(rspt01) +export(rspt01_main) +export(rspt01_post) +export(rspt01_pre) export(run) export(script_args) export(script_funs) -export(std_deco) export(var_labels_for) -export(vst01_1) -export(vst01_1_lyt) -export(vst01_1_main) -export(vst01_1_post) -export(vst01_1_pre) +export(vst01) +export(vst01_main) +export(vst01_post) +export(vst01_pre) export(vst02_1) -export(vst02_1_lyt) export(vst02_1_main) -export(vst02_1_post) -export(vst02_1_pre) export(vst02_2) -export(vst02_2_lyt) export(vst02_2_main) -export(vst02_2_post) -export(vst02_2_pre) +export(vst02_post) +export(vst02_pre) +export(with_label) exportClasses(chevron_g) exportClasses(chevron_l) exportClasses(chevron_t) @@ -289,18 +201,22 @@ import(methods) import(rtables) import(tern) importFrom(checkmate,check_class) +importFrom(dunlin,reformat) importFrom(dunlin,rule) importFrom(forcats,fct_relevel) +importFrom(formatters,with_label) importFrom(ggplot2,theme) importFrom(glue,glue) importFrom(magrittr,"%>%") importFrom(methods,is) importFrom(methods,setValidity) importFrom(nestcolor,color_palette) +importFrom(purrr,reduce) importFrom(rlang,"!!!") importFrom(rlang,"%||%") importFrom(rlang,.data) importFrom(rlang,.env) +importFrom(rlang,abort) importFrom(rlang,sym) importFrom(rlistings,as_listing) importFrom(rtables,drop_split_levels) @@ -308,4 +224,6 @@ importFrom(stats,median) importFrom(stats,quantile) importFrom(stats,sd) importFrom(stats,setNames) +importFrom(stringr,str_dup) importFrom(tibble,tribble) +importFrom(utils,modifyList) diff --git a/NEWS.md b/NEWS.md index a3c53a893..1c37614c9 100755 --- a/NEWS.md +++ b/NEWS.md @@ -1,6 +1,11 @@ # chevron 0.1.4.9011 -* Remove the usage of `dm` class of object. The chevron functions now expect list of `data.frame` as `adam_db` argument. +* Remove the usage of `dm` class of object. The chevron functions now expect list of `data.frame` as `adam_db` argument. +* Remove variants in template names. +* Simplify `pre` function and add more data checks in `main` function. +* Add more templates: `AET10`, `KMG01`, `RSPT01`, `RMPT01`, `COXT02`. +# chevron 0.1.4 + * Use `list` to replace `character` in template arguments. # chevron 0.1.3 diff --git a/R/ael01_nollt.R b/R/ael01_nollt.R index 36d48becb..6e8ae1f6a 100644 --- a/R/ael01_nollt.R +++ b/R/ael01_nollt.R @@ -1,6 +1,6 @@ -# ael01_nollt_1 ---- +# ael01_nollt ---- -#' @describeIn ael01_nollt_1 Main TLG function +#' @describeIn ael01_nollt Main TLG function #' #' @inheritParams gen_args #' @param dataset (`character`) the name of a table in the `adam_db` object. @@ -16,78 +16,48 @@ #' #' @export #' -ael01_nollt_1_main <- function(adam_db, - dataset = "adae", - key_cols = c("AEBODSYS", "AEDECOD"), - disp_cols = "AETERM", - deco = std_deco("AEL01_NOLLT"), - ...) { - df <- adam_db[[dataset]] +ael01_nollt_main <- function(adam_db, + dataset = "adae", + key_cols = c("AEBODSYS", "AEDECOD"), + disp_cols = "AETERM", + ...) { + assert_all_tablenames(adam_db, dataset) + assert_valid_variable(adam_db[[dataset]], c(key_cols, disp_cols), label = paste0("adam_db$", dataset)) - lsting <- as_listing( - df, + as_listing( + adam_db[[dataset]], key_cols = key_cols, disp_cols = disp_cols ) - - lsting } -#' @describeIn ael01_nollt_1 Preprocessing +#' @describeIn ael01_nollt Preprocessing #' -#' @inheritParams ael01_nollt_1_main -#' @param new_lbls (named `list` of `strings`) list where names correspond to variable names in `dataset` and -#' strings to the new labels to apply to the named variables. Set to `NULL` to use default labels. +#' @inheritParams ael01_nollt_main #' #' @export #' -ael01_nollt_1_pre <- function(adam_db, - dataset = "adae", - key_cols = c("AEBODSYS", "AEDECOD"), - disp_cols = "AETERM", - new_lbls = NULL, - ...) { - ael01_nollt_1_check(adam_db, dataset = dataset, vars = c(key_cols, disp_cols, names(new_lbls))) - - missing_rule <- rule("No Coding Available" = c("", NA)) - new_format <- list() - new_format[[dataset]] <- rep(list(missing_rule), length(c(key_cols, disp_cols))) - names(new_format[[dataset]]) <- c(key_cols, disp_cols) - - db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - - db[[dataset]] <- db[[dataset]] %>% +ael01_nollt_pre <- function(adam_db, + dataset = "adae", + key_cols = c("AEBODSYS", "AEDECOD"), + disp_cols = "AETERM", + ...) { + adam_db[[dataset]] <- adam_db[[dataset]] %>% select(all_of(c(key_cols, disp_cols))) %>% distinct() %>% - arrange(pick(all_of(c(key_cols, disp_cols)))) %>% - mutate(across(names(new_lbls), function(x) formatters::with_label(x, new_lbls[[cur_column()]]))) - - db -} - -#' @describeIn ael01_nollt_1 Checks -#' -#' @inheritParams gen_args -#' @param vars (`character`) variables to be included in the listing. -#' @export -ael01_nollt_1_check <- function(adam_db, - dataset, - vars) { - assert_all_tablenames(adam_db, dataset) - msg <- c(NULL, check_all_colnames(adam_db[[dataset]], vars)) + mutate( + across(all_of(c(key_cols, disp_cols)), ~ reformat(.x, nocoding)) + ) %>% + arrange(pick(all_of(c(key_cols, disp_cols)))) - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } + adam_db } -#' @describeIn ael01_nollt_1 Postprocessing +#' @describeIn ael01_nollt Postprocessing #' #' @inheritParams gen_args #' -ael01_nollt_1_post <- function(tlg, ...) { +ael01_nollt_post <- function(tlg, ...) { if (nrow(tlg) == 0) tlg <- null_listing tlg @@ -99,11 +69,9 @@ ael01_nollt_1_post <- function(tlg, ...) { #' @export #' #' @examples -#' run(ael01_nollt_1, syn_data, new_lbls = list( -#' AETERM = "Investigator-Specified\n Adverse Event Term" -#' )) -ael01_nollt_1 <- chevron_l( - main = ael01_nollt_1_main, - preprocess = ael01_nollt_1_pre, - postprocess = ael01_nollt_1_post +#' run(ael01_nollt, syn_data) +ael01_nollt <- chevron_l( + main = ael01_nollt_main, + preprocess = ael01_nollt_pre, + postprocess = ael01_nollt_post ) diff --git a/R/aet01.R b/R/aet01.R old mode 100755 new mode 100644 index 542f7ddcf..6d01047fd --- a/R/aet01.R +++ b/R/aet01.R @@ -1,109 +1,93 @@ -# aet01_1 ---- +# aet01 ---- -#' @describeIn aet01_1 Main TLG function +#' @describeIn aet01 Main TLG function #' #' @inheritParams gen_args -#' @param safety_var (`list`) the safety variables to be summarized. -#' @param lbl_safety_var (`list`) the labels of the safety variables to be summarized. If `NULL`, uses the label -#' attribute of the columns selected in `safety_var`. +#' @param anl_vars Named (`list`) of (`character`) variables the safety variables to be summarized. +#' @param anl_lbls (`character`) of analysis labels. #' #' @details #' * Does not remove rows with zero counts by default. #' #' @note #' * `adam_db` object must contain an `adsl` table with the `"DTHFL"` and `"DCSREAS"` columns. -#' * `adam_db` object must contain an `adae` table with the columns passed to `safety_var`. +#' * `adam_db` object must contain an `adae` table with the columns passed to `anl_vars`. #' #' @export #' -aet01_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - deco = std_deco("AET01"), - safety_var = list( +aet01_main <- function(adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + anl_vars = list( + safety_var = c( "FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV" - ), - lbl_safety_var = NULL, - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adae") - checkmate::assert_list(safety_var, types = "character") - safety_var <- unlist(safety_var) - checkmate::assert_list(lbl_safety_var, types = "character", null.ok = TRUE) - lbl_safety_var <- unlist(lbl_safety_var) - checkmate::assert_character(lbl_safety_var, len = length(safety_var), null.ok = TRUE) - assert_colnames(dbsel$adsl, c("DTHFL", "DCSREAS")) - assert_colnames(dbsel$adae, safety_var) - - lbl_safety_var <- if (is.null(lbl_safety_var)) { - var_labels_for(adam_db$adae, safety_var) - } else { - lbl_safety_var + ) + ), + anl_lbls = "Total number of patients with at least one", + ...) { + assert_all_tablenames(adam_db, "adsl", "adae") + checkmate::assert_string(arm_var) + checkmate::assert_list(anl_vars, types = "character", names = "unique") + checkmate::assert_character(anl_lbls, min.chars = 1L) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("DTHFL", "DCSREAS"), types = list(c("character", "factor")), min_chars = 0L) + assert_valid_variable(adam_db$adae, c(arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, unlist(anl_vars), types = list("logical"), na_ok = TRUE, empty_ok = TRUE) + assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) + lbl_vars <- lapply( + anl_vars, + var_labels_for, + df = adam_db$adae + ) + if (length(anl_lbls) == 1) { + anl_lbls <- rep(anl_lbls, length(anl_vars)) } - - lyt <- aet01_1_lyt( + lyts <- aet01_lyt( arm_var = arm_var, lbl_overall = lbl_overall, - deco = deco, - safety_var = safety_var, - lbl_safety_var = lbl_safety_var + anl_vars = anl_vars, + anl_lbls = anl_lbls, + lbl_vars = lbl_vars ) - tbl_adae <- build_table(lyt$lyt_adae, dbsel$adae, alt_counts_df = dbsel$adsl) - tbl_adsl <- build_table(lyt$lyt_adsl, dbsel$adsl) - - col_info(tbl_adsl) <- col_info(tbl_adae) - - tbl <- rbind( - tbl_adae[1:2, ], - tbl_adsl, - tbl_adae[3:nrow(tbl_adae), ] + rbind( + build_table(lyts$ae1, adam_db$adae, alt_counts_df = adam_db$adsl), + build_table(lyts$adsl, adam_db$adsl, alt_counts_df = adam_db$adsl), + build_table(lyts$ae2, adam_db$adae, alt_counts_df = adam_db$adsl) ) - - return(tbl) } -#' @describeIn aet01_1 Layout -#' -#' @inheritParams aet01_1_main -#' @param lbl_safety_var (`character`) the labels of the safety variables to be summarized. +#' aet01 Layout #' -#' @export +#' @inheritParams aet01_main +#' @param anl_vars Named (`list`) of analysis variables. +#' @param anl_lbls (`character`) of labels. +#' @param lbl_vars Named (`list`) of analysis labels. +#' @keywords internal #' -aet01_1_lyt <- function(arm_var, - lbl_overall, - deco, - safety_var, - lbl_safety_var) { - names(lbl_safety_var) <- safety_var - - lyt_adae <- basic_table_deco(deco) %>% +aet01_lyt <- function(arm_var, + lbl_overall, + anl_vars, + anl_lbls, + lbl_vars) { + lyt_base <- basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - summarize_num_patients( - var = "USUBJID", + ifneeded_add_overall_col(lbl_overall) + lyt_ae1 <- lyt_base %>% + analyze_num_patients( + vars = "USUBJID", .stats = c("unique", "nonunique"), .labels = c( unique = "Total number of patients with at least one AE", nonunique = "Total number of AEs" ), - .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx") - ) %>% - count_patients_with_flags( - "USUBJID", - flag_variables = lbl_safety_var, - denom = "N_col", - var_labels = "Total number of patients with at least one", - show_labels = "visible", - table_names = "AllAE", - .indent_mods = 0L + .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"), + show_labels = "hidden" ) - - lyt_adsl <- basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% + lyt_adsl <- lyt_base %>% count_patients_with_event( "USUBJID", filters = c("DTHFL" = "Y"), @@ -119,140 +103,59 @@ aet01_1_lyt <- function(arm_var, table_names = "TotWithdrawal" ) - list(lyt_adae = lyt_adae, lyt_adsl = lyt_adsl) + lyt_ae2 <- lyt_base %>% + count_patients_recursive( + anl_vars = anl_vars, + anl_lbls = anl_lbls, + lbl_vars = lbl_vars + ) + return(list(ae1 = lyt_ae1, ae2 = lyt_ae2, adsl = lyt_adsl)) } -#' @describeIn aet01_1 Preprocessing +#' @describeIn aet01 Preprocessing #' -#' @inheritParams aet01_1_main +#' @inheritParams aet01_main #' #' @export #' -aet01_1_pre <- function(adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM", - safety_var = list( - "FATAL", "SER", "SERWD", "SERDSM", - "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV" - ), - ...) { - assert_all_tablenames(adam_db, c("adsl", "adae")) - checkmate::assert_list(safety_var, types = "character") - safety_var <- unlist(safety_var) - aet01_1_check(adam_db, req_tables = req_tables, arm_var = arm_var, safety_var = safety_var) - +aet01_pre <- function(adam_db, ...) { adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == "Y") %>% mutate( - FATAL = .data$AESDTH == "Y", - SER = .data$AESER == "Y", - SERWD = (.data$AESER == "Y" & .data$AEACN == "DRUG WITHDRAWN"), - SERDSM = (.data$AESER == "Y" & .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED")), - RELSER = (.data$AESER == "Y" & .data$AREL == "Y"), - WD = .data$AEACN == "DRUG WITHDRAWN", - DSM = .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), - REL = .data$AREL == "Y", - RELWD = (.data$AREL == "Y" & .data$AEACN == "DRUG WITHDRAWN"), - RELDSM = (.data$AREL == "Y" & .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED")), - CTC35 = if ("ATOXGR" %in% colnames(.)) .data$ATOXGR %in% c("3", "4", "5"), - CTC45 = if ("ATOXGR" %in% colnames(.)) .data$ATOXGR %in% c("4", "5"), - SEV = if ("ASEV" %in% colnames(.)) .data$ASEV == "SEVERE", - SMQ01 = if ("SMQ01NAM" %in% colnames(.)) .data$SMQ01NAM != "", - SMQ02 = if ("SMQ02NAM" %in% colnames(.)) .data$SMQ02NAM != "", - CQ01 = if ("CQ01NAM" %in% colnames(.)) .data$CQ01NAM != "" - ) %>% - mutate( - AEDECOD = formatters::with_label(.data$AEDECOD, "Dictionary-Derived Term"), - AESDTH = formatters::with_label(.data$AESDTH, "Results in Death"), - AEACN = formatters::with_label(.data$AEACN, "Action Taken with Study Treatment"), - FATAL = formatters::with_label(.data$FATAL, "AE with fatal outcome"), - SER = formatters::with_label(.data$SER, "Serious AE"), - SEV = if ("SEV" %in% colnames(.)) formatters::with_label(.data$SEV, "Severe AE (at greatest intensity)"), - SERWD = formatters::with_label(.data$SERWD, "Serious AE leading to withdrawal from treatment"), - SERDSM = formatters::with_label(.data$SERDSM, "Serious AE leading to dose modification/interruption"), - RELSER = formatters::with_label(.data$RELSER, "Related Serious AE"), - WD = formatters::with_label(.data$WD, "AE leading to withdrawal from treatment"), - DSM = formatters::with_label(.data$DSM, "AE leading to dose modification/interruption"), - REL = formatters::with_label(.data$REL, "Related AE"), - RELWD = formatters::with_label(.data$RELWD, "Related AE leading to withdrawal from treatment"), - RELDSM = formatters::with_label(.data$RELDSM, "Related AE leading to dose modification/interruption"), - CTC35 = if ("CTC35" %in% colnames(.)) formatters::with_label(.data$CTC35, "Grade 3-5 AE"), - CTC45 = if ("CTC45" %in% colnames(.)) formatters::with_label(.data$CTC45, "Grade 4/5 AE") - ) - - missing_rule <- rule("" = c("", NA)) - - new_format <- list( - adsl = list( - DCSREAS = missing_rule + FATAL = with_label(.data$AESDTH == "Y", "AE with fatal outcome"), + SER = with_label(.data$AESER == "Y", "Serious AE"), + SEV = with_label(.data$ASEV == "SEVERE", "Severe AE (at greatest intensity)"), + REL = with_label(.data$AREL == "Y", "Related AE"), + WD = with_label(.data$AEACN == "DRUG WITHDRAWN", "AE leading to withdrawal from treatment"), + DSM = with_label( + .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), + "AE leading to dose modification/interruption" + ), + SERWD = with_label(.data$SER & .data$WD, "Serious AE leading to withdrawal from treatment"), + SERDSM = with_label(.data$SER & .data$DSM, "Serious AE leading to dose modification/interruption"), + RELSER = with_label(.data$SER & .data$REL, "Related Serious AE"), + RELWD = with_label(.data$REL & .data$WD, "Related AE leading to withdrawal from treatment"), + RELDSM = with_label(.data$REL & .data$DSM, "Related AE leading to dose modification/interruption"), + CTC35 = with_label(.data$ATOXGR %in% c("3", "4", "5"), "Grade 3-5 AE"), + CTC45 = with_label(.data$ATOXGR %in% c("4", "5"), "Grade 4/5 AE") ) - ) - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) + adam_db$adsl <- adam_db$adsl %>% + mutate(DCSREAS = reformat(.data$DCSREAS, missing_rule)) adam_db } -#' @describeIn aet01_1 Checks -#' -#' @inheritParams gen_args -#' @export -aet01_1_check <- function(adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM", - safety_var = c( - "FATAL", "SER", "SERWD", "SERDSM", - "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV" - )) { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - corresponding_col <- list( - FATAL = "AESDTH", - SER = "AESER", - SERWD = c("AESER", "AEACN"), - SERDSM = c("AESER", "AEACN"), - RELSER = c("AESER", "AREL"), - WD = "AEACN", - DSM = "AEACN", - REL = "AREL", - RELWD = c("AREL", "AEACN"), - RELDSM = c("AREL", "AEACN"), - CTC35 = "ATOXGR", - CTC45 = "ATOXGR", - SEV = "ASEV", - SMQ01 = "SMQ01NAM", - SMQ02 = "SMQ02NAM", - CQ01 = "CQ01NAM" - ) - - native_col <- setdiff(c(arm_var, safety_var), names(corresponding_col)) - new_col <- unique(unlist(corresponding_col[c(arm_var, safety_var)])) - adae_layout_col <- "USUBJID" - adsl_layout_col <- c("USUBJID", "DTHFL", "DCSREAS") - - msg <- c(msg, check_all_colnames(adam_db$adae, c(native_col, new_col, adae_layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(arm_var, adsl_layout_col))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } -} - -#' @describeIn aet01_1 Postprocessing +#' @describeIn aet01 Postprocessing #' #' @inheritParams gen_args #' #' @export -aet01_post <- function(tlg, prune_0 = FALSE, deco = std_deco("AET01"), ...) { - tbl <- set_decoration(tlg, deco) +aet01_post <- function(tlg, prune_0 = FALSE, ...) { if (prune_0) { - tbl <- smart_prune(tbl) + tlg <- smart_prune(tlg) } - std_postprocess(tbl) + std_postprocess(tlg) } #' `AET01` Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. @@ -261,319 +164,10 @@ aet01_post <- function(tlg, prune_0 = FALSE, deco = std_deco("AET01"), ...) { #' @export #' #' @examples -#' run(aet01_1, syn_data, arm_var = "ARM") -aet01_1 <- chevron_t( - main = aet01_1_main, - preprocess = aet01_1_pre, - postprocess = aet01_post, - adam_datasets = c("adsl", "adae") -) - - - -# aet01_2 ---- - -#' @describeIn aet01_2 Main TLG function -#' -#' -#' @inheritParams gen_args -#' @param safety_var (`character`) the safety variables to be summarized. -#' @param lbl_safety_var (`character`) the labels of the safety variables to be summarized. If `NULL`, uses the label -#' attribute of the columns selected in `safety_var`. -#' @param medconcept_var (`character`) the medical concept variables to be summarized. -#' @param lbl_medconcept_var (`character`) the label of the medical concept variables to be summarized. If `NULL`, uses -#' the label attribute of the columns selected in `medconcept_var`. -#' -#' @details -#' * Does not remove rows with zero counts by default. -#' -#' @note -#' * `adam_db` object must contain an `adsl` table with the `"DTHFL"` and `"DCSREAS"` columns. -#' * `adam_db` object must contain an `adae` table with the columns passed to `safety_var`. -#' -#' @export -#' -aet01_2_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - deco = std_deco("AET01"), - safety_var = list( - "FATAL", "SER", "SERWD", "SERDSM", - "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV" - ), - lbl_safety_var = NULL, - medconcept_var = list("SMQ01", "SMQ02", "CQ01"), - lbl_medconcept_var = NULL, - ...) { - checkmate::assert_list(safety_var, types = "character") - safety_var <- unlist(safety_var) - checkmate::assert_list(lbl_safety_var, types = "character", null.ok = TRUE) - safety_var <- unlist(safety_var) - checkmate::assert_character(lbl_safety_var, len = length(safety_var), null.ok = TRUE) - - checkmate::assert_list(medconcept_var, types = "character") - medconcept_var <- unlist(medconcept_var) - checkmate::assert_list(lbl_medconcept_var, types = "character", null.ok = TRUE) - lbl_medconcept_var <- unlist(lbl_medconcept_var) - checkmate::assert_character(lbl_medconcept_var, len = length(medconcept_var), null.ok = TRUE) - - dbsel <- get_db_data(adam_db, "adsl", "adae") - - assert_colnames(dbsel$adsl, c("DTHFL", "DCSREAS")) - assert_colnames(dbsel$adae, c(safety_var, medconcept_var)) - - lbl_safety_var <- if (is.null(lbl_safety_var)) { - var_labels_for(adam_db$adae, safety_var) - } else { - lbl_safety_var - } - - lbl_medconcept_var <- if (is.null(lbl_medconcept_var)) { - var_labels_for(adam_db$adae, medconcept_var) - } else { - lbl_medconcept_var - } - - lyt <- aet01_2_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - deco = deco, - safety_var = safety_var, - lbl_safety_var = lbl_safety_var, - medconcept_var = medconcept_var, - lbl_medconcept_var = lbl_medconcept_var - ) - - tbl_adae <- build_table(lyt$lyt_adae, dbsel$adae, alt_counts_df = dbsel$adsl) - tbl_adsl <- build_table(lyt$lyt_adsl, dbsel$adsl) - - col_info(tbl_adsl) <- col_info(tbl_adae) - - tbl <- rbind( - tbl_adae[1:2, ], - tbl_adsl, - tbl_adae[3:nrow(tbl_adae), ] - ) - - tbl -} - -#' @describeIn aet01_2 Layout -#' -#' @inheritParams aet01_2_main -#' @param lbl_safety_var (`character`) the labels of the safety variables to be summarized. -#' @param lbl_medconcept_var (`character`) the label of the medical concept variables to be summarized. -#' -#' @export -#' -aet01_2_lyt <- function(arm_var, - lbl_overall, - deco, - safety_var, - lbl_safety_var, - medconcept_var, - lbl_medconcept_var) { - names(lbl_safety_var) <- safety_var - names(lbl_medconcept_var) <- medconcept_var - - lyt_adae <- basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - summarize_num_patients( - var = "USUBJID", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one AE", - nonunique = "Total number of AEs" - ), - .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx") - ) %>% - count_patients_with_flags( - "USUBJID", - flag_variables = lbl_safety_var, - denom = "N_col", - var_labels = "Total number of patients with at least one", - show_labels = "visible", - table_names = "AllAE", - .indent_mods = 0L - ) %>% - count_patients_with_flags( - "USUBJID", - flag_variables = lbl_medconcept_var, - denom = "N_col", - var_labels = "Total number of patients with at least one", - show_labels = "visible", - table_names = "MedConcept", - .indent_mods = 0L - ) - - lyt_adsl <- basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - count_patients_with_event( - "USUBJID", - filters = c("DTHFL" = "Y"), - denom = "N_col", - .labels = c(count_fraction = "Total number of deaths"), - table_names = "TotDeath" - ) %>% - count_patients_with_event( - "USUBJID", - filters = c("DCSREAS" = "ADVERSE EVENT"), - denom = "N_col", - .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"), - table_names = "TotWithdrawal" - ) - - list(lyt_adae = lyt_adae, lyt_adsl = lyt_adsl) -} - -#' @describeIn aet01_2 Preprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -aet01_2_pre <- function(adam_db, arm_var = "ACTARM", safety_var = list( - "FATAL", "SER", "SERWD", "SERDSM", - "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV" - ), - medconcept_var = list("SMQ01", "SMQ02", "CQ01"), ...) { - assert_all_tablenames(adam_db, c("adsl", "adae")) - aet01_2_check(adam_db, arm_var = arm_var, safety_var = safety_var, medconcept_var = medconcept_var) - - labs <- formatters::var_labels(adam_db$adae) - - adam_db$adae <- adam_db$adae %>% - filter(.data$ANL01FL == "Y") %>% - mutate( - FATAL = .data$AESDTH == "Y", - SER = .data$AESER == "Y", - SERWD = (.data$AESER == "Y" & .data$AEACN == "DRUG WITHDRAWN"), - SERDSM = (.data$AESER == "Y" & .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED")), - RELSER = (.data$AESER == "Y" & .data$AREL == "Y"), - WD = .data$AEACN == "DRUG WITHDRAWN", - DSM = .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), - REL = .data$AREL == "Y", - RELWD = (.data$AREL == "Y" & .data$AEACN == "DRUG WITHDRAWN"), - RELDSM = (.data$AREL == "Y" & .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED")), - CTC35 = if ("ATOXGR" %in% colnames(.)) .data$ATOXGR %in% c("3", "4", "5"), - CTC45 = if ("ATOXGR" %in% colnames(.)) .data$ATOXGR %in% c("4", "5"), - SEV = if ("ASEV" %in% colnames(.)) .data$ASEV == "SEVERE", - SMQ01 = if ("SMQ01NAM" %in% colnames(.)) .data$SMQ01NAM != "", - SMQ02 = if ("SMQ02NAM" %in% colnames(.)) .data$SMQ02NAM != "", - CQ01 = if ("CQ01NAM" %in% colnames(.)) .data$CQ01NAM != "" - ) %>% - mutate( - AEDECOD = formatters::with_label(.data$AEDECOD, "Dictionary-Derived Term"), - AESDTH = formatters::with_label(.data$AESDTH, "Results in Death"), - AEACN = formatters::with_label(.data$AEACN, "Action Taken with Study Treatment"), - FATAL = formatters::with_label(.data$FATAL, "AE with fatal outcome"), - SER = formatters::with_label(.data$SER, "Serious AE"), - SEV = if ("SEV" %in% colnames(.)) formatters::with_label(.data$SEV, "Severe AE (at greatest intensity)"), - SERWD = formatters::with_label(.data$SERWD, "Serious AE leading to withdrawal from treatment"), - SERDSM = formatters::with_label(.data$SERDSM, "Serious AE leading to dose modification/interruption"), - RELSER = formatters::with_label(.data$RELSER, "Related Serious AE"), - WD = formatters::with_label(.data$WD, "AE leading to withdrawal from treatment"), - DSM = formatters::with_label(.data$DSM, "AE leading to dose modification/interruption"), - REL = formatters::with_label(.data$REL, "Related AE"), - RELWD = formatters::with_label(.data$RELWD, "Related AE leading to withdrawal from treatment"), - RELDSM = formatters::with_label(.data$RELDSM, "Related AE leading to dose modification/interruption"), - CTC35 = if ("CTC35" %in% colnames(.)) formatters::with_label(.data$CTC35, "Grade 3-5 AE"), - CTC45 = if ("CTC45" %in% colnames(.)) formatters::with_label(.data$CTC45, "Grade 4/5 AE"), - SMQ01 = if ("SMQ01" %in% colnames(.)) { - formatters::with_label( - .data$SMQ01, - .env$labs["SMQ01NAM"] - ) - }, - SMQ02 = if ("SMQ02" %in% colnames(.)) { - formatters::with_label( - .data$SMQ02, - .env$labs["SMQ02SC"] - ) - }, - CQ01 = if ("CQ01" %in% colnames(.)) formatters::with_label(.data$CQ01, .env$labs["CQ01NAM"]) - ) - - missing_rule <- rule("" = c("", NA)) - - new_format <- list( - adsl = list( - DCSREAS = missing_rule - ) - ) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - - adam_db -} - -#' @describeIn aet01_2 Checks -#' -#' @inheritParams gen_args -#' @export -aet01_2_check <- function(adam_db, - req_tables = c("adsl", "adae"), - arm_var, - safety_var, - medconcept_var) { - assert_all_tablenames(adam_db, req_tables) - checkmate::assert_list(safety_var, types = "character") - safety_var <- unlist(safety_var) - - checkmate::assert_list(medconcept_var, types = "character") - medconcept_var <- unlist(medconcept_var) - - msg <- NULL - - corresponding_col <- list( - FATAL = "AESDTH", - SER = "AESER", - SERWD = c("AESER", "AEACN"), - SERDSM = c("AESER", "AEACN"), - RELSER = c("AESER", "AREL"), - WD = "AEACN", - DSM = "AEACN", - REL = "AREL", - RELWD = c("AREL", "AEACN"), - RELDSM = c("AREL", "AEACN"), - CTC35 = "ATOXGR", - CTC45 = "ATOXGR", - SEV = "ASEV", - SMQ01 = "SMQ01NAM", - SMQ02 = "SMQ02NAM", - CQ01 = "CQ01NAM" - ) - - native_col <- setdiff(c(arm_var, safety_var, medconcept_var), names(corresponding_col)) - new_col <- unique(unlist(corresponding_col[c(arm_var, safety_var)])) - adae_layout_col <- "USUBJID" - adsl_layout_col <- c("USUBJID", "DTHFL", "DCSREAS") - - msg <- c(msg, check_all_colnames(adam_db$adae, c(native_col, new_col, adae_layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(arm_var, adsl_layout_col))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg)) - } -} - -#' `AET01` Table 2 (Supplementary) Overview of Deaths and Adverse Events Summary Table 2. Overview of death and summary -#' of adverse events with medical concepts. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' run(aet01_2, syn_data) -aet01_2 <- chevron_t( - main = aet01_2_main, - preprocess = aet01_2_pre, +#' run(aet01, syn_data, arm_var = "ARM") +aet01 <- chevron_t( + main = aet01_main, + preprocess = aet01_pre, postprocess = aet01_post, adam_datasets = c("adsl", "adae") ) diff --git a/R/aet01_aesi.R b/R/aet01_aesi.R old mode 100755 new mode 100644 index 53e83b5bd..0e8d54b61 --- a/R/aet01_aesi.R +++ b/R/aet01_aesi.R @@ -1,9 +1,9 @@ -# aet01_aesi_1 ---- +# aet01_aesi ---- -#' @describeIn aet01_aesi_1 Main TLG function +#' @describeIn aet01_aesi Main TLG function #' #' @inheritParams gen_args -#' @param aesi_vars (`list`) the AESI variables to be included in the summary. Defaults to `NA`. +#' @param aesi_vars (`character`) the AESI variables to be included in the summary. Defaults to `NA`. #' @param grade_groups (`list`) the grade groups to be displayed. #' @details #' * Does not remove rows with zero counts by default. @@ -30,14 +30,22 @@ #' #' @export #' -aet01_aesi_1_main <- function(adam_db, - arm_var = "ACTARM", - aesi_vars = list(NA_character_), - deco = std_deco("AET01_AESI"), - grade_groups = NULL, - ...) { - checkmate::assert_list(aesi_vars, types = "character") +aet01_aesi_main <- function(adam_db, + arm_var = "ACTARM", + aesi_vars = NULL, + grade_groups = NULL, + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, "adsl", "adae") + checkmate::assert_string(arm_var) + checkmate::assert_character(aesi_vars, null.ok = TRUE) checkmate::assert_list(grade_groups, null.ok = TRUE) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var)) + assert_valid_variable(adam_db$adae, c(arm_var)) + assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE) + assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) + if (is.null(grade_groups)) { grade_groups <- list( "Grade 1" = "1", @@ -47,29 +55,15 @@ aet01_aesi_1_main <- function(adam_db, "Grade 5 (fatal outcome)" = "5" ) } - aesi_vars <- unlist(aesi_vars) - if ("ALL" %in% aesi_vars) aesi_vars <- c("ALL_ALLRES", "ALL_NOTRES", "ALL_SER", "ALL_REL") - if (any(grepl("^ALL_", aesi_vars))) { - aesi <- c(grep("^ALL_", aesi_vars, value = TRUE, invert = TRUE), sapply( - c("WD", "DSM", "CONTRT"), - function(x) sub("^(ALL_)(.*)", paste0("\\2", x), grep("^ALL_", aesi_vars, value = TRUE)) - )) - if ("ALL_REL" %in% aesi_vars) aesi <- c(aesi, "RELSER") - } else { - aesi <- aesi_vars - } - all_aesi_vars <- c( - "WD", "DSM", "CONTRT", "ALL_RESOLVED", grep("^ALLRES", aesi, value = TRUE), - "NOT_RESOLVED", grep("^NOTRES", aesi, value = TRUE), "SER", grep("^SER", aesi, value = TRUE), - "REL", grep("^REL", aesi, value = TRUE) - ) + all_aesi_vars <- get_aesi_vars(aesi_vars) + assert_valid_variable(adam_db$adae, c(all_aesi_vars), empty_ok = TRUE, na_ok = TRUE, types = list("logical")) lbl_aesi_vars <- var_labels_for(adam_db$adae, all_aesi_vars) - lyt <- aet01_aesi_1_lyt( + lyt <- aet01_aesi_lyt( arm_var = arm_var, aesi_vars = all_aesi_vars, - deco = deco, lbl_aesi_vars = lbl_aesi_vars, + lbl_overall = lbl_overall, grade_groups = grade_groups ) @@ -78,21 +72,22 @@ aet01_aesi_1_main <- function(adam_db, tbl } -#' @describeIn aet01_aesi_1 Layout +#' aet01_aesi Layout #' #' @inheritParams gen_args #' @param lbl_aesi_vars (`character`) the labels of the AESI variables to be summarized. #' -#' @export +#' @keywords internal #' -aet01_aesi_1_lyt <- function(arm_var, - aesi_vars, - deco, - lbl_aesi_vars, - grade_groups) { +aet01_aesi_lyt <- function(arm_var, + aesi_vars, + lbl_overall, + lbl_aesi_vars, + grade_groups) { names(lbl_aesi_vars) <- aesi_vars - basic_table_deco(deco, show_colcounts = TRUE) %>% + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% + ifneeded_add_overall_col(lbl_overall) %>% count_patients_with_event( vars = "USUBJID", filters = c("ANL01FL" = "Y"), @@ -119,172 +114,101 @@ aet01_aesi_1_lyt <- function(arm_var, ) } -#' @describeIn aet01_aesi_1 Preprocessing +#' @describeIn aet01_aesi Preprocessing #' -#' @inheritParams aet01_aesi_1_main +#' @inheritParams aet01_aesi_main #' #' @export #' -aet01_aesi_1_pre <- function(adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM", - ...) { +aet01_aesi_pre <- function(adam_db, + ...) { assert_all_tablenames(adam_db, c("adsl", "adae")) - aet01_aesi_1_check(adam_db, req_tables = req_tables, arm_var = arm_var) - adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == "Y") %>% mutate( - ALL_RESOLVED = !.data$AEOUT %in% c("NOT RECOVERED/NOT RESOLVED", "RECOVERING/RESOLVING", "UNKNOWN", "FATAL"), - NOT_RESOLVED = .data$AEOUT %in% c("NOT RECOVERED/NOT RESOLVED", "RECOVERING/RESOLVING", "UNKNOWN"), - WD = .data$AEACN == "DRUG WITHDRAWN", - DSM = .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), - CONTRT = .data$AECONTRT == "Y", - SER = .data$AESER == "Y", - REL = .data$AREL == "Y", - ALLRESWD = .data$WD == TRUE & .data$ALL_RESOLVED == TRUE, - ALLRESDSM = .data$DSM == TRUE & .data$ALL_RESOLVED == TRUE, - ALLRESCONTRT = .data$CONTRT == TRUE & .data$ALL_RESOLVED == TRUE, - NOTRESWD = .data$WD == TRUE & .data$NOT_RESOLVED == TRUE, - NOTRESDSM = .data$DSM == TRUE & .data$NOT_RESOLVED == TRUE, - NOTRESCONTRT = .data$CONTRT == TRUE & .data$NOT_RESOLVED == TRUE, - SERWD = .data$AESER == "Y" & .data$AEACN == "DRUG WITHDRAWN", - SERCONTRT = .data$AECONTRT == "Y" & .data$AESER == "Y", - SERDSM = .data$AESER == "Y" & .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), - RELWD = .data$AREL == "Y" & .data$AEACN == "DRUG WITHDRAWN", - RELDSM = .data$AREL == "Y" & .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), - RELCONTRT = .data$AECONTRT == "Y" & .data$AREL == "Y", - RELSER = .data$AESER == "Y" & .data$AREL == "Y" - ) %>% - mutate( - ALL_RESOLVED = formatters::with_label( - .data$ALL_RESOLVED, "Total number of patients with all non-fatal AEs resolved" + NOT_RESOLVED = with_label( + .data$AEOUT %in% c("NOT RECOVERED/NOT RESOLVED", "RECOVERING/RESOLVING", "UNKNOWN"), + "Total number of patients with at least one unresolved or ongoing non-fatal AE" ), - NOT_RESOLVED = formatters::with_label( - .data$NOT_RESOLVED, "Total number of patients with at least one unresolved or ongoing non-fatal AE" + ALL_RESOLVED = with_label( + !.data$AEOUT %in% "FATAL" & !.data$NOT_RESOLVED, + "Total number of patients with all non-fatal AEs resolved" ), - WD = formatters::with_label( - .data$WD, "Total number of patients with study drug withdrawn due to AE" + WD = with_label( + .data$AEACN %in% "DRUG WITHDRAWN", "Total number of patients with study drug withdrawn due to AE" ), - DSM = formatters::with_label( - .data$DSM, "Total number of patients with dose modified/interrupted due to AE" + DSM = with_label( + .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), + "Total number of patients with dose modified/interrupted due to AE" ), - CONTRT = formatters::with_label( - .data$CONTRT, "Total number of patients with treatment received for AE" + CONTRT = with_label( + .data$AECONTRT %in% "Y", "Total number of patients with treatment received for AE" ), - SER = formatters::with_label( - .data$SER, "Total number of patients with at least one serious AE" + SER = with_label( + .data$AESER %in% "Y", "Total number of patients with at least one serious AE" ), - REL = formatters::with_label( - .data$REL, "Total number of patients with at least one related AE" + REL = with_label( + .data$AREL %in% "Y", "Total number of patients with at least one related AE" ), - ALLRESWD = formatters::with_label( - .data$ALLRESWD, " No. of patients with study drug withdrawn due to resolved AE" + ALLRESWD = with_label( + .data$WD & .data$ALL_RESOLVED, " No. of patients with study drug withdrawn due to resolved AE" ), - ALLRESDSM = formatters::with_label( - .data$ALLRESDSM, " No. of patients with dose modified/interrupted due to resolved AE" + ALLRESDSM = with_label( + .data$DSM & .data$ALL_RESOLVED, " No. of patients with dose modified/interrupted due to resolved AE" ), - ALLRESCONTRT = formatters::with_label( - .data$ALLRESCONTRT, " No. of patients with treatment received for resolved AE" + ALLRESCONTRT = with_label( + .data$CONTRT & .data$ALL_RESOLVED, " No. of patients with treatment received for resolved AE" ), - NOTRESWD = formatters::with_label( - .data$NOTRESWD, " No. of patients with study drug withdrawn due to unresolved or ongoing AE" + NOTRESWD = with_label( + .data$WD & .data$NOT_RESOLVED, " No. of patients with study drug withdrawn due to unresolved or ongoing AE" ), - NOTRESDSM = formatters::with_label( - .data$NOTRESDSM, " No. of patients with dose modified/interrupted due to unresolved or ongoing AE" + NOTRESDSM = with_label( + .data$DSM & .data$NOT_RESOLVED, + " No. of patients with dose modified/interrupted due to unresolved or ongoing AE" ), - NOTRESCONTRT = formatters::with_label( - .data$NOTRESCONTRT, " No. of patients with treatment received for unresolved/ongoing AE" + NOTRESCONTRT = with_label( + .data$CONTRT & .data$NOT_RESOLVED, " No. of patients with treatment received for unresolved/ongoing AE" ), - SERWD = formatters::with_label( - .data$SERWD, " No. of patients with study drug withdrawn due to serious AE" + SERWD = with_label( + .data$SER & .data$WD, " No. of patients with study drug withdrawn due to serious AE" ), - SERDSM = formatters::with_label( - .data$SERDSM, " No. of patients with dose modified/interrupted due to serious AE" + SERDSM = with_label( + .data$SER & .data$DSM, " No. of patients with dose modified/interrupted due to serious AE" ), - SERCONTRT = formatters::with_label( - .data$SERCONTRT, " No. of patients with treatment received for serious AE" + SERCONTRT = with_label( + .data$SER & .data$CONTRT, " No. of patients with treatment received for serious AE" ), - RELWD = formatters::with_label( - .data$RELWD, " No. of patients with study drug withdrawn due to related AE" + RELWD = with_label( + .data$REL & .data$WD, " No. of patients with study drug withdrawn due to related AE" ), - RELDSM = formatters::with_label( - .data$RELDSM, " No. of patients with dose modified/interrupted due to related AE" + RELDSM = with_label( + .data$REL & .data$DSM, " No. of patients with dose modified/interrupted due to related AE" ), - RELCONTRT = formatters::with_label( - .data$RELCONTRT, " No. of patients with treatment received for related AE" + RELCONTRT = with_label( + .data$REL & .data$CONTRT, " No. of patients with treatment received for related AE" ), - RELSER = formatters::with_label( - .data$RELSER, " No. of patients with serious, related AE" + RELSER = with_label( + .data$REL & .data$SER, " No. of patients with serious, related AE" ) ) %>% mutate( - ATOXGR = factor(ATOXGR, levels = 1:5) + ATOXGR = factor(.data$ATOXGR, levels = 1:5) ) adam_db } -#' @describeIn aet01_aesi_1 Checks -#' -#' @inheritParams gen_args -#' @export -aet01_aesi_1_check <- function(adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM") { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - corresponding_col <- list( - ALL_RESOLVED = "AEOUT", - NOT_RESOLVED = "AEOUT", - WD = "AEACN", - DSM = "AEACN", - CONTRT = "AECONTRT", - SER = "AESER", - REL = "AREL", - ALLRESWD = "AEACN", - ALLRESDSM = "AEACN", - ALLRESCONTRT = "AECONTRT", - NOTRESWD = "AEACN", - NOTRESDSM = "AEACN", - NOTRESCONTRT = "AECONTRT", - SERWD = c("AESER", "AEACN"), - SERDSM = c("AESER", "AEACN"), - SERCONTRT = c("AESER", "AECONTRT"), - RELWD = c("AREL", "AEACN"), - RELDSM = c("AREL", "AEACN"), - RELCONTRT = c("AREL", "AECONTRT"), - RELSER = c("AREL", "AESER") - ) - - native_col <- c(arm_var, unique(unlist(corresponding_col))) - filter_col <- "ANL01FL" - layout_col <- "USUBJID" - - msg <- c(msg, check_all_colnames(adam_db$adae, c(native_col, filter_col, layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(arm_var, layout_col))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } -} - -#' @describeIn aet01_aesi_1 Postprocessing +#' @describeIn aet01_aesi Postprocessing #' #' @inheritParams gen_args #' #' @export -aet01_aesi_post <- function(tlg, prune_0 = FALSE, deco = std_deco("AET01_AESI"), ...) { - tbl <- set_decoration(tlg, deco) +aet01_aesi_post <- function(tlg, prune_0 = FALSE, ...) { if (prune_0) { - tbl <- smart_prune(tbl) + tlg <- smart_prune(tlg) } - std_postprocess(tbl) + std_postprocess(tlg) } #' `AET01_AESI` Table 1 (Default) Adverse Event of Special Interest Summary Table. @@ -293,10 +217,30 @@ aet01_aesi_post <- function(tlg, prune_0 = FALSE, deco = std_deco("AET01_AESI"), #' @export #' #' @examples -#' run(aet01_aesi_1, syn_data) -aet01_aesi_1 <- chevron_t( - main = aet01_aesi_1_main, - preprocess = aet01_aesi_1_pre, +#' run(aet01_aesi, syn_data) +aet01_aesi <- chevron_t( + main = aet01_aesi_main, + preprocess = aet01_aesi_pre, postprocess = aet01_aesi_post, adam_datasets = c("adsl", "adae") ) + +#' @keywords internal +get_aesi_vars <- function(aesi_vars) { + if ("ALL" %in% aesi_vars) aesi_vars <- c("ALL_ALLRES", "ALL_NOTRES", "ALL_SER", "ALL_REL") + if (any(grepl("^ALL_", aesi_vars))) { + aesi <- c(grep("^ALL_", aesi_vars, value = TRUE, invert = TRUE), sapply( + c("WD", "DSM", "CONTRT"), + function(x) sub("^(ALL_)(.*)", paste0("\\2", x), grep("^ALL_", aesi_vars, value = TRUE)) + )) + if ("ALL_REL" %in% aesi_vars) aesi <- c(aesi, "RELSER") + } else { + aesi <- aesi_vars + } + all_aesi_vars <- c( + "WD", "DSM", "CONTRT", "ALL_RESOLVED", grep("^ALLRES", aesi, value = TRUE), + "NOT_RESOLVED", grep("^NOTRES", aesi, value = TRUE), "SER", grep("^SER", aesi, value = TRUE), + "REL", grep("^REL", aesi, value = TRUE) + ) + return(all_aesi_vars) +} diff --git a/R/aet02.R b/R/aet02.R index d5d7f0752..7ac25d478 100644 --- a/R/aet02.R +++ b/R/aet02.R @@ -1,8 +1,9 @@ -# aet02_1 ---- +# aet02 ---- -#' @describeIn aet02_1 Main TLG function +#' @describeIn aet02 Main TLG function #' #' @inheritParams gen_args +#' @param row_split_var (`character`) row split variables. #' #' @details #' * Numbers represent absolute numbers of subject and fraction of `N`, or absolute number of event when specified. @@ -18,500 +19,123 @@ #' #' @export #' -aet02_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET02"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adae") - assert_colnames(dbsel$adae, c("AEBODSYS", "AEDECOD")) +aet02_main <- function(adam_db, + arm_var = "ACTARM", + row_split_var = "AEBODSYS", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, "adsl", "adae") + checkmate::assert_character(row_split_var, null.ok = TRUE) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + checkmate::assert_string(arm_var) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, c(arm_var, row_split_var, "AEDECOD"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) - lyt <- aet02_1_lyt( + lbl_row_split <- var_labels_for(adam_db$adae, row_split_var) + lbl_aedecod <- var_labels_for(adam_db$adae, "AEDECOD") + + lyt <- aet02_lyt( arm_var = arm_var, lbl_overall = lbl_overall, - lbl_aebodsys = lbl_aebodsys, - lbl_aedecod = lbl_aedecod, - deco = deco + row_split_var = row_split_var, + lbl_row_split = lbl_row_split, + lbl_aedecod = lbl_aedecod ) - tbl <- build_table(lyt, dbsel$adae, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$adae, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn aet02_1 Layout +#' aet02 Layout #' -#' @inheritParams gen_args -#' @param lbl_aebodsys (`string`) text label for `AEBODSYS`. +#' @inheritParams aet02_main +#' @param lbl_row_split (`character`) label for `row_split_var`. #' @param lbl_aedecod (`string`) text label for `AEDECOD`. #' -#' @export +#' @keywords internal #' -aet02_1_lyt <- function(arm_var, - lbl_overall, - lbl_aebodsys, - lbl_aedecod, - deco) { - basic_table_deco(deco) %>% +aet02_lyt <- function(arm_var, + lbl_overall, + row_split_var, + lbl_row_split, + lbl_aedecod) { + lyt <- basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% - add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% analyze_num_patients( vars = "USUBJID", .stats = c("unique", "nonunique"), + show_labels = "hidden", .labels = c( unique = "Total number of patients with at least one adverse event", nonunique = "Overall total number of events" ) - ) %>% - split_rows_by( - "AEBODSYS", - child_labels = "visible", - nested = FALSE, - split_fun = drop_split_levels, - label_pos = "topleft", - split_label = lbl_aebodsys - ) %>% - summarize_num_patients( - var = "USUBJID", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one adverse event", - nonunique = "Total number of events" - ) - ) %>% - count_occurrences( - vars = "AEDECOD", - .indent_mods = -1L - ) %>% - append_topleft(paste0(" ", lbl_aedecod)) -} - -#' @describeIn aet02_1 Preprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -aet02_1_pre <- function(adam_db, arm_var = "ACTARM", ...) { - assert_all_tablenames(adam_db, c("adsl", "adae")) - aet02_1_check(adam_db, arm_var = arm_var) - new_format <- list( - adae = list( - AEBODSYS = rule("No Coding available" = c("", NA, "")), - AEDECOD = rule("No Coding available" = c("", NA, "")) ) - ) - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - - adam_db$adae <- adam_db$adae %>% - filter(.data$ANL01FL == "Y") - - adam_db -} - -#' @describeIn aet02_1 Checks -#' -#' @inheritParams gen_args -#' @export -aet02_1_check <- function(adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM") { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - msg <- c(msg, check_all_colnames(adam_db$adae, c(arm_var, "USUBJID", "AEBODSYS", "AEDECOD"))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(arm_var, "USUBJID"))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } -} - -#' @describeIn aet02_1 Postprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -aet02_1_post <- function(tlg, prune_0 = TRUE, ...) { - if (prune_0) { - tlg <- smart_prune(tlg) - } - - tbl_sorted <- tlg %>% - sort_at_path( - path = c("AEBODSYS"), - scorefun = cont_n_allcols - ) %>% - sort_at_path( - path = c("AEBODSYS", "*", "AEDECOD"), - scorefun = score_occurrences - ) - - std_postprocess(tbl_sorted) -} - -#' `AET02` Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1 -#' -#' The `AET02` table provides an overview of the number of subjects experiencing adverse events and the number of advert -#' events categorized by Body System and Dictionary-Derived Term. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' run(aet02_1, syn_data) -aet02_1 <- chevron_t( - main = aet02_1_main, - preprocess = aet02_1_pre, - postprocess = aet02_1_post, - adam_datasets = c("adsl", "adae") -) - - -# aet02_2 ---- - -#' @describeIn aet02_2 Main TLG function -#' -#' @inheritParams gen_args -#' -#' @details -#' * Numbers represent absolute numbers of patients and fraction of `N`, or absolute number of event when specified. -#' * Remove zero-count rows unless overridden with `prune_0 = FALSE`. -#' * Split columns by arm. -#' * Does not include a total column by default. -#' * Sort Body System or Organ Class, High Level Term and Dictionary-Derived Term hierarchically by highest overall -#' frequencies. -#' * Missing values of `AEBODSYS`, `AEDECOD` and `AEHLT` in `adae` are labeled by `No Coding available`. -#' -#' @note -#' * `adam_db` object must contain an `adae` table with the columns `"AEBODSYS"`, `"AEHLT"` and `"AEDECOD"`. -#' -#' -#' @export -#' -aet02_2_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", - lbl_aehlt = "MedDRA High-Level Term", - deco = std_deco("AET02"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adae") - assert_colnames(dbsel$adae, c("AEBODSYS", "AEDECOD", "AEHLT")) - - lyt <- aet02_2_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - lbl_aebodsys = lbl_aebodsys, - lbl_aedecod = lbl_aedecod, - lbl_aehlt = lbl_aehlt, - deco = deco - ) - - tbl <- build_table(lyt, dbsel$adae, alt_counts_df = dbsel$adsl) - - tbl -} - -#' @describeIn aet02_2 Layout -#' -#' @inheritParams gen_args -#' -#' @param lbl_aebodsys (`character`) text label for `AEBODSYS`. -#' @param lbl_aehlt (`character`) text label for `AEHLT`. -#' @param lbl_aedecod (`character`) text label for `AEDECOD`. -#' -#' @export -#' -aet02_2_lyt <- function(arm_var, - lbl_overall = NULL, - lbl_aebodsys, - lbl_aedecod, - lbl_aehlt, - deco) { - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - analyze_num_patients( - vars = "USUBJID", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one adverse event", - nonunique = "Overall total number of events" - ) - ) %>% - split_rows_by( - "AEBODSYS", - child_labels = "visible", - nested = FALSE, - split_fun = drop_split_levels, - label_pos = "topleft", - split_label = lbl_aebodsys - ) %>% - summarize_num_patients( - var = "USUBJID", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one adverse event", - nonunique = "Total number of events" - ) - ) %>% - split_rows_by( - "AEHLT", - child_labels = "visible", - nested = TRUE, - split_fun = drop_split_levels, - indent_mod = -1L, - label_pos = "topleft", - split_label = lbl_aehlt - ) %>% - summarize_num_patients( - var = "USUBJID", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one adverse event", - nonunique = "Total number of events" - ) - ) %>% - count_occurrences( - vars = "AEDECOD", - .indent_mods = c(count_fraction = -1L) - ) %>% - append_topleft(paste0(" ", lbl_aedecod)) -} - -#' @describeIn aet02_2 Preprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -aet02_2_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adae")) - checkmate::assert_list(adam_db, types = "list") - assert_colnames(adam_db$adae, c("AEBODSYS", "AEHLT", "AEDECOD")) - - new_format <- list( - adae = list( - AEBODSYS = rule("No Coding available" = c("", NA, "")), - AEDECOD = rule("No Coding available" = c("", NA, "")), - AEHLT = rule("No Coding available" = c("", NA, "")) + for (k in seq_len(length(row_split_var))) { + lyt <- split_and_summ_num_patients(lyt, row_split_var[k], lbl_row_split[k], + stats = c("unique", "nonunique"), + summarize_labels = c("Total number of patients with at least one adverse event", "Total number of events") ) - ) - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - - adam_db$adae <- adam_db$adae %>% - filter(.data$ANL01FL == "Y") - - adam_db -} - -#' @describeIn aet02_2 Postprocessing -#' -#' @inheritParams gen_args -#' -#' @export -aet02_2_post <- function(tlg, prune_0 = TRUE, ...) { - if (prune_0) { - tlg <- smart_prune(tlg) } - - tbl_sorted <- tlg %>% - sort_at_path( - path = c("AEBODSYS"), - scorefun = cont_n_allcols - ) %>% - sort_at_path( - path = c("AEBODSYS", "*", "AEHLT"), - scorefun = cont_n_allcols - ) %>% - sort_at_path( - path = c("AEBODSYS", "*", "AEHLT", "*", "AEDECOD"), - scorefun = score_occurrences - ) - - std_postprocess(tbl_sorted) -} - -#' `AET02` Table 2 (Supplementary) Adverse Events by System Organ Class, High Level Term and Preferred Term Table 2. -#' -#' The `AET02_2` table provides an overview of the number of patients experiencing adverse events and the number of -#' adverse events categorized by Body System, High Level Term and Dictionary-Derived Term. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' run(aet02_2, syn_data) -aet02_2 <- chevron_t( - main = aet02_2_main, - preprocess = aet02_2_pre, - postprocess = aet02_2_post, - adam_datasets = c("adsl", "adae") -) - - -# aet02_3 ---- -#' @describeIn aet02_3 Main TLG function -#' -#' @inheritParams gen_args -#' -#' @details -#' * Numbers represent absolute numbers of patients and fraction of `N`, or absolute number of event when specified. -#' * Remove zero-count rows unless overridden with `prune_0 = FALSE`. -#' * Split columns by arm. -#' * Does not include a total column by default. -#' * Sort Dictionary-Derived Code by highest overall frequencies. -#' * Missing values of `AEDECOD` in `aead` are labeled by `No Coding available`. -#' -#' @note -#' * `adam_db` object must contain an `adae` table with the column `"AEDECOD"`. -#' -#' @export -#' -aet02_3_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET02"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adae") - assert_colnames(dbsel$adae, c("AEDECOD")) - - lyt <- aet02_3_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - lbl_aedecod = lbl_aedecod, - deco = deco - ) - - tbl_top <- build_table(lyt$lyt_top, dbsel$adae, alt_counts_df = dbsel$adsl) - - tbl_bottom <- build_table(lyt$lyt_bottom, dbsel$adae, alt_counts_df = dbsel$adsl) - - list(tbl_top, tbl_bottom) -} - -#' @describeIn aet02_3 Layout -#' -#' @inheritParams gen_args -#' -#' @param lbl_aedecod (`character`) text label for `AEDECOD`. -#' -#' @export -#' -aet02_3_lyt <- function(arm_var, - lbl_overall, - lbl_aedecod, - deco) { - lyt_top <- basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - summarize_num_patients( - var = "USUBJID", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one adverse event", - nonunique = "Total number of events" - ) - ) %>% - append_topleft(lbl_aedecod) - - lyt_bottom <- basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - # needed to handle empty df. - split_rows_by( - var = "DOMAIN", - split_fun = drop_split_levels, - child_labels = "hidden" - ) %>% + lyt %>% count_occurrences( vars = "AEDECOD", - .indent_mods = -2L + drop = length(row_split_var) > 0, + .indent_mods = -1L ) %>% - append_topleft(lbl_aedecod) - - list(lyt_top = lyt_top, lyt_bottom = lyt_bottom) + append_topleft(paste0(stringr::str_dup(" ", 2 * length(row_split_var)), lbl_aedecod)) } -#' @describeIn aet02_3 Preprocessing +#' @describeIn aet02 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -aet02_3_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adae")) - assert_colnames(adam_db$adae, c("AEDECOD")) - - new_format <- list( - adae = list( - AEDECOD = rule("No Coding available" = c("", NA, "")) - ) - ) - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - +aet02_pre <- function(adam_db, row_split_var = "AEBODSYS", ...) { adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == "Y") %>% - mutate( - DOMAIN = "AE" # necessary to handle empty tables - ) + mutate(AEDECOD = reformat(.data$AEDECOD, nocoding)) %>% + mutate(across(all_of(row_split_var), ~ reformat(.x, nocoding))) adam_db } -#' @describeIn aet02_3 Postprocessing +#' @describeIn aet02 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -aet02_3_post <- function(tlg, prune_0 = TRUE, ...) { - tbl_top <- tlg[[1]] - tbl_bottom <- tlg[[2]] - # needed to handle empty adae tables. - tbl_bottom <- tbl_bottom %>% - sort_at_path( - c("DOMAIN", "*", "AEDECOD"), - scorefun = score_occurrences # score_occurrences +aet02_post <- function(tlg, row_split_var = "AEBODSYS", prune_0 = TRUE, ...) { + tlg <- tlg %>% + tlg_sort_by_vars(row_split_var, cont_n_allcols) %>% + valid_sort_at_path( + path = c(get_sort_path(c(row_split_var, "AEDECOD"))), + scorefun = score_occurrences ) - - res <- if (nrow(tbl_bottom) > 0L) { - rbind(tbl_top, tbl_bottom) - } else { - tbl_top - } if (prune_0) { - res <- trim_rows(res) + tlg <- smart_prune(tlg) } - - std_postprocess(res) + std_postprocess(tlg) } -#' `AET02` Table 3 (Supplementary) Adverse Events by Dictionary-Derived Term Table 3. +#' `AET02` Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1 #' -#' The `AET02_3` table provides an overview of the number of patients experiencing adverse events and the number of -#' adverse events categorized by Dictionary-Derived Term. +#' The `AET02` table provides an overview of the number of subjects experiencing adverse events and the number of advert +#' events categorized by Body System and Dictionary-Derived Term. #' #' @include chevron_tlg-S4class.R #' @export #' #' @examples -#' run(aet02_3, syn_data) -aet02_3 <- chevron_t( - main = aet02_3_main, - preprocess = aet02_3_pre, - postprocess = aet02_3_post, +#' run(aet02, syn_data) +aet02 <- chevron_t( + main = aet02_main, + preprocess = aet02_pre, + postprocess = aet02_post, adam_datasets = c("adsl", "adae") ) diff --git a/R/aet03.R b/R/aet03.R index c10cd69d1..ccc6117b3 100644 --- a/R/aet03.R +++ b/R/aet03.R @@ -1,6 +1,6 @@ -# aet03_1 ---- +# aet03 ---- -#' @describeIn aet03_1 Main TLG function +#' @describeIn aet03 Main TLG function #' #' @inheritParams gen_args #' @@ -17,34 +17,35 @@ #' #' @export #' -aet03_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET03"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adae") - assert_colnames(dbsel$adae, c("AEBODSYS", "AEDECOD", "ASEV")) +aet03_main <- function(adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, "adsl", "adae") + checkmate::assert_string(lbl_overall, null.ok = TRUE) + checkmate::assert_string(arm_var) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, c(arm_var, "AEBODSYS", "AEDECOD", "ASEV"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) - checkmate::assert_factor(dbsel$adae[["ASEV"]], any.missing = FALSE) - intensity_grade <- levels(dbsel$adae[["ASEV"]]) - - lyt <- aet03_1_lyt( + intensity_grade <- levels(adam_db$adae[["ASEV"]]) + lbl_aebodsys <- var_labels_for(adam_db$adae, "AEBODSYS") + lbl_aedecod <- var_labels_for(adam_db$adae, "AEDECOD") + lyt <- aet03_lyt( arm_var = arm_var, lbl_overall = lbl_overall, lbl_aebodsys = lbl_aebodsys, lbl_aedecod = lbl_aedecod, - intensity_grade = intensity_grade, - deco = deco + intensity_grade = intensity_grade ) - tbl <- build_table(lyt, df = dbsel$adae, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, df = adam_db$adae, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn aet03_1 Layout +#' aet03 Layout #' #' @inheritParams gen_args #' @@ -52,19 +53,17 @@ aet03_1_main <- function(adam_db, #' @param lbl_aedecod (`string`) text label for `AEDECOD`. #' @param intensity_grade (`character`) describing the intensity levels present in the dataset. #' -#' @export +#' @keywords internal #' -aet03_1_lyt <- function(arm_var, - lbl_overall, - lbl_aebodsys, - lbl_aedecod, - intensity_grade, - deco) { +aet03_lyt <- function(arm_var, + lbl_overall, + lbl_aebodsys, + lbl_aedecod, + intensity_grade) { all_grade_groups <- list("- Any Intensity -" = intensity_grade) - basic_table_deco(deco) %>% + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% - add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% count_occurrences_by_grade( var = "ASEV", @@ -104,54 +103,39 @@ aet03_1_lyt <- function(arm_var, ) } -#' @describeIn aet03_1 Preprocessing +#' @describeIn aet03 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -aet03_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adae")) - assert_colnames(adam_db$adae, c("ANL01FL", "ASEV")) - - new_format <- list( - adae = list( - AEBODSYS = rule("No Coding available" = c("", NA, "")), - AEDECOD = rule("No Coding available" = c("", NA, "")), - ASEV = rule("" = c("", NA, "")) - ) - ) - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - +aet03_pre <- function(adam_db, ...) { + asev_lvls <- c("MILD", "MODERATE", "SEVERE") adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == "Y") %>% - filter(.data$ASEV != "") %>% - mutate(ASEV = factor(.data$ASEV, levels = setdiff(levels(.data$ASEV), ""))) + mutate( + AEBODSYS = reformat(.data$AEBODSYS, nocoding), + AEDECOD = reformat(.data$AEDECOD, nocoding), + ASEV = factor(.data$ASEV, levels = asev_lvls) + ) %>% + filter(!is.na(.data$ASEV)) adam_db } -#' @describeIn aet03_1 Postprocessing +#' @describeIn aet03 Postprocessing #' #' @inheritParams gen_args #' #' @export -aet03_1_post <- function(tlg, prune_0 = TRUE, ...) { - if (prune_0) tlg <- tlg %>% trim_rows() - - tbl_sorted <- tlg %>% - sort_at_path( - path = c("AEBODSYS"), - scorefun = cont_n_allcols, - decreasing = TRUE - ) %>% - sort_at_path( - path = c("AEBODSYS", "*", "AEDECOD"), - scorefun = cont_n_allcols, - decreasing = TRUE +aet03_post <- function(tlg, prune_0 = TRUE, ...) { + tlg <- tlg %>% + tlg_sort_by_vars( + c("AEBODSYS", "AEDECOD"), + scorefun = cont_n_allcols ) - - std_postprocess(tbl_sorted) + if (prune_0) tlg <- trim_rows(tlg) + std_postprocess(tlg) } #' `AET03` Table 1 (Default) Advert Events by Greatest Intensity Table 1. @@ -163,10 +147,10 @@ aet03_1_post <- function(tlg, prune_0 = TRUE, ...) { #' @export #' #' @examples -#' run(aet03_1, syn_data) -aet03_1 <- chevron_t( - main = aet03_1_main, - preprocess = aet03_1_pre, - postprocess = aet03_1_post, +#' run(aet03, syn_data) +aet03 <- chevron_t( + main = aet03_main, + preprocess = aet03_pre, + postprocess = aet03_post, adam_datasets = c("adsl", "adae") ) diff --git a/R/aet04.R b/R/aet04.R old mode 100755 new mode 100644 index a9d073217..986bbf14c --- a/R/aet04.R +++ b/R/aet04.R @@ -1,6 +1,6 @@ -# aet04_1 ---- +# aet04 ---- -#' @describeIn aet04_1 Main TLG function +#' @describeIn aet04 Main TLG function #' #' @inheritParams gen_args #' @param grade_groups (`list`) putting in correspondence toxicity grades and labels. @@ -19,17 +19,24 @@ #' #' @export #' -aet04_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", - grade_groups = NULL, - deco = std_deco("AET04"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adae") - assert_colnames(dbsel$adae, c("AEBODSYS", "AEDECOD", "ATOXGR")) - +aet04_main <- function(adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + grade_groups = NULL, + ...) { + assert_all_tablenames(adam_db, "adsl", "adae") + checkmate::assert_string(lbl_overall, null.ok = TRUE) + checkmate::assert_string(arm_var) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, c(arm_var, "AEBODSYS", "AEDECOD"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, "ATOXGR", na_ok = TRUE, types = list("factor")) + assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) + + lbl_aebodsys <- var_labels_for(adam_db$adae, "AEBODSYS") + lbl_aedecod <- var_labels_for(adam_db$adae, "AEDECOD") + + checkmate::assert_list(grade_groups, types = "character", null.ok = TRUE) if (is.null(grade_groups)) { grade_groups <- list( "Grade 1-2" = c("1", "2"), @@ -38,62 +45,55 @@ aet04_1_main <- function(adam_db, ) } - checkmate::assert_factor(dbsel$adae[["ATOXGR"]], any.missing = FALSE) - toxicity_grade <- levels(dbsel$adae[["ATOXGR"]]) - - checkmate::assert_list(grade_groups, types = "character") - - lyt <- aet04_1_lyt( + lyt <- aet04_lyt( arm_var = arm_var, + total_var = "TOTAL_VAR", lbl_overall = lbl_overall, lbl_aebodsys = lbl_aebodsys, lbl_aedecod = lbl_aedecod, - toxicity_grade = toxicity_grade, - grade_groups = grade_groups, - deco = deco + grade_groups = grade_groups ) - - tbl <- build_table(lyt, df = dbsel$adae, alt_counts_df = dbsel$adsl) - + adam_db$adae$TOTAL_VAR <- "- Any adverse events - " + tbl <- build_table(lyt, df = adam_db$adae, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn aet04_1 Layout +#' aet04 Layout #' -#' @inheritParams gen_args +#' @inheritParams aet04_main #' #' @param lbl_aebodsys (`string`) text label for `AEBODSYS`. #' @param lbl_aedecod (`string`) text label for `AEDECOD`. -#' @param toxicity_grade (`character`) putting in correspondence toxicity levels. #' @param grade_groups (`list`) putting in correspondence toxicity grades and labels. +#' @param total_var (`string`) variable to create summary of all variables. #' -#' @export +#' @keywords internal #' -aet04_1_lyt <- function(arm_var, - lbl_overall, - lbl_aebodsys, - lbl_aedecod, - toxicity_grade, - grade_groups, - deco) { - all_grade_groups <- c(list(`- Any Grade -` = toxicity_grade), grade_groups) - combodf <- tibble::tribble( - ~valname, ~label, ~levelcombo, ~exargs, - "ALL", "- Any adverse events -", toxicity_grade, list() - ) - - basic_table_deco(deco, show_colcounts = TRUE) %>% +aet04_lyt <- function(arm_var, + total_var, + lbl_overall, + lbl_aebodsys, + lbl_aedecod, + grade_groups) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% ifneeded_add_overall_col(lbl_overall) %>% split_rows_by( - "ATOXGR", + var = total_var, + label_pos = "hidden", child_labels = "visible", - split_fun = add_combo_levels(combodf, keep_levels = "ALL") + indent_mod = -1L + ) %>% + summarize_num_patients( + var = "USUBJID", + .stats = "unique", + .labels = "- Any Grade -", + indent_mod = 7L ) %>% - summarize_occurrences_by_grade( + count_occurrences_by_grade( var = "ATOXGR", - grade_groups = all_grade_groups, - .indent_mods = 13L + grade_groups = grade_groups, + .indent_mods = 6L ) %>% split_rows_by( "AEBODSYS", @@ -124,68 +124,34 @@ aet04_1_lyt <- function(arm_var, append_topleft(" Grade") } -#' @describeIn aet04_1 Preprocessing +#' @describeIn aet04 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -aet04_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adae")) - - new_format <- list( - adae = list( - AEBODSYS = rule("No Coding Available" = c("", NA, "")), - AEDECOD = rule("No Coding Available" = c("", NA, "")), - ATOXGR = rule("No Grading Available" = c("", NA, "")) - ) - ) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - +aet04_pre <- function(adam_db, ...) { + atoxgr_lvls <- c("1", "2", "3", "4", "5") adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == "Y") %>% - filter(.data$ATOXGR != "No Grading Available") %>% - mutate(ATOXGR = factor(.data$ATOXGR, - levels = setdiff(levels(.data$ATOXGR), "No Grading Available") - )) - + mutate( + AEBODSYS = reformat(.data$AEBODSYS, nocoding), + AEDECOD = reformat(.data$AEDECOD, nocoding), + ATOXGR = factor(.data$ATOXGR, levels = atoxgr_lvls) + ) adam_db } -#' @describeIn aet04_1 Postprocessing +#' @describeIn aet04 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -aet04_1_post <- function(tlg, prune_0 = TRUE, ...) { +aet04_post <- function(tlg, prune_0 = TRUE, ...) { + tlg <- tlg %>% + tlg_sort_by_vars(c("AEBODSYS", "AEDECOD"), score_all_sum, decreasing = TRUE) if (prune_0) tlg <- trim_rows(tlg) - tbl_empty <- all(lapply(row_paths(tlg), `[[`, 3) == "ALL") - if (!tbl_empty) { - score_all_sum <- function(tt) { - cleaf <- collect_leaves(tt)[[1]] - if (NROW(cleaf) == 0) { - stop("score_all_sum score function used at subtable [", obj_name(tt), "] that has no content.") - } - sum(sapply(row_values(cleaf), function(cv) cv[1])) - } - - tlg <- tlg %>% - sort_at_path( - path = c("AEBODSYS"), - scorefun = score_all_sum, - decreasing = TRUE - ) %>% - sort_at_path( - path = c("AEBODSYS", "*", "AEDECOD"), - scorefun = score_all_sum, - decreasing = TRUE - ) - } else { - tlg <- null_report - } - std_postprocess(tlg) } @@ -209,10 +175,10 @@ aet04_1_post <- function(tlg, prune_0 = TRUE, ...) { #' "Grade 3-5" = c("3", "4", "5") #' ) #' -#' run(aet04_1, syn_data, grade_groups = grade_groups) -aet04_1 <- chevron_t( - main = aet04_1_main, - preprocess = aet04_1_pre, - postprocess = aet04_1_post, +#' run(aet04, syn_data, grade_groups = grade_groups) +aet04 <- chevron_t( + main = aet04_main, + preprocess = aet04_pre, + postprocess = aet04_post, adam_datasets = c("adsl", "adae") ) diff --git a/R/aet10.R b/R/aet10.R index 5ecf20246..f8da5fac0 100644 --- a/R/aet10.R +++ b/R/aet10.R @@ -1,6 +1,6 @@ -# aet10_1 ---- +# aet10 ---- -#' @describeIn aet10_1 Main TLG function +#' @describeIn aet10 Main TLG function #' #' @inheritParams gen_args #' @@ -17,42 +17,42 @@ #' #' @export #' -aet10_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET10"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adae") - - assert_colnames(adam_db$adae, c("AEDECOD")) - - lyt <- aet10_1_lyt( +aet10_main <- function(adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, "adsl", "adae") + checkmate::assert_string(lbl_overall, null.ok = TRUE) + checkmate::assert_string(arm_var) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, c(arm_var, "AEBODSYS", "AEDECOD"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) + + lbl_aedecod <- var_labels_for(adam_db$adae, "AEDECOD") + lyt <- aet10_lyt( arm_var = arm_var, lbl_overall = lbl_overall, - lbl_aedecod = lbl_aedecod, - deco = deco + lbl_aedecod = lbl_aedecod ) - tbl <- build_table(lyt, dbsel$adae, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$adae, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn aet10_1 Layout +#' aet10 Layout #' #' @inheritParams gen_args #' @param lbl_aedecod (`character`) text label for `AEDECOD`. #' -#' @export +#' @keywords internal #' -aet10_1_lyt <- function(arm_var, - lbl_overall, - lbl_aedecod, - deco) { - basic_table_deco(deco) %>% +aet10_lyt <- function(arm_var, + lbl_overall, + lbl_aedecod) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% - add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% count_occurrences( vars = "AEDECOD", @@ -61,58 +61,28 @@ aet10_1_lyt <- function(arm_var, append_topleft(paste0("\n", lbl_aedecod)) } -#' @describeIn aet10_1 Preprocessing +#' @describeIn aet10 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -aet10_1_pre <- function(adam_db, arm_var = "ACTARM", ...) { - aet10_1_check(adam_db, arm_var = arm_var) - +aet10_pre <- function(adam_db, ...) { adam_db$adae <- adam_db$adae %>% - filter(.data$ANL01FL == "Y") - - - new_format <- list( - adae = list( - AEDECOD = rule("No Coding Available" = c("", NA, "")) - ) - ) - - dunlin::reformat(adam_db, new_format, na_last = TRUE) + filter(.data$ANL01FL == "Y") %>% + mutate(AEDECOD = reformat(.data$AEDECOD, nocoding)) + return(adam_db) } -#' @describeIn aet10_1 Checks -#' -#' @inheritParams gen_args -#' @export -aet10_1_check <- function(adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM") { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - msg <- c(msg, check_all_colnames(adam_db$adae, c(arm_var, "USUBJID", "AEDECOD"))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(arm_var, "USUBJID"))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } -} - -#' @describeIn aet10_1 Postprocessing +#' @describeIn aet10 Postprocessing #' #' @inheritParams gen_args #' @param atleast given cut-off in numeric format, default is `0.05` #' #' @export #' -aet10_1_post <- function(tlg, atleast = 0.05, ...) { - checkmate::assert_true(is.numeric(atleast)) - +aet10_post <- function(tlg, atleast = 0.05, ...) { + checkmate::assert_number(atleast, lower = 0, upper = 1) tbl_sorted <- tlg %>% sort_at_path( path = c("AEDECOD"), @@ -141,11 +111,11 @@ aet10_1_post <- function(tlg, atleast = 0.05, ...) { #' @export #' #' @examples -#' run(aet10_1, syn_data) -aet10_1 <- chevron_t( - main = aet10_1_main, - lyt = aet10_1_lyt, - preprocess = aet10_1_pre, - postprocess = aet10_1_post, +#' run(aet10, syn_data) +aet10 <- chevron_t( + main = aet10_main, + lyt = aet10_lyt, + preprocess = aet10_pre, + postprocess = aet10_post, adam_datasets = c("adsl", "adae") ) diff --git a/R/assertions.R b/R/assertions.R index 821ce08a7..e7ecb15ac 100644 --- a/R/assertions.R +++ b/R/assertions.R @@ -7,6 +7,7 @@ #' @param df (`data.frame`) input to check for the presence of column names. #' @param x (`character`) the names of the columns to be checked. #' @param null_ok (`logical`) can `x` be NULL. +#' @param types (`character`) type of the variables. #' #' @export #' @@ -17,14 +18,14 @@ #' my_colnames <- NULL #' assert_colnames(mtcars, my_colnames, null_ok = FALSE) #' } -assert_colnames <- function(df, x, null_ok = TRUE) { +assert_colnames <- function(df, x, null_ok = TRUE, types = NULL) { if (!null_ok && is.null(x)) { stop("x cannot be NULL.", call. = FALSE) } missing_var <- setdiff(x, colnames(df)) if (length(missing_var) > 0) { - stop( + abort( paste0( "Variable(s) not a column name of ", deparse(substitute(df)), @@ -33,11 +34,12 @@ assert_colnames <- function(df, x, null_ok = TRUE) { "\n [available columns are: ", paste(colnames(df), collapse = ", "), "]" - ), - call. = FALSE + ) ) - } else { - invisible(TRUE) + } + if (!is.null(types)) { + var_types <- mapply(is, object = df[x], class2 = types, SIMPLIFY = TRUE) + non_match <- which(var_types != types) } } @@ -165,20 +167,172 @@ assert_subset_suggest <- function(x, choices) { invalid_args ) - stop(msg, call. = FALSE) + abort(msg) } -#' Check to have only one PARAMCD in the analysis dataset -#' @param param_val value of PARAMCD +#' Check variable only has one unique value. +#' @param x value vector. +#' @param label (`string`) label of input. #' @export -assert_single_paramcd <- function(param_val) { - unique_param_val <- unique(param_val) +assert_single_value <- function(x, label = deparse(substitute(x))) { + unique_param_val <- unique(x) if (length(unique_param_val) > 1) { - stop(paste0( - "More than one parameters:", + stop( + quote_str(label), + " has than one values ", toString(unique_param_val), - ", only one suppose to have." - )) + ", only one value is allowed." + ) + } +} + +#' @title Check whether var is valid +#' @details +#' This function checks the variable values are valid or not. +#' @param x value of col_split variable +#' @param label (`string`) hints. +#' @param na_ok (`flag`) whether NA value is allowed +#' @param empty_ok (`flag`) whether length 0 value is allowed. +#' @param ... Further arguments to methods. +#' @export +assert_valid_var <- function(x, label, na_ok, empty_ok, ...) { + UseMethod("assert_valid_var") +} +#' @rdname assert_valid_var +#' @export +#' @param min_chars (`integer`) the minimum length of the characters. +assert_valid_var.character <- function( + x, label = deparse(substitute(x)), + na_ok = FALSE, empty_ok = FALSE, + min_chars = 1L, ...) { + checkmate::assert_character( + x, + min.chars = min_chars, + min.len = as.integer(!empty_ok), + any.missing = na_ok, + .var.name = label, + ... + ) +} + +#' @rdname assert_valid_var +#' @export +assert_valid_var.factor <- function( + x, label = deparse(substitute(x)), + na_ok = FALSE, empty_ok = FALSE, + min_chars = 1L, ...) { + checkmate::assert_character( + levels(x), + min.chars = min_chars, + .var.name = paste("level of", label), + ... + ) + checkmate::assert_factor( + x, + min.levels = as.integer(!empty_ok), + any.missing = na_ok, + .var.name = label, + ... + ) +} + +#' @rdname assert_valid_var +#' @export +assert_valid_var.logical <- function(x, label = deparse(substitute(x)), na_ok = TRUE, empty_ok = FALSE, ...) { + checkmate::assert_logical( + x, + min.len = as.integer(!empty_ok), + any.missing = na_ok, + .var.name = label, + ... + ) +} +#' @rdname assert_valid_var +#' @param integerish (`flag`) whether the number should be treated as integerish. +#' @export +assert_valid_var.numeric <- function( + x, label = deparse(substitute(x)), + na_ok = TRUE, empty_ok = FALSE, integerish = FALSE, ...) { + check_fun <- if (integerish) checkmate::assert_integerish else checkmate::assert_numeric + check_fun( + x, + min.len = as.integer(!empty_ok), + any.missing = na_ok, + .var.name = label, + ... + ) +} + +#' @rdname assert_valid_var +#' @export +assert_valid_var.default <- function(x, label = deparse(substitute(x)), na_ok = FALSE, empty_ok = FALSE, ...) { +} + +#' Check variables in a data frame are valid character or factor. +#' @param df (`data.frame`) input dataset. +#' @param vars (`character`) variables to check. +#' @param label (`string`) labels of the data frame. +#' @param types Named (`list`) of type of the input. +#' @param ... further arguments for `assert_valid_var`. Please note that different methods have different arguments +#' so if provided make sure the variables to check is of the same class. +#' +#' @export +assert_valid_variable <- function(df, vars, label = deparse(substitute(df)), types = NULL, ...) { + assert_colnames(df, vars, null_ok = TRUE) + labels <- sprintf("%s$%s", label, vars) + if (length(types) == 1 && is.null(names(types))) { + types <- setNames(rep(types, length(vars)), vars) + } + if (!is.null(types)) { + vars_to_check <- which(vars %in% names(types)) + mapply( + assert_valid_type, + df[vars[vars_to_check]], + types = types[vars_to_check], + label = labels[vars_to_check] + ) + } + collection <- checkmate::makeAssertCollection() + mapply(assert_valid_var, df[vars], labels, MoreArgs = list(..., add = collection), SIMPLIFY = FALSE) + checkmate::reportAssertions(collection) +} + +#' Check variable is of correct type +#' @param x Object to check the type. +#' @param types (`character`) possible types to check. +#' @param label (`string`) label. +assert_valid_type <- function(x, types, label = deparse(substitute(x))) { + if (!any(vapply(types, is, object = x, FUN.VALUE = TRUE))) { + abort( + paste0( + quote_str(label), + " is not of type ", + toString(types) + ) + ) + } +} + +#' Check variables are of same levels +#' @param df1 (`data.frame`) input. +#' @param df2 (`data.frame`) input. +#' @param var (`string`) variable to check. +#' @param lab1 (`string`) label hint for df1. +#' @param lab2 (`string`) label hint for df2. +assert_valid_var_pair <- function(df1, df2, var, lab1 = deparse(substitute(df1)), lab2 = deparse(substitute(df2))) { + checkmate::assert_data_frame(df1) + checkmate::assert_data_frame(df2) + checkmate::assert_string(var) + lvl_x <- lvls(df1[[var]]) + lvl_y <- lvls(df2[[var]]) + if (!identical(lvl_x, lvl_y)) { + abort( + paste0( + quote_str(lab1), " and ", + quote_str(lab2), " should contain the same levels in variable ", + quote_str(var), "!" + ) + ) } } diff --git a/R/chevron_tlg-S4methods.R b/R/chevron_tlg-S4methods.R index 9c4e7cf36..08c72a844 100644 --- a/R/chevron_tlg-S4methods.R +++ b/R/chevron_tlg-S4methods.R @@ -10,50 +10,32 @@ #' @param object (`chevron_tlg`) input. #' @param auto_pre (`flag`) whether to perform the default pre processing step. #' @param ... extra arguments to pass to the pre-processing, main and post-processing functions. -#' @param check_arg (`flag`) whether to check if all arguments are used. #' #' @name run #' @export -setGeneric("run", function(object, adam_db, auto_pre = TRUE, ..., check_arg = TRUE) standardGeneric("run")) +setGeneric("run", function(object, adam_db, auto_pre = TRUE, ...) standardGeneric("run")) #' Run the pipeline #' @rdname run #' @export #' @examples -#' run(mng01_1, syn_data, auto_pre = TRUE, dataset = "adlb") +#' run(mng01, syn_data, auto_pre = TRUE, dataset = "adlb") setMethod( f = "run", signature = "chevron_tlg", - definition = function(object, adam_db, auto_pre = TRUE, ..., check_arg = TRUE) { + definition = function(object, adam_db, auto_pre = TRUE, ...) { checkmate::assert_list(adam_db, types = "list") checkmate::assert_flag(auto_pre) - checkmate::assert_flag(check_arg) - user_args <- list(...) - - # Assert validity of provided arguments. - arg_pre_name <- if (auto_pre) rlang::fn_fmls_names(preprocess(object)) - arg_main_name <- rlang::fn_fmls_names(main(object)) - arg_post_name <- rlang::fn_fmls_names(postprocess(object)) - - if (check_arg) { - all_args_names <- setdiff(c(arg_pre_name, arg_main_name, arg_post_name), "...") - assert_subset_suggest(names(user_args), all_args_names) - } - proc_data <- if (auto_pre) { - arg_pre <- user_args[names(user_args) %in% arg_pre_name] - list(adam_db = do.call(object@preprocess, c(list(adam_db), arg_pre))) + list(adam_db = do.call(object@preprocess, c(list(adam_db), user_args))) } else { list(adam_db = adam_db) } - arg_main <- user_args[names(user_args) %in% arg_main_name] - arg_post <- user_args[names(user_args) %in% arg_post_name] - - res_tlg <- list(tlg = do.call(object@main, c(proc_data, arg_main))) + res_tlg <- list(tlg = do.call(object@main, c(proc_data, user_args))) - do.call(object@postprocess, c(res_tlg, arg_post)) + do.call(object@postprocess, c(res_tlg, user_args)) } ) @@ -296,7 +278,7 @@ setGeneric("script_args", function(x, dict = NULL) standardGeneric("script_args" #' @export #' #' @examples -#' script_args(aet04_1) +#' script_args(aet04) #' setMethod( f = "script_args", @@ -343,7 +325,7 @@ setGeneric("script_funs", function(x, adam_db, args, details = FALSE) standardGe #' @export #' #' @examples -#' script_funs(aet04_1, adam_db = "syn_data", args = "args") +#' script_funs(aet04, adam_db = "syn_data", args = "args") setMethod( f = "script_funs", signature = "chevron_tlg", @@ -379,7 +361,7 @@ setMethod( "", "# Create TLG", glue::glue("tlg_output <- rlang::exec(.fn = pre_fun, adam_db = {adam_db}, !!!{args}) %>% \ - rlang::exec(.fn = run, object = {tlg_name}, !!!{args}, auto_pre = FALSE, check_arg = FALSE)") + rlang::exec(.fn = run, object = {tlg_name}, !!!{args}, auto_pre = FALSE)") ) } } diff --git a/R/cmt01a.R b/R/cmt01a.R index c8805c842..00c7b99e1 100644 --- a/R/cmt01a.R +++ b/R/cmt01a.R @@ -1,12 +1,11 @@ -# cmt01a_1 ---- +# cmt01a ---- -#' @describeIn cmt01a_1 Main TLG function +#' @describeIn cmt01a Main TLG function #' #' @inheritParams gen_args -#' @param medcat_var (`string`) the variable defining the medication category. By default `ATC2`. -#' @param lbl_medcat_var (`string`) label for the variable defining the medication category. -#' @param medname_var (`string`) the variable defining the medication name. By default `CMDECOD`. -#' @param lbl_medname_var (`string`) label for the variable defining the medication name. +#' @param incl_n_treatment (`flag`) include total number of treatments per medication. +#' @param row_split_var (`character`) the variable defining the medication category. By default `ATC2`. +#' @param medname_var (`string`) variable name of medical treatment name. #' #' @details #' * Data should be filtered for concomitant medication. `(ATIREL == "CONCOMITANT")`. @@ -18,464 +17,148 @@ #' the specific medication. #' #' @note -#' * `adam_db` object must contain an `adcm` table with the columns specified in `medcat_var` and `medname_var` as well -#' as `"CMSEQ"`. +#' * `adam_db` object must contain an `adcm` table with the columns specified in `row_split_var` and `medname_var` +#' as well as `"CMSEQ"`. #' #' @export #' -cmt01a_1_main <- function(adam_db, - arm_var = "ARM", - medcat_var = "ATC2", # Anatomical therapeutic category - lbl_medcat_var = "ATC Class Level 2", - medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", - lbl_overall = NULL, - deco = std_deco("CMT01A"), - ...) { - assert_colnames(adam_db$adcm, c(medcat_var, medname_var)) - - dbsel <- get_db_data(adam_db, "adsl", "adcm") - - lyt <- cmt01a_1_lyt( +cmt01a_main <- function(adam_db, + arm_var = "ARM", + incl_n_treatment = TRUE, + row_split_var = "ATC2", + medname_var = "CMDECOD", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, "adsl", "adcm") + checkmate::assert_string(arm_var) + checkmate::assert_flag(incl_n_treatment) + checkmate::assert_character(row_split_var, null.ok = TRUE) + assert_valid_variable(adam_db$adcm, c(arm_var, row_split_var, medname_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adcm, c("USUBJID", "CMSEQ"), empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adcm, arm_var) + + lbl_row_split <- var_labels_for(adam_db$adcm, row_split_var) + lbl_medname_var <- var_labels_for(adam_db$adcm, medname_var) + + lyt <- cmt01a_lyt( arm_var = arm_var, + incl_n_treatment = incl_n_treatment, lbl_overall = lbl_overall, - medcat_var = medcat_var, - lbl_medcat_var = lbl_medcat_var, + row_split_var = row_split_var, + lbl_row_split = lbl_row_split, medname_var = medname_var, - lbl_medname_var = lbl_medname_var, - deco = deco + lbl_medname_var = lbl_medname_var ) - tbl <- build_table(lyt, dbsel$adcm, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$adcm, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn cmt01a_1 Layout +#' cmt01a Layout #' #' @inheritParams gen_args -#' @param medcat_var (`string`) the variable defining the medication category. By default `ATC2`. -#' @param lbl_medcat_var (`string`) the label for the medication category. -#' @param medname_var (`string`) the variable defining the medication name. By default `CMDECOD`. -#' @param lbl_medname_var (`string`) the label for the medication name. -#' -#' @export -#' -cmt01a_1_lyt <- function(arm_var, - lbl_overall, - medcat_var, - lbl_medcat_var, - medname_var, - lbl_medname_var, - deco) { - basic_table_deco(deco) %>% +#' @inheritParams cmt01a_main +#' @param lbl_medname_var (`string`) label for the variable defining the medication name. +#' @keywords internal +#' +cmt01a_lyt <- function(arm_var, + lbl_overall, + incl_n_treatment = TRUE, + row_split_var, + lbl_row_split, + medname_var, + lbl_medname_var) { + if (incl_n_treatment) { + stats <- c("unique", "nonunique") + labels <- c( + "Total number of patients with at least one treatment", + "Total number of treatments" + ) + } else { + stats <- c("unique") + labels <- c( + "Total number of patients with at least one treatment" + ) + } + lyt <- basic_table() %>% split_cols_by(var = arm_var) %>% add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% - summarize_num_patients( - var = "USUBJID", - count_by = "CMSEQ", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one treatment", - nonunique = "Total number of treatments" - ) - ) %>% - split_rows_by( - medcat_var, - child_labels = "visible", - nested = FALSE, - indent_mod = -1L, - split_fun = drop_split_levels, - label_pos = "topleft", - split_label = lbl_medcat_var - ) %>% - summarize_num_patients( - var = "USUBJID", + analyze_num_patients( + vars = "USUBJID", count_by = "CMSEQ", .stats = c("unique", "nonunique"), + show_labels = "hidden", .labels = c( unique = "Total number of patients with at least one treatment", nonunique = "Total number of treatments" ) - ) %>% + ) + for (k in seq_len(length(row_split_var))) { + lyt <- split_and_summ_num_patients(lyt, row_split_var[k], lbl_row_split[k], stats, labels, count_by = "CMSEQ") + } + lyt %>% count_occurrences( vars = medname_var, + drop = length(row_split_var) > 0, .indent_mods = -1L ) %>% - append_topleft(paste0(" ", lbl_medname_var)) + append_topleft(paste0(stringr::str_dup(" ", 2 * length(row_split_var)), lbl_medname_var)) } -#' @describeIn cmt01a_1 Preprocessing -#' -#' @inheritParams cmt01a_1_main +#' @describeIn cmt01a Preprocessing #' +#' @inheritParams cmt01a_main #' #' @export #' -cmt01a_1_pre <- function(adam_db, medcat_var = "ATC2", medname_var = "CMDECOD", ...) { - assert_all_tablenames(adam_db, c("adsl", "adcm")) - +cmt01a_pre <- function(adam_db, ...) { adam_db$adcm <- adam_db$adcm %>% filter(.data$ANL01FL == "Y") %>% - mutate(CMSEQ = as.character(.data$CMSEQ)) - - fmt_ls <- list( - medcat_var = rule( - "No Coding available" = c("", NA) - ), - medname_var = rule( - "No Coding available" = c("", NA) - ), - CMSEQ = rule() - ) - - names(fmt_ls) <- c(medcat_var, medname_var, "CMSEQ") - new_format <- list(adcm = fmt_ls) - - dunlin::reformat(adam_db, new_format, na_last = TRUE) -} - -#' @describeIn cmt01a_1 Postprocessing -#' -#' @inheritParams cmt01a_1_main -#' @inheritParams gen_args -#' -#' -#' @export -#' -cmt01a_1_post <- function(tlg, prune_0 = TRUE, medcat_var = "ATC2", medname_var = "CMDECOD", ...) { - if (prune_0) { - tlg <- smart_prune(tlg) - } - - tbl_sorted <- tlg %>% - sort_at_path( - path = c(medcat_var, "*", medname_var), - scorefun = score_occurrences + mutate( + CMDECOD = with_label(reformat(.data$CMDECOD, nocoding), "Other Treatment"), + ATC2 = reformat(.data$ATC2, nocoding), + CMSEQ = as.character(.data$CMSEQ) ) - - std_postprocess(tbl_sorted) -} - -#' `CMT01A` Table 1 (Default) Concomitant Medication by Medication Class and Preferred Name. -#' -#' A concomitant medication -#' table with the number of subjects and the total number of treatments by medication class sorted alphabetically and -#' medication name sorted by frequencies. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' library(dplyr) -#' -#' proc_data <- syn_data -#' proc_data$adcm <- proc_data$adcm %>% -#' filter(ATIREL == "CONCOMITANT") -#' -#' run(cmt01a_1, proc_data) -cmt01a_1 <- chevron_t( - main = cmt01a_1_main, - lyt = cmt01a_1_lyt, - preprocess = cmt01a_1_pre, - postprocess = cmt01a_1_post, - adam_datasets = c("adsl", "adcm") -) - - -# cmt01a_2 ---- - -#' @describeIn cmt01a_2 Main TLG function -#' -#' @inheritParams gen_args -#' @param medcat_var (`string`) the variable defining the medication category. By default `ATC2`. -#' @param lbl_medcat_var (`string`) label for the variable defining the medication category. -#' @param medname_var (`string`) the variable defining the medication name. By default `CMDECOD`. -#' @param lbl_medname_var (`string`) label for the variable defining the medication name. -#' -#' @details -#' * Data should be filtered for concomitant medication. `(ATIREL == "CONCOMITANT")`. -#' * Numbers represent absolute numbers of subjects and fraction of `N`, or absolute numbers when specified. -#' * Remove zero-count rows unless overridden with `prune_0 = FALSE`. -#' * Split columns by arm. -#' * Does not include a total column by default. -#' * Sort by medication class frequency and within medication class by decreasing total number of patients with -#' the specific medication. -#' -#' @note -#' * `adam_db` object must contain an `adcm` table with the columns specified in `medcat_var` and `medname_var` as well -#' as `"CMSEQ"`. -#' -#' @export -#' -cmt01a_2_main <- function(adam_db, - arm_var = "ARM", - medcat_var = "ATC2", # Anatomical therapeutic category - lbl_medcat_var = "ATC Class Level 2", - medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", - lbl_overall = NULL, - deco = std_deco("CMT01A"), - ...) { - assert_colnames(adam_db$adcm, c(medcat_var, medname_var)) - - dbsel <- get_db_data(adam_db, "adsl", "adcm") - - # The same layout can be used. - lyt <- cmt01a_1_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - medcat_var = medcat_var, - lbl_medcat_var = lbl_medcat_var, - medname_var = medname_var, - lbl_medname_var = lbl_medname_var, - deco = deco - ) - - tbl <- build_table(lyt, dbsel$adcm, alt_counts_df = dbsel$adsl) - - tbl + adam_db } -#' @describeIn cmt01a_2 Preprocessing -#' -#' @inheritParams cmt01a_2_main -#' -#' @export -#' -cmt01a_2_pre <- function(adam_db, medcat_var = "ATC2", medname_var = "CMDECOD", ...) { - assert_all_tablenames(adam_db, c("adsl", "adcm")) - - adam_db$adcm <- adam_db$adcm %>% - filter(.data$ANL01FL == "Y") %>% - mutate(CMSEQ = as.character(.data$CMSEQ)) - - fmt_ls <- list( - medcat_var = rule( - "No Coding available" = c("", NA) - ), - medname_var = rule( - "No Coding available" = c("", NA) - ), - CMSEQ = rule() - ) - - names(fmt_ls) <- c(medcat_var, medname_var, "CMSEQ") - new_format <- list(adcm = fmt_ls) - - dunlin::reformat(adam_db, new_format, na_last = TRUE) -} - -#' @describeIn cmt01a_2 Postprocessing +#' @describeIn cmt01a Postprocessing #' #' @inheritParams cmt01a_main #' @inheritParams gen_args +#' @param sort_by_freq (`flag`) whether to sort medication class by frequency. #' #' @export #' -cmt01a_2_post <- function(tlg, prune_0 = TRUE, medcat_var = "ATC2", medname_var = "CMDECOD", ...) { - if (prune_0) { - tlg <- smart_prune(tlg) +cmt01a_post <- function( + tlg, prune_0 = TRUE, + sort_by_freq = FALSE, row_split_var = "ATC2", + medname_var = "CMDECOD", ...) { + if (sort_by_freq) { + tlg <- tlg %>% + tlg_sort_by_var( + var = row_split_var, + scorefun = cont_n_allcols + ) } - - tbl_sorted <- tlg %>% - sort_at_path( - medcat_var, - scorefun = cont_n_onecol(ncol(tlg)) - ) %>% - sort_at_path( - path = c(medcat_var, "*", medname_var), + tlg <- tlg %>% + tlg_sort_by_var( + var = c(row_split_var, medname_var), scorefun = score_occurrences ) - - - std_postprocess(tbl_sorted) -} - -#' `CMT01A` Table 2 (Supplementary) Concomitant Medication by Medication Class and Preferred Name (Classes sorted by -#' frequency). -#' -#' A concomitant medication table with the number of subjects and the total number of treatments by -#' medication class and medication name sorted by frequencies. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' library(dplyr) -#' -#' proc_data <- syn_data -#' proc_data$adcm <- proc_data$adcm %>% -#' filter(ATIREL == "CONCOMITANT") -#' -#' run(cmt01a_2, proc_data) -cmt01a_2 <- chevron_t( - main = cmt01a_2_main, - preprocess = cmt01a_2_pre, - postprocess = cmt01a_2_post, - adam_datasets = c("adsl", "adcm") -) - - -# cmt01a_3 ---- - -#' @describeIn cmt01a_3 Main TLG function -#' -#' @inheritParams gen_args -#' @param medcat_var (`string`) the variable defining the medication category. By default `ATC2`. -#' @param lbl_medcat_var (`string`) the label for the medication category. -#' @param medname_var (`string`) the variable defining the medication name. By default `CMDECOD`. -#' @param lbl_medname_var (`string`) the label for the medication name. -#' -#' @details -#' * Data should be filtered for concomitant medication. `(ATIREL == "CONCOMITANT")`. -#' * Numbers represent absolute numbers of subjects and fraction of `N`, or absolute numbers when specified. -#' * Remove zero-count rows unless overridden with `prune_0 = FALSE`. -#' * Split columns by arm. -#' * Does not include a total column by default. -#' * Sort by medication class alphabetically and within medication class by decreasing total number of patients with -#' the specific medication. -#' -#' @note -#' * `adam_db` object must contain an `adcm` table with the columns specified in `medcat_var` and `medname_var` as well -#' as `"CMSEQ"`. -#' -#' @export -#' -cmt01a_3_main <- function(adam_db, - arm_var = "ARM", - medcat_var = "ATC2", # Anatomical therapeutic category - lbl_medcat_var = "ATC Class Level 2", - medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", - lbl_overall = NULL, - deco = std_deco("CMT01A"), - ...) { - assert_colnames(adam_db$adcm, c(medcat_var, medname_var)) - - dbsel <- get_db_data(adam_db, "adsl", "adcm") - - lyt <- cmt01a_3_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - medcat_var = medcat_var, - lbl_medcat_var = lbl_medcat_var, - medname_var = medname_var, - lbl_medname_var = lbl_medname_var, - deco = deco - ) - - tbl <- build_table(lyt, dbsel$adcm, alt_counts_df = dbsel$adsl) - - tbl -} - -#' @describeIn cmt01a_3 Layout -#' -#' @inheritParams cmt01a_3_main -#' -#' @export -#' -cmt01a_3_lyt <- function(arm_var = "ARM", - lbl_overall = NULL, - medcat_var = "ATC2", - lbl_medcat_var = "ATC Class Level 2", - medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", - deco = std_deco("CMT01A")) { - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - summarize_num_patients( - var = "USUBJID", - count_by = "CMSEQ", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one treatment", - nonunique = "Total number of treatments" - ) - ) %>% - split_rows_by( - medcat_var, - child_labels = "visible", - nested = FALSE, - indent_mod = -1L, - split_fun = drop_split_levels, - label_pos = "topleft", - split_label = lbl_medcat_var - ) %>% - summarize_num_patients( - var = "USUBJID", - count_by = "CMSEQ", - .stats = c("unique"), - .labels = c( - unique = "Total number of patients with at least one treatment" - ) - ) %>% - count_occurrences( - vars = medname_var, - .indent_mods = -1L - ) %>% - append_topleft(paste0(" ", lbl_medname_var)) -} - -#' @describeIn cmt01a_3 Preprocessing -#' -#' @inheritParams cmt01a_3_main -#' -#' @export -#' -cmt01a_3_pre <- function(adam_db, medcat_var = "ATC2", medname_var = "CMDECOD", ...) { - assert_all_tablenames(adam_db, c("adsl", "adcm")) - - adam_db$adcm <- adam_db$adcm %>% - filter(.data$ANL01FL == "Y") %>% - mutate(CMSEQ = as.character(.data$CMSEQ)) - - fmt_ls <- list( - medcat_var = rule( - "No Coding available" = c("", NA) - ), - medname_var = rule( - "No Coding available" = c("", NA) - ), - CMSEQ = rule() - ) - - names(fmt_ls) <- c(medcat_var, medname_var, "CMSEQ") - new_format <- list(adcm = fmt_ls) - - dunlin::reformat(adam_db, new_format, na_last = TRUE) -} - -#' @describeIn cmt01a_3 Preprocessing -#' -#' @inheritParams cmt01a_3_main -#' @inheritParams gen_args -#' -#' @export -#' -cmt01a_3_post <- function(tlg, prune_0 = TRUE, medcat_var = "ATC2", medname_var = "CMDECOD", ...) { if (prune_0) { tlg <- smart_prune(tlg) } - - tbl_sorted <- tlg %>% - sort_at_path( - path = c(medcat_var, "*", medname_var), - scorefun = score_occurrences - ) - - std_postprocess(tbl_sorted) + std_postprocess(tlg) } -#' `CMT01A` Table 3 (Supplementary) Concomitant Medication by Medication Class and Preferred Name (Total number of -#' treatments per medication class suppressed). + +#' `CMT01A` Concomitant Medication by Medication Class and Preferred Name. #' -#' A concomitant medication table with the number of subjects and the total -#' number of treatments by medication class sorted alphabetically and medication name sorted by frequencies presented -#' without the total number of treatments per medication. +#' A concomitant medication +#' table with the number of subjects and the total number of treatments by medication class. #' #' @include chevron_tlg-S4class.R #' @export @@ -487,10 +170,11 @@ cmt01a_3_post <- function(tlg, prune_0 = TRUE, medcat_var = "ATC2", medname_var #' proc_data$adcm <- proc_data$adcm %>% #' filter(ATIREL == "CONCOMITANT") #' -#' run(cmt01a_3, proc_data) -cmt01a_3 <- chevron_t( - main = cmt01a_3_main, - preprocess = cmt01a_3_pre, - postprocess = cmt01a_3_post, +#' run(cmt01a, proc_data) +cmt01a <- chevron_t( + main = cmt01a_main, + lyt = cmt01a_lyt, + preprocess = cmt01a_pre, + postprocess = cmt01a_post, adam_datasets = c("adsl", "adcm") ) diff --git a/R/cmt02_pt.R b/R/cmt02_pt.R index 85b4d90ae..ea0c5383c 100644 --- a/R/cmt02_pt.R +++ b/R/cmt02_pt.R @@ -1,112 +1,28 @@ -# cmt02_pt_1 ---- +# cmt02_pt ---- -#' @describeIn cmt02_pt_1 Main TLG function -#' -#' @inheritParams gen_args -#' -#' @details -#' * Data should be filtered for concomitant medication. `(ATIREL == "CONCOMITANT")`. -#' * Order by decreasing total number of patients with the specific medication. -#' * Does not include a total column by default. -#' -#' @note -#' * `adam_db` object must contain an `adcm` table with the columns `"CMDECOD"` and `"CMSEQ"`. -#' -#' @export -#' -cmt02_pt_1_main <- function(adam_db, - arm_var = "ARM", - lbl_overall = NULL, - deco = std_deco("CMT02_PT"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adcm") - - lyt <- cmt02_pt_1_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - deco = deco - ) - - tbl <- build_table(lyt, dbsel$adcm, alt_counts_df = dbsel$adsl) - - tbl -} - -#' @describeIn cmt02_pt_1 Layout -#' -#' @inheritParams gen_args +#' @describeIn cmt02_pt Main TLG function #' +#' @inherit cmt01a_main +#' @source cmt01a.R #' @export #' -cmt02_pt_1_lyt <- function(arm_var, - lbl_overall, - deco) { - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - summarize_num_patients( - var = "USUBJID", - count_by = "CMSEQ", - .stats = c("unique", "nonunique"), - .labels = c( - unique = "Total number of patients with at least one treatment", - nonunique = "Total number of treatments" - ) - ) %>% - split_rows_by("DOMAIN", split_fun = drop_split_levels, child_labels = "hidden") %>% - count_occurrences(vars = "CMDECOD", .indent_mods = 0L) %>% - append_topleft("Other Treatment") -} +cmt02_pt_main <- modify_default_args(cmt01a_main, row_split_var = NULL) -#' @describeIn cmt02_pt_1 Preprocessing +#' @describeIn cmt02_pt Preprocessing #' -#' @inheritParams gen_args +#' @inherit cmt01a_pre #' #' @export #' -cmt02_pt_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adcm")) - - adam_db$adcm <- adam_db$adcm %>% - filter(.data$ANL01FL == "Y") %>% - mutate( - DOMAIN = "CM", - CMSEQ = as.character(.data$CMSEQ) - ) +cmt02_pt_pre <- cmt01a_pre - fmt_ls <- list( - CMDECOD = rule( - "No Coding available" = c("", NA) - ), - CMSEQ = rule( - "" = c("", NA) - ) - ) - - new_format <- list(adcm = fmt_ls) - - dunlin::reformat(adam_db, new_format, na_last = TRUE) -} - -#' @describeIn cmt02_pt_1 Postprocessing +#' @describeIn cmt02_pt Postprocessing #' -#' @inheritParams gen_args +#' @inherit cmt01a_post #' #' @export #' -cmt02_pt_1_post <- function(tlg, prune_0 = TRUE, ...) { - if (prune_0) { - tlg <- smart_prune(tlg) - } - - tlg %>% - sort_at_path( - path = c("DOMAIN", "*", "CMDECOD"), - scorefun = score_occurrences - ) %>% - std_postprocess() -} +cmt02_pt_post <- modify_default_args(cmt01a_post, row_split_var = NULL) #' `CMT02_PT` Table 1 (Default) Concomitant Medications by Preferred Name. #' @@ -117,11 +33,11 @@ cmt02_pt_1_post <- function(tlg, prune_0 = TRUE, ...) { #' @export #' #' @examples -#' run(cmt02_pt_1, syn_data) -cmt02_pt_1 <- chevron_t( - main = cmt02_pt_1_main, - lyt = cmt02_pt_1_lyt, - preprocess = cmt02_pt_1_pre, - postprocess = cmt02_pt_1_post, +#' run(cmt02_pt, syn_data) +cmt02_pt <- chevron_t( + main = cmt02_pt_main, + lyt = cmt02_pt_lyt, + preprocess = cmt02_pt_pre, + postprocess = cmt02_pt_post, adam_datasets = c("adsl", "adcm") ) diff --git a/R/coxt02.R b/R/coxt02.R index 9e0b01865..831fcebdb 100644 --- a/R/coxt02.R +++ b/R/coxt02.R @@ -1,19 +1,19 @@ -# coxt02_1 ---- +# coxt02 ---- -#' @describeIn coxt02_1 Main TLG function +#' @describeIn coxt02 Main TLG function #' #' @inheritParams gen_args #' @param arm_var (`string`) the arm variable used for arm splitting. #' @param time_var (`string`) the time variable in a Cox proportional hazards regression model. -#' @param censor_var (`string`) the censor variable in a Cox proportional hazards regression model. +#' @param event_var (`string`) the event variable in a Cox proportional hazards regression model. #' @param covariates (`character`) will be fitted and the corresponding effect will be estimated. #' @param strata (`character`) will be fitted for the stratified analysis. #' @param lbl_vars (`string`) text label for the a Cox regression model variables. -#' @param conf_level (`string`) confidence level of the interval when fitting a Cox regression model -#' and estimating hazard ratio to describe the effect size in a survival analysis. -#' @param ties (`string`) specifies the method for tie handling. +#' @param ... Further arguments passed to `tern::control_coxreg()`. #' #' @details +#' * The reference arm will always the first level of `arm_var`. Please change the level if you want to +#' change the reference arms. #' * The table allows confidence level to be adjusted, default is 2-sided 5%. #' * The stratified analysis is with DISCRETE tie handling (equivalent to `tern::control_coxreg(ties = "exact")` in R). #' * Model includes treatment plus specified covariate(s) as factor(s) or numeric(s), @@ -30,123 +30,84 @@ #' #' @export #' -coxt02_1_main <- function(adam_db, - arm_var = "ARM", - time_var = "AVAL", - censor_var = "CNSR", - covariates = c("SEX", "RACE", "AAGE"), - strata = NULL, - lbl_vars = "Effect/Covariate Included in the Model", - conf_level = .95, - ties = "exact", - deco = std_deco("COXT02"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adtte") - assert_colnames(dbsel$adtte, c(arm_var, time_var, censor_var, covariates, strata)) - - assert_single_paramcd(dbsel$adtte$PARAMCD) - - checkmate::assert_character(covariates, null.ok = TRUE, any.missing = FALSE) - checkmate::assert_character(strata, null.ok = TRUE, any.missing = FALSE) - checkmate::assert_number(conf_level, null.ok = FALSE, lower = 0, upper = 1) - checkmate::assert_string(ties, null.ok = TRUE) - - dbsel$adtte <- dbsel$adtte %>% - mutate(event = 1 - .data[[censor_var]]) - +coxt02_main <- function(adam_db, + arm_var = "ARM", + time_var = "AVAL", + event_var = "EVENT", + covariates = c("SEX", "RACE", "AAGE"), + strata = NULL, + lbl_vars = "Effect/Covariate Included in the Model", + ...) { + assert_all_tablenames(adam_db, "adtte") + checkmate::assert_string(arm_var) + checkmate::assert_string(time_var) + checkmate::assert_string(event_var) + checkmate::assert_character(covariates, null.ok = TRUE) + checkmate::assert_character(strata, null.ok = TRUE) + assert_valid_variable(adam_db$adtte, arm_var, types = list("factor")) + assert_valid_variable(adam_db$adtte, c("USUBJID", arm_var, "PARAMCD"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adtte, c(covariates, strata), types = list(c("factor", "numeric")), na_ok = TRUE) + assert_valid_variable(adam_db$adtte, event_var, types = list("numeric"), integerish = TRUE, lower = 0L, upper = 1L) + assert_valid_variable(adam_db$adtte, time_var, types = list("numeric"), lower = 0) + assert_single_value(adam_db$adtte$PARAMCD) + control <- execute_with_args(control_coxreg, ...) variables <- list( time = time_var, - event = "event", + event = event_var, arm = arm_var, covariates = covariates, strata = strata ) - lyt <- coxt02_1_lyt( + lyt <- coxt02_lyt( variables = variables, lbl_vars = lbl_vars, - conf_level = conf_level, - ties = ties, - deco = deco + control = control ) - tbl <- build_table(lyt, dbsel$adtte) + tbl <- build_table(lyt, adam_db$adtte) tbl } -#' @describeIn coxt02_1 Layout +#' coxt02 Layout #' #' @inheritParams gen_args #' @param variables (`list`) list of variables in a Cox proportional hazards regression model. #' -#' @export +#' @keywords internal #' -coxt02_1_lyt <- function(variables, - lbl_vars, - conf_level, - ties, - deco) { - basic_table_deco(deco) %>% +coxt02_lyt <- function(variables, + lbl_vars, + control) { + basic_table() %>% summarize_coxreg( variables = variables, - control = control_coxreg( - conf_level = conf_level, - ties = ties, - ), + control = control, multivar = TRUE ) %>% append_topleft(lbl_vars) } -#' @describeIn coxt02_1 Preprocessing +#' @describeIn coxt02 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -coxt02_1_pre <- function(adam_db, arm_var = "ARM", time_var = "AVAL", censor_var = "CNSR", - covariates = c("SEX", "RACE", "AAGE"), strata = NULL, ...) { - coxt02_1_check(adam_db, - arm_var = arm_var, time_var = time_var, censor_var = censor_var, - covariates = covariates, strata = strata - ) - +coxt02_pre <- function(adam_db, ...) { + adam_db$adtte <- adam_db$adtte %>% + mutate(EVENT = 1 - .data$CNSR) adam_db } -#' @describeIn coxt02_1 Checks -#' -#' @inheritParams gen_args -#' -#' @export -#' -coxt02_1_check <- function(adam_db, arm_var, time_var, censor_var, covariates, strata, - req_tables = c("adsl", "adtte")) { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - msg <- c(msg, check_all_colnames(adam_db$adtte, c( - "USUBJID", "PARAMCD", arm_var, time_var, censor_var, - covariates, strata - ))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c("USUBJID"))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } -} - -#' @describeIn coxt02_1 Postprocessing +#' @describeIn coxt02 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -coxt02_1_post <- function(tlg, prune_0 = FALSE, ...) { +coxt02_post <- function(tlg, prune_0 = FALSE, ...) { if (prune_0) { tlg <- smart_prune(tlg) } @@ -168,12 +129,12 @@ coxt02_1_post <- function(tlg, prune_0 = FALSE, ...) { #' #' proc_data <- log_filter(syn_data, PARAMCD == "CRSD", "adtte") #' -#' run(coxt02_1, proc_data) +#' run(coxt02, proc_data) #' -#' run(coxt02_1, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90) -coxt02_1 <- chevron_t( - main = coxt02_1_main, - preprocess = coxt02_1_pre, - postprocess = coxt02_1_post, +#' run(coxt02, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90) +coxt02 <- chevron_t( + main = coxt02_main, + preprocess = coxt02_pre, + postprocess = coxt02_post, adam_datasets = c("adsl", "adtte") ) diff --git a/R/dmt01.R b/R/dmt01.R old mode 100755 new mode 100644 index f4af5a420..b5ad59aa3 --- a/R/dmt01.R +++ b/R/dmt01.R @@ -1,11 +1,10 @@ -# dmt01_1 ---- +# dmt01 ---- -#' @describeIn dmt01_1 Main TLG function +#' @describeIn dmt01 Main TLG function #' #' @inheritParams gen_args -#' @param summaryvars (`list`) variables summarized in demographic table. Names are used as -#' subtitles. For values where no name is provided, the label attribute of the corresponding column in `adsl` table of -#' `adam_db` is used. +#' @param summaryvars (`character`) variables summarized in demographic table. The label attribute of the corresponding +#' column in `adsl` table of `adam_db` is used as label. #' #' @details #' * Information from `ADSUB` are generally included into `ADSL` before analysis. @@ -24,33 +23,30 @@ #' library(magrittr) #' #' db <- syn_data %>% -#' dmt01_1_pre() -#' -#' dmt01_1_main(db, lbl_overall = NULL) -#' dmt01_1_main(db, summaryvars = c("Age" = "AGE", "Race" = "RACE", "Gender" = "SEX")) -dmt01_1_main <- function(adam_db, - arm_var = "ARM", - summaryvars = list( - "Age (yr)" = "AAGE", - "Age group (yr)" = "AGEGR1", - "Sex" = "SEX", - "Ethnicity" = "ETHNIC", - "Race" = "RACE" - ), - lbl_overall = "All Patients", - deco = std_deco("DMT01"), - ...) { - summaryvars <- unlist(summaryvars) - assert_colnames(adam_db$adsl, summaryvars) +#' dmt01_pre() +#' +#' dmt01_main(db, lbl_overall = NULL) +#' dmt01_main(db, summaryvars = c("AGE", "RACE", "SEX")) +dmt01_main <- function(adam_db, + arm_var = "ARM", + summaryvars = c( + "AAGE", + "AGEGR1", + "SEX", + "ETHNIC", + "RACE" + ), + lbl_overall = "All Patients", + ...) { + assert_valid_variable(adam_db$adsl, summaryvars) + summaryvars_lbls <- var_labels_for(adam_db$adsl, summaryvars) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) - summaryvars_lbls <- get_labels(adam_db$adsl, summaryvars) - - lyt <- dmt01_1_lyt( + lyt <- dmt01_lyt( arm_var = arm_var, summaryvars = summaryvars, summaryvars_lbls = summaryvars_lbls, - lbl_overall = lbl_overall, - deco = deco + lbl_overall = lbl_overall ) tbl <- build_table(lyt, adam_db$adsl) @@ -58,24 +54,22 @@ dmt01_1_main <- function(adam_db, tbl } -#' @describeIn dmt01_1 Layout +#' `dmt01` Layout #' @param summaryvars_lbls (`character`) labels corresponding to the analyzed variables. #' #' @inheritParams gen_args #' #' -#' @export +#' @keywords internal #' -dmt01_1_lyt <- function(arm_var, - summaryvars, - summaryvars_lbls, - lbl_overall, - deco) { - basic_table_deco(deco) %>% +dmt01_lyt <- function(arm_var, + summaryvars, + summaryvars_lbls, + lbl_overall) { + basic_table() %>% split_cols_by(var = arm_var) %>% add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% - split_rows_by("DOMAIN", split_fun = drop_split_levels, child_labels = "hidden") %>% summarize_vars( vars = summaryvars, var_labels = summaryvars_lbls, @@ -83,7 +77,7 @@ dmt01_1_lyt <- function(arm_var, ) } -#' @describeIn dmt01_1 Preprocessing +#' @describeIn dmt01 Preprocessing #' #' @inheritParams gen_args #' @@ -91,25 +85,20 @@ dmt01_1_lyt <- function(arm_var, #' @export #' #' @examples -#' dmt01_1_pre(syn_data) -dmt01_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl")) - - adam_db$adsl <- tern::df_explicit_na(adam_db$adsl) - +#' dmt01_pre(syn_data) +dmt01_pre <- function(adam_db, ...) { adam_db$adsl <- adam_db$adsl %>% - mutate(DOMAIN = "ADSL") - + mutate(SEX = reformat(.data$SEX, rule(Male = "M", Female = "F"))) adam_db } -#' @describeIn dmt01_1 Postprocessing +#' @describeIn dmt01 Postprocessing #' #' @inheritParams gen_args #' #' #' @export -dmt01_1_post <- function(tlg, prune_0 = TRUE, ...) { +dmt01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) { tlg <- smart_prune(tlg) } @@ -125,10 +114,10 @@ dmt01_1_post <- function(tlg, prune_0 = TRUE, ...) { #' @export #' #' @examples -#' run(dmt01_1, syn_data) -dmt01_1 <- chevron_t( - main = dmt01_1_main, - preprocess = dmt01_1_pre, - postprocess = dmt01_1_post, +#' run(dmt01, syn_data) +dmt01 <- chevron_t( + main = dmt01_main, + preprocess = dmt01_pre, + postprocess = dmt01_post, adam_datasets = c("adsl") ) diff --git a/R/dst01.R b/R/dst01.R index 34617a564..4267175ce 100755 --- a/R/dst01.R +++ b/R/dst01.R @@ -1,16 +1,15 @@ -# dst01_1 ---- +# dst01 ---- -#' @describeIn dst01_1 Main TLG function +#' @describeIn dst01 Main TLG function #' #' @inheritParams gen_args #' @param arm_var (`string`) variable. Usually one of `ARM`, `ACTARM`, `TRT01A`, or `TRT01A`. -#' @param status_var (`string`) variable used to define patient status. Default is `EOSSTT`, however can also be a +#' @param study_status_var (`string`) variable used to define patient status. Default is `EOSSTT`, however can also be a #' variable name with the pattern `EOPxxSTT` where `xx` must be substituted by 2 digits referring to the analysis #' period. -#' @param disc_reason_var (`string`) variable used to define reason for patient withdrawal. Default is `DCSREAS`, -#' however can also be a variable with the pattern `DCPxxRS` where `xx` must be substituted by 2 digits referring to -#' the analysis period. -#' +#' @param detail_vars Named (`list`) of grouped display of `study_status_var`. The names must be subset of unique levels +#' of `study_status_var`. +#' @param trt_status_var (`string`) variable of treatment status. #' @details #' * Default patient disposition table summarizing the reasons for patients withdrawal. #' * Numbers represent absolute numbers of patients and fraction of `N`. @@ -26,671 +25,174 @@ #' @export #' #' @examples -#' library(magrittr) -#' -#' db <- syn_data %>% -#' dst01_1_pre() -#' -#' dst01_1_main(db) -dst01_1_main <- function(adam_db, - arm_var = "ARM", - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - lbl_overall = "All Patients", - deco = std_deco("DST01"), - ...) { - # Standard values defined in GDSR. - completed_lvl <- "COMPLETED" - discontinued_lvl <- "DISCONTINUED" - ongoing_lvl <- "ONGOING" - - checkmate::assert_factor(adam_db$adsl[[status_var]]) - - lyt <- dst01_1_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - deco = deco, - status_var = status_var, - disc_reason_var = disc_reason_var, - completed_lbl = completed_lvl, - ongoing_lbl = ongoing_lvl, - discontinued_lbl = discontinued_lvl +#' run(dst01, syn_data) +#' run(dst01, syn_data, detail_vars = list(Discontinued = c("DCSREASGP", "DCSREAS"))) +dst01_main <- function(adam_db, + arm_var = "ARM", + study_status_var = "EOSSTT", + detail_vars = list( + Discontinued = c("DCSREAS") + ), + trt_status_var = NULL, + lbl_overall = "All Patients", + ...) { + assert_all_tablenames(adam_db, "adsl") + checkmate::assert_string(arm_var) + checkmate::assert_string(study_status_var) + checkmate::assert_string(trt_status_var, null.ok = TRUE) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable( + adam_db$adsl, + arm_var, + types = list(c("character", "factor")), na_ok = TRUE ) - - tbl_completed <- build_table( - lyt[[1]], - df = adam_db$adsl + assert_valid_variable( + adam_db$adsl, study_status_var, + types = list(c("character", "factor")), na_ok = TRUE, + empty_ok = FALSE, min_chars = 1L ) - - tbl_other <- build_table( - lyt[[2]], - df = adam_db$adsl + assert_valid_variable( + adam_db$adsl, trt_status_var, + types = list(c("character", "factor")), na_ok = TRUE, + empty_ok = TRUE, min_chars = 0L ) - - list(tbl_completed, tbl_other) -} - -#' @describeIn dst01_1 Layout -#' -#' @inheritParams gen_args -#' @param status_var (`string`) variable used to define patient status. Default is `EOSSTT`, however can also be a -#' variable name with the pattern `EOPxxSTT` where `xx` must be substituted by 2 digits referring to the analysis -#' period. -#' @param disc_reason_var (`string`) variable used to define reason for patient withdrawal. Default is `DCSREAS`, -#' however can also be a variable with the pattern `DCPxxRS` where `xx` must be substituted by 2 digits referring to -#' the analysis period. -#' @param completed_lbl (`string`) associated with completed study and found in the columns given by `status`. By -#' Default `COMPLETED`. -#' @param ongoing_lbl (`string`) associated with ongoing treatment and found in the columns given by `status_treatment`. -#' By Default `ONGOING. -#' @param discontinued_lbl (`string`) associated with discontinued study and found in the columns given by `status`. By -#' Default `DISCONTINUED`. -#' -#' -#' @details Since the two parts of the tables are pruned differently, the layout function returns a list of layouts, -#' which allows the tables to be constructed and pruned separately before binding. -#' -#' @export -#' -dst01_1_lyt <- function(arm_var, - status_var, - disc_reason_var, - completed_lbl, - ongoing_lbl, - discontinued_lbl, - lbl_overall, - deco) { - layout_table <- basic_table_deco(deco) %>% - split_cols_by(arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - split_rows_by(var = "DOMAIN", split_fun = drop_split_levels, child_labels = "hidden") - - layout_table_completed <- - layout_table %>% - count_values( - vars = status_var, - values = completed_lbl, - .labels = c(count_fraction = "Completed Study"), - .formats = list(count_fraction = format_count_fraction_fixed_dp) - ) - - layout_table_other <- - layout_table %>% - count_values( - vars = status_var, - values = ongoing_lbl, - .labels = c(count_fraction = "Ongoing"), - .formats = list(count_fraction = format_count_fraction_fixed_dp) - ) %>% - split_rows_by( - status_var, - split_fun = keep_split_levels(discontinued_lbl), - ) %>% - summarize_row_groups( - label_fstr = "Discontinued Study", - format = format_count_fraction_fixed_dp - ) %>% - summarize_vars( - disc_reason_var, - .stats = "count_fraction", - denom = "N_col", - .formats = list(count_fraction = format_count_fraction_fixed_dp) - ) - - list(layout_table_completed, layout_table_other) -} - -#' @describeIn dst01_1 Preprocessing -#' -#' @inheritParams dst01_1_main -#' -#' -#' @export -#' -#' @examples -#' dst01_1_pre(syn_data) -dst01_1_pre <- function(adam_db, - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - ...) { - assert_all_tablenames(adam_db, c("adsl")) - - new_format <- list( - adsl = list( - rule("" = c("", NA)), - rule( - "COMPLETED" = "Completed", - "DISCONTINUED" = "Discontinued", - "ONGOING" = "Ongoing", - "" = c("", NA) - ) - ) + status_var_lvls <- lvls(adam_db$adsl[[study_status_var]]) + checkmate::assert_subset(names(detail_vars), choice = status_var_lvls) + assert_valid_variable( + adam_db$adsl, + unlist(detail_vars), + types = list(c("character", "factor")), + na_ok = TRUE, + empty_ok = TRUE, + min_chars = 0L ) - - names(new_format$adsl) <- c(disc_reason_var, status_var) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - - adam_db$adsl <- adam_db$adsl %>% - mutate(DOMAIN = "ADSL") %>% - mutate( - !!status_var := factor(.data[[status_var]], levels = c("COMPLETED", "DISCONTINUED", "ONGOING", "")) - ) - - adam_db -} - -#' @describeIn dst01_1 Postprocessing -#' -#' @inheritParams gen_args -#' -#' -#' @export -dst01_1_post <- function(tlg, prune_0 = TRUE, deco = std_deco("DST01"), ...) { - tbl_completed <- tlg[[1]] - tbl_other <- tlg[[2]] - if (prune_0) tbl_other <- tbl_other %>% trim_rows() - - col_info(tbl_other) <- col_info(tbl_completed) - - tbl <- rbind(tbl_completed, tbl_other) - - tbl <- set_decoration(tbl, deco) - - std_postprocess(tbl) -} - -#' DST01 Table 1 (Default) Patient Disposition Table 1. -#' -#' The DST01 Disposition Table provides an overview of patients -#' study completion. For patients who discontinued the study a reason is provided. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' run(dst01_1, syn_data) -dst01_1 <- chevron_t( - main = dst01_1_main, - preprocess = dst01_1_pre, - postprocess = dst01_1_post, - adam_datasets = c("adsl") -) - - -# dst01_2 ---- - -#' @describeIn dst01_2 Main TLG function -#' -#' @inheritParams gen_args -#' @param status_var (`string`) variable used to define patient status. Default is `EOSSTT`, however can also be a -#' variable name with the pattern `EOPxxSTT` where `xx` must be substituted by 2 digits referring to the analysis -#' period. -#' @param disc_reason_var (`string`) variable used to define reason for patient withdrawal. Default is `DCSREAS`, -#' however can also be a variable with the pattern `DCPxxRS` where `xx` must be substituted by 2 digits referring to -#' the analysis period. -#' -#' @details -#' * Non-standard disposition table summarizing the reasons for patient withdrawal. -#' * Withdrawal reasons are grouped into Safety and Non-Safety issues. -#' * Safety issues include Death and Adverse events. -#' * Numbers represent absolute numbers of patients and fraction of `N`. -#' * Remove zero-count rows. -#' * Split columns by arm. -#' * Include a total column by default. -#' * Sort withdrawal reasons by alphabetic order. -#' -#' @note -#' * `adam_db` object must contain an `adsl` table with the columns specified by `status_var` and `disc_reason_var`. -#' -#' @export -#' -#' @examples -#' library(magrittr) -#' -#' db <- syn_data %>% -#' dst01_2_pre() -#' -#' dst01_2_main(db) -#' dst01_2_main(db, lbl_overall = NULL) -dst01_2_main <- function(adam_db, - arm_var = "ARM", - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - lbl_overall = "All Patients", - deco = std_deco("DST01"), - ...) { - # Standard values defined in GDSR. - completed_lvl <- "COMPLETED" - discontinued_lvl <- "DISCONTINUED" - ongoing_lvl <- "ONGOING" - - checkmate::assert_factor(adam_db$adsl[[status_var]]) - - lyt <- dst01_2_lyt( + detail_vars <- setNames(detail_vars[status_var_lvls], status_var_lvls) + lyt <- dst01_lyt( arm_var = arm_var, - status_var = status_var, - disc_reason_var = disc_reason_var, - completed_lbl = completed_lvl, - discontinued_lbl = discontinued_lvl, lbl_overall = lbl_overall, - ongoing_lbl = ongoing_lvl, - deco = deco - ) - - tbl_completed <- build_table( - lyt[[1]], - df = adam_db$adsl + study_status_var = study_status_var, + detail_vars = detail_vars, + trt_status_var = trt_status_var ) - - tbl_other <- build_table( - lyt[[2]], - df = adam_db$adsl - ) - - list(tbl_completed, tbl_other) + build_table(lyt, adam_db$adsl) } -#' @describeIn dst01_2 Layout +#' dst01 Layout #' -#' @inheritParams gen_args -#' @param status_var (`string`) variable used to define patient status. Default is `EOSSTT`, however can also be a +#' @inheritParams dst01_main +#' @param study_status_var (`string`) variable used to define patient status. Default is `EOSSTT`, however can also be a #' variable name with the pattern `EOPxxSTT` where `xx` must be substituted by 2 digits referring to the analysis #' period. -#' @param disc_reason_var (`string`) variable used to define reason for patient withdrawal. Default is `DCSREAS`, -#' however can also be a variable with the pattern `DCPxxRS` where `xx` must be substituted by 2 digits referring to -#' the analysis period. -#' @param completed_lbl (`string`) associated with completed study and found in the columns given by `status`. By -#' Default `COMPLETED`. -#' @param ongoing_lbl (`string`) associated with ongoing treatment and found in the columns given by `status_treatment`. -#' By Default `ONGOING. -#' @param discontinued_lbl (`string`) associated with discontinued study and found in the columns given by `status`. By -#' Default `DISCONTINUED`. -#' -#' -#' @details Since the two parts of the tables are pruned differently, the layout function returns a list of layouts, -#' which allows the tables to be constructed and pruned separately before binding. -#' -#' @export -#' -dst01_2_lyt <- function(arm_var, - status_var, - disc_reason_var, - completed_lbl, - ongoing_lbl, - discontinued_lbl, - lbl_overall, - deco = std_deco("DST01")) { - layout_table <- basic_table_deco(deco) %>% - split_cols_by( - arm_var, - split_fun = if (!is.null(lbl_overall)) add_overall_level(lbl_overall, first = FALSE) - ) %>% - add_colcounts() %>% - split_rows_by(var = "DOMAIN", split_fun = drop_split_levels, child_labels = "hidden") - - layout_table_completed <- layout_table %>% - count_values( - vars = status_var, - values = completed_lbl, - .labels = c(count_fraction = "Completed Study"), - .formats = list(count_fraction = format_count_fraction_fixed_dp) - ) - - layout_table_other <- layout_table %>% - count_values( - vars = status_var, - values = ongoing_lbl, - .labels = c(count_fraction = "Ongoing"), - .formats = list(count_fraction = format_count_fraction_fixed_dp) - ) %>% - split_rows_by( - var = status_var, - split_fun = keep_split_levels(discontinued_lbl) - ) %>% - summarize_row_groups( - label_fstr = "Discontinued Study", - format = format_count_fraction_fixed_dp - ) %>% - split_rows_by( - "reasonGP", - split_fun = reorder_split_levels(neworder = c("Safety", "Non-Safety")) - ) %>% - summarize_row_groups(format = format_count_fraction_fixed_dp) %>% - summarize_vars( - disc_reason_var, - .stats = "count_fraction", - denom = "N_col", - .formats = list(count_fraction = format_count_fraction_fixed_dp) - ) - +#' @param detail_vars Named (`list`) of grouped display of `study_status_var`. - - list(completed = layout_table_completed, other = layout_table_other) -} - -#' @describeIn dst01_2 Preprocessing -#' -#' @inheritParams dst01_2_main -#' #' -#' @export +#' @keywords internal #' -#' @examples -#' dst01_2_pre(syn_data) -dst01_2_pre <- function(adam_db, - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - ...) { - assert_all_tablenames(adam_db, c("adsl")) - - new_format <- list( - adsl = list( - rule("" = c("", NA)), - rule( - "COMPLETED" = "Completed", - "DISCONTINUED" = "Discontinued", - "ONGOING" = "Ongoing", - "" = c("", NA) +dst01_lyt <- function(arm_var, + study_status_var, + detail_vars, + trt_status_var, + lbl_overall) { + lyt <- basic_table() %>% + split_cols_by(arm_var) %>% + add_colcounts() %>% + ifneeded_add_overall_col(lbl_overall) + for (n in names(detail_vars)) { + lyt <- lyt %>% + count_or_summarize(study_status_var, n, detail_vars[[n]]) + } + if (!is.null(trt_status_var)) { + lyt <- lyt %>% + summarize_vars( + trt_status_var, + .stats = "count_fraction", + denom = "N_col", + .formats = list(count_fraction = format_count_fraction_fixed_dp), + show_labels = "hidden", + nested = FALSE ) - ) - ) - - names(new_format$adsl) <- c(disc_reason_var, status_var) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - - adam_db$adsl <- adam_db$adsl %>% - mutate( - !!status_var := factor(.data[[status_var]], levels = c("COMPLETED", "DISCONTINUED", "ONGOING", "")) - ) %>% - mutate(reasonGP = case_when( - .data[[disc_reason_var]] %in% c("ADVERSE EVENT", "DEATH") ~ "Safety", - (.data[[disc_reason_var]] != "" & - !.data[[disc_reason_var]] %in% c("ADVERSE EVENT", "DEATH")) ~ "Non-Safety", - .data[[disc_reason_var]] == "" ~ "", - )) %>% - mutate(reasonGP = as.factor(.data$reasonGP)) %>% - mutate(DOMAIN = "ADSL") - - adam_db -} - -#' @describeIn dst01_2 Postprocessing -#' -#' @inheritParams gen_args -#' -#' -#' @export -dst01_2_post <- function(tlg, prune_0 = TRUE, deco = std_deco("DST01"), ...) { - tbl_completed <- tlg[[1]] - tbl_other <- tlg[[2]] - if (prune_0) tbl_other <- tbl_other %>% trim_rows() - - col_info(tbl_other) <- col_info(tbl_completed) - - tbl <- rbind(tbl_completed, tbl_other) - - tbl <- set_decoration(tbl, deco) - - std_postprocess(tbl) + } + lyt } -#' DST01 Table 2 (Supplementary) Patient Disposition Table 2. -#' -#' The DST01_2 Disposition Table provides an overview of -#' patients study completion. For patients who discontinued the study, the reason provided is categorized as "Safety" or -#' "Non-Safety" issue. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' run(dst01_2, syn_data) -dst01_2 <- chevron_t( - main = dst01_2_main, - preprocess = dst01_2_pre, - postprocess = dst01_2_post, - adam_datasets = c("adsl") -) - - -# dst01_3 ---- - -#' @describeIn dst01_3 Main TLG function -#' -#' @inheritParams gen_args -#' @param status_var (`string`) variable used to define patient status. Default is `EOSSTT`, however can also be a -#' variable name with the pattern `EOPxxSTT` where `xx` must be substituted by 2 digits referring to the analysis -#' period. -#' @param disc_reason_var (`string`) variable used to define reason for patient withdrawal. Default is `DCSREAS`, -#' however can also be a variable with the pattern `DCPxxRS` where `xx` must be substituted by 2 digits referring to -#' the analysis period. -#' @param status_treatment_var (`string`) variable used to define the treatment status of the patients. Default is -#' `EOTSTT`, however can also be a variable with the pattern `EOTxxSTT` where `xx` must be substituted by 2 digits -#' referring to the analysis period. -#' -#' @details -#' * Non-standard disposition table summarizing the reasons for patient withdrawal and treatment status. -#' * Withdrawal reasons are grouped into Safety and Non-Safety issues. -#' * Safety issues include Death and Adverse Events. -#' * Numbers represent absolute numbers of patients and fraction of `N`. -#' * Remove zero-count rows. -#' * Split columns by arm. -#' * Include a total column by default. -#' * Sort withdrawal reasons by alphabetic order. -#' -#' @note -#' * `adam_db` object must contain an `adsl` table with the column specified in `status`, `status_treatment` and -#' `disc_reason_var`. +#' @describeIn dst01 Preprocessing #' +#' @inheritParams dst01_main #' @export #' #' @examples -#' library(magrittr) -#' -#' db <- syn_data %>% -#' dst01_3_pre() -#' -#' dst01_3_main(db) -#' dst01_3_main(db, lbl_overall = NULL) -dst01_3_main <- function(adam_db, - arm_var = "ARM", - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - status_treatment_var = "EOTSTT", - lbl_overall = "All Patients", - deco = std_deco("DST01"), - ...) { - completed_lvl <- "COMPLETED" - discontinued_lvl <- "DISCONTINUED" - ongoing_lvl <- "ONGOING" - - checkmate::assert_factor(adam_db$adsl[[status_var]]) - checkmate::assert_factor(adam_db$adsl[[status_treatment_var]]) - - lyt <- dst01_3_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - deco = deco, - completed_trt_lbl = completed_lvl, - ongoing_trt_lbl = ongoing_lvl, - discontinued_trt_lbl = discontinued_lvl, - status_treatment_var = status_treatment_var - ) - - tbl <- build_table( - lyt, - df = adam_db$adsl - ) - - lyt <- dst01_2_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - deco = deco, - completed_lbl = completed_lvl, - ongoing_lbl = ongoing_lvl, - discontinued_lbl = discontinued_lvl, - status_var = status_var, - disc_reason_var = disc_reason_var - ) - - - tbl_completed <- build_table( - lyt[[1]], - df = adam_db$adsl +#' dst01_pre(syn_data) +dst01_pre <- function(adam_db, + ...) { + study_status_format <- rule( + "Completed" = "COMPLETED", + "Ongoing" = "ONGOING", + "Discontinued" = "DISCONTINUED" ) - - tbl_other <- build_table( - lyt[[2]], - df = adam_db$adsl + trt_status_format <- rule( + "Completed Treatment" = "COMPLETED", + "Ongoing Treatment" = "ONGOING", + "Discontinued Treatment" = "DISCONTINUED" ) - - list(tbl, tbl_completed, tbl_other) -} - -#' @describeIn dst01_3 Layout -#' -#' @inheritParams gen_args -#' -#' @param status_treatment_var (`string`) variable used to define the treatment status of the patients. Default is -#' `EOTSTT`, however can also be a variable with the pattern `EOTxxSTT` where `xx` must be substituted by 2 digits -#' referring to the analysis period. -#' @param completed_trt_lbl (`string`) associated with completed treatment and found in the columns given by -#' `status_treatment_var`. By Default `COMPLETED`. -#' @param discontinued_trt_lbl (`string`) associated with discontinued treatment and found in the columns given by -#' `status_treatment_var`. By Default `DISCONTINUED`. -#' @param ongoing_trt_lbl (`string`) associated with ongoing treatment and found in the columns given by -#' `status_treatment_var`. By Default `ONGOING. -#' -#' -#' @export -#' -dst01_3_lyt <- function(arm_var, - status_treatment_var, - completed_trt_lbl, - discontinued_trt_lbl, - ongoing_trt_lbl, - lbl_overall, - deco) { - layout_table <- basic_table_deco(deco) %>% - split_cols_by(arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - split_rows_by(var = "DOMAIN", split_fun = drop_split_levels, child_labels = "hidden") %>% - count_values( - vars = status_treatment_var, - values = completed_trt_lbl, - .labels = c(count_fraction = "Completed Treatment"), - .formats = list(count_fraction = format_count_fraction_fixed_dp), - table_names = c("COMPLETED") - ) %>% - count_values( - vars = status_treatment_var, - values = ongoing_trt_lbl, - .labels = c(count_fraction = "Ongoing Treatment"), - .formats = list(count_fraction = format_count_fraction_fixed_dp), - table_names = c("ONGOING") - ) %>% - count_values( - vars = status_treatment_var, - values = discontinued_trt_lbl, - .labels = c(count_fraction = "Discontinued Treatment"), - .formats = list(count_fraction = format_count_fraction_fixed_dp), - table_names = c("DISCONTINUED") - ) -} - -#' @describeIn dst01_3 Preprocessing -#' -#' @inheritParams dst01_3_main -#' -#' @export -#' -dst01_3_pre <- function(adam_db, - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - status_treatment_var = "EOTSTT", - ...) { - assert_all_tablenames(adam_db, c("adsl")) - - new_format <- list( - adsl = list( - rule("" = c("", NA)), - rule( - "COMPLETED" = "Completed", - "DISCONTINUED" = "Discontinued", - "ONGOING" = "Ongoing", - "" = c("", NA) - ), - rule( - "COMPLETED" = "Completed", - "DISCONTINUED" = "Discontinued", - "ONGOING" = "Ongoing", - "" = c("", NA) - ) + dcsreas_grp_format <- rule( + "Safety" = c("ADVERSE EVENT", "DEATH"), + "Non-Safety" = c( + "WITHDRAWAL BY SUBJECT", "LACK OF EFFICACY", "PROTOCOL VIOLATION", + "WITHDRAWAL BY PARENT/GUARDIAN", "PHYSICIAN DECISION" ) ) - - names(new_format$adsl) <- c(disc_reason_var, status_var, status_treatment_var) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - adam_db$adsl <- adam_db$adsl %>% mutate( - !!status_var := factor(.data[[status_var]], levels = c("COMPLETED", "DISCONTINUED", "ONGOING", "")) - ) %>% - mutate(reasonGP = case_when( - .data[[disc_reason_var]] %in% c("ADVERSE EVENT", "DEATH") ~ "Safety", - .data[[disc_reason_var]] == "" ~ "", - TRUE ~ "Non-Safety" - )) %>% - mutate(reasonGP = factor(.data$reasonGP, levels = c("Safety", "Non-Safety", ""))) %>% - mutate(DOMAIN = "ADSL") - + EOSSTT = reformat(.data$EOSSTT, study_status_format), + EOTSTT = reformat(.data$EOTSTT, trt_status_format), + DCSREASGP = reformat(.data$DCSREAS, dcsreas_grp_format), + STDONS = factor( + case_when( + EOTSTT == "Ongoing Treatment" & EOSSTT == "Ongoing" ~ "Alive: Ongoing", + EOTSTT != "Ongoing Treatment" & EOSSTT == "Ongoing" ~ "Alive: In Follow-up", + TRUE ~ NA_character_ + ), + levels = c("Alive: Ongoing", "Alive: In Follow-up") + ) + ) adam_db } -#' @describeIn dst01_3 Postprocessing +#' @describeIn dst01 Postprocessing #' -#' @inheritParams dst01_3_main #' @inheritParams gen_args #' +#' #' @export -dst01_3_post <- function(tlg, prune_0 = TRUE, deco = std_deco("DST01"), ...) { - tbl <- tlg[[1]] - tbl_completed <- tlg[[2]] - tbl_other <- tlg[[3]] - if (prune_0) tbl_other <- tbl_other %>% trim_rows() - - col_info(tbl_other) <- col_info(tbl_completed) - - tbl2 <- rbind(tbl_completed, tbl_other) - - col_info(tbl) <- col_info(tbl2) - - if (prune_0) tbl <- trim_rows(tbl) - - tbl <- rbind(tbl2, tbl) - - tbl <- set_decoration(tbl, deco) - - std_postprocess(tbl) +dst01_post <- function(tlg, prune_0 = TRUE, ...) { + if (prune_0) { + tlg <- tlg %>% + smart_prune() + } + std_postprocess(tlg) } -#' DST01 Table 3 (Supplementary) Patient Disposition Table 3. + +#' DST01 Table 1 (Default) Patient Disposition Table 1. #' -#' The DST01_3 Disposition Table provides an overview of patients study treatment status. For patients who discontinued -#' the study, the reason provided is categorized as "Safety" or "Non-Safety" issue. +#' The DST01 Disposition Table provides an overview of patients +#' study completion. For patients who discontinued the study a reason is provided. #' #' @include chevron_tlg-S4class.R #' @export #' #' @examples -#' run(dst01_3, syn_data) -dst01_3 <- chevron_t( - main = dst01_3_main, - preprocess = dst01_3_pre, - postprocess = dst01_3_post, +#' run(dst01, syn_data, detail_vars = list(Ongoing = "STDONS")) +#' run(dst01, syn_data, detail_vars = list(Discontinued = "DCSREAS", Ongoing = "STDONS")) +#' run( +#' dst01, syn_data, +#' detail_vars = list( +#' Discontinued = c("DCSREASGP", "DCSREAS"), +#' Ongoing = "STDONS" +#' ) +#' ) +dst01 <- chevron_t( + main = dst01_main, + preprocess = dst01_pre, + postprocess = dst01_post, adam_datasets = c("adsl") ) diff --git a/R/dtht01.R b/R/dtht01.R index 93a7e3e57..e336fb9b7 100755 --- a/R/dtht01.R +++ b/R/dtht01.R @@ -1,6 +1,6 @@ -# dtht01_1 ---- +# dtht01 ---- -#' @describeIn dtht01_1 Main TLG function +#' @describeIn dtht01 Main TLG function #' #' @inheritParams gen_args #' @param time_since_last_dose (`flag`) should the time to event information be displayed. @@ -17,173 +17,163 @@ #' #' @export #' -dtht01_1_main <- function(adam_db, - arm_var = "ACTARM", - time_since_last_dose = FALSE, - other_category = FALSE, - lbl_overall = NULL, - deco = std_deco("DTHT01"), - ...) { - dbsel <- get_db_data(adam_db, "adsl") - - checkmate::assert_factor(dbsel$adsl$DTHFL, any.missing = FALSE) - checkmate::assert_factor(dbsel$adsl$DTHCAT, any.missing = FALSE) - checkmate::assert_flag(time_since_last_dose) +dtht01_main <- function(adam_db, + arm_var = "ACTARM", + other_category = FALSE, + time_since_last_dose = FALSE, + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, "adsl") + checkmate::assert_string(arm_var) checkmate::assert_flag(other_category) - - breakdown <- if ("OTHER" %in% levels(adam_db$adsl$DTHCAT) && other_category) "OTHER" - - lyt <- dtht01_1_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - breakdown = breakdown, - deco = deco + checkmate::assert_string(lbl_overall, null.ok = TRUE) + checkmate::assert_flag(time_since_last_dose, null.ok = TRUE) + + other_var <- if (other_category) "DTHCAUS" + dose_death_var <- if (time_since_last_dose) "LDDTHGR1" + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list("character", "factor")) + assert_valid_variable( + adam_db$adsl, + "DTHFL", + types = list("character", "factor"), na_ok = TRUE, min_chars = 0L + ) + assert_valid_variable( + adam_db$adsl, + c("DTHCAT", other_var, dose_death_var), + types = list("character", "factor"), na_ok = TRUE, min_chars = 1L ) - - tbl <- build_table(lyt[[1]], dbsel$adsl) - if (other_category) { - tbl_2 <- build_table(lyt[[2]], dbsel$adsl %>% filter(.data$DTHFL == "Y")) # to ensure the correct denominator. - col_info(tbl_2) <- col_info(tbl) - tbl <- rbind(tbl, tbl_2) + death_cause <- lvls(adam_db$adsl$DTHCAT) + if (length(death_cause) == 0L) { + stop("other_category specified but could not find any level in `DTHCAT`!") + } + other_level <- death_cause[length(death_cause)] + if (toupper(other_level) != "OTHER") { + warning( + "You included detailed information for Other, however the last level of ", + " `adam_db$adsl$DTHCAT` looks like not `Other`.", + call. = FALSE + ) + } } - - if (time_since_last_dose) { - checkmate::assert_factor(dbsel$adsl$LDDTHGR1, any.missing = FALSE) - - lyt2 <- dtht01_1_opt_lyt( - arm_var = arm_var, - lbl_overall = lbl_overall, - deco = deco - ) - - tbl_opt <- build_table(lyt2, dbsel$adsl) - col_info(tbl_opt) <- col_info(tbl) - tbl <- rbind(tbl, tbl_opt) - tbl <- set_decoration(tbl, deco) - } - tbl + lyt <- dtht01_lyt( + arm_var = arm_var, + lbl_overall = lbl_overall, + other_var = other_var, + other_level = other_level, + death_flag = "DTHFL", + death_var = "DTHCAT", + dose_death_var = dose_death_var + ) + adsl <- adam_db$adsl %>% + mutate(TOTAL = "Primary Cause of Death") + build_table(lyt, adsl) } -#' @describeIn dtht01_1 Layout -#' -#' @inheritParams gen_args -#' @param breakdown (`character`) the levels of `DTHCAT` to be split. If `NULL`, this section is omitted. -#' -#' @export -#' -dtht01_1_lyt <- function(arm_var, - lbl_overall, - breakdown, - deco) { - tab <- - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% +#' dtht01 Layout +#' +#' @inheritParams dtht01_main +#' @param death_falg (`string`) variable name of death flag. +#' @param detah_var (`string`) variable name of death catagory. +#' @param other_level (`string`) "Other" level in death catagory. +#' @param other_var (`string`) variable name of death cause under "Other". +#' @param dose_death_var (`string`) variable name of the days from last dose. +#' +#' @keywords internal +#' +dtht01_lyt <- function(arm_var, + lbl_overall, + death_flag, + death_var, + other_level, + other_var, + dose_death_var) { + if (is.null(dose_death_var) && is.null(other_var)) { + lyt_block_fun <- analyze + } else { + lyt_block_fun <- summarize_row + } + lyt <- basic_table() %>% + split_cols_by("ACTARM") %>% add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% count_values( - "DTHFL", + death_flag, values = "Y", .labels = c(count_fraction = "Total number of deaths"), .formats = c(count_fraction = format_count_fraction_fixed_dp) ) %>% - summarize_vars( - vars = c("DTHCAT"), - var_labels = c("Primary cause of death"), - .formats = c(count_fraction = format_count_fraction_fixed_dp) - ) - - tab2 <- - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - split_rows_by("DTHCAT", split_fun = keep_split_levels(breakdown), child_labels = "hidden") %>% # OTHER - summarize_vars( - "DTHCAUS", - .stats = "count_fraction", - .indent_mods = c("count_fraction" = 4L), - .formats = c(count_fraction = format_count_fraction_fixed_dp), - denom = "N_col" - ) - - list(tab, tab2) -} - -#' @describeIn dtht01_1 Optional Layout -#' -#' @inheritParams gen_args -#' -#' @export -#' -dtht01_1_opt_lyt <- function(arm_var, - lbl_overall, - deco) { - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - summarize_vars( - vars = "LDDTHGR1", - var_labels = "Days from last drug administration", - show_labels = "visible", - .formats = c(count_fraction = format_count_fraction_fixed_dp) - ) %>% - split_rows_by( - "LDDTHGR1", - split_fun = remove_split_levels(""), - split_label = "Primary cause by days from last study drug administration", - label_pos = "visible" - ) %>% - summarize_vars( - "DTHCAT", - .formats = c(count_fraction = format_count_fraction_fixed_dp) + split_rows_by("TOTAL", child_labels = "visible", label_pos = "hidden", split_fun = drop_split_levels) %>% + lyt_block_fun( + death_var, + make_afun( + s_summary_na, + .stats = c("n", "count_fraction"), .ungroup_stats = "count_fraction", + .formats = list(n = "xx", count_fraction = format_count_fraction_fixed_dp) + ), + indent_mod = 0L ) + if (!is.null(other_var)) { + lyt <- lyt %>% + split_rows_by(death_var, split_fun = keep_split_levels(other_level), child_labels = "hidden") %>% + summarize_vars(other_var, .stats = "count_fraction", denom = "N_row") + } + if (!is.null(dose_death_var)) { + lyt <- lyt %>% + summarize_vars_allow_na( + vars = dose_death_var, + var_labels = "Days from last drug administration", + .formats = list(count_fraction = format_count_fraction_fixed_dp), + show_labels = "visible", + nested = FALSE, + inclNAs = FALSE + ) %>% + split_rows_by( + dose_death_var, + split_fun = drop_split_levels, + split_label = "Primary cause by days from last study drug administration", + label_pos = "visible", + nested = FALSE + ) %>% + summarize_vars_allow_na( + death_var, + .formats = list(count_fraction = format_count_fraction_fixed_dp) + ) + } + lyt } -#' @describeIn dtht01_1 Preprocessing +#' @describeIn dtht01 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -dtht01_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl")) - assert_colnames(adam_db$adsl, c("DTHFL", "DTHCAT")) - - missing_rule <- rule("" = c("", NA)) - as_fct <- rule() - new_formats <- list( - adsl = list( - DTHCAT = missing_rule, - DTHCAUS = missing_rule, - LDDTHGR1 = missing_rule, - DTHFL = as_fct - ) +dtht01_pre <- function(adam_db, ...) { + death_format <- rule( + "Adverse Event" = "ADVERSE EVENT", + "Progressive Disease" = "PROGRESSIVE DISEASE", + "Other" = "OTHER" ) - - adam_db <- dunlin::reformat(adam_db, new_formats, na_last = TRUE) - - if ("OTHER" %in% levels(adam_db$adsl$DTHCAT)) { - adam_db$adsl$DTHCAT <- forcats::fct_relevel(adam_db$adsl$DTHCAT, "OTHER", after = Inf) - } - + adam_db$adsl <- adam_db$adsl %>% + mutate( + DTHCAT = reformat(.data$DTHCAT, death_format) + ) adam_db } -#' @describeIn dtht01_1 Postprocessing +#' @describeIn dtht01 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -dtht01_1_post <- function(tlg, prune_0 = TRUE, ...) { +dtht01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) { - tbl <- smart_prune(tlg) + tlg <- smart_prune(tlg) } - std_postprocess(tbl) + std_postprocess(tlg) } #' `DTHT01` Table 1 (Default) Death Table. @@ -198,11 +188,11 @@ dtht01_1_post <- function(tlg, prune_0 = TRUE, ...) { #' #' db <- syn_data #' -#' run(dtht01_1, db) -#' run(dtht01_1, db, other_category = TRUE, time_since_last_dose = TRUE) -dtht01_1 <- chevron_t( - main = dtht01_1_main, - preprocess = dtht01_1_pre, - postprocess = dtht01_1_post, +#' run(dtht01, db) +#' run(dtht01, db, other_category = TRUE, time_since_last_dose = TRUE) +dtht01 <- chevron_t( + main = dtht01_main, + preprocess = dtht01_pre, + postprocess = dtht01_post, adam_datasets = c("adsl") ) diff --git a/R/egt01.R b/R/egt01.R index 36173348f..e3712ccae 100644 --- a/R/egt01.R +++ b/R/egt01.R @@ -1,12 +1,16 @@ -# egt01_1 ---- +# egt01 ---- -#' @describeIn egt01_1 Main TLG function +#' @describeIn egt01 Main TLG function #' #' @inheritParams gen_args -#' @param summaryvars (`list`) variables to be analyzed. Names are used as subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adeg` table of `adam_db` is used. +#' @param summaryvars (`character`) variables to be analyzed. The label attribute of the corresponding column in `adeg` +#' table of `adam_db` is used as label. #' @param visitvar (`string`) typically one of `"AVISIT"` (Default) or `"ATPTN"` depending on the type of time point to #' be displayed +#' @param precision (named `list` of `integer`) where names are values found in the `PARAMCD` column and the the values +#' indicate the number of digits that should be represented for `min`, `max` and `median`. `Mean` and `sd` are +#' represented with one more decimal of precision. +#' @param default_precision (`integer`) the default number of digits. #' #' @details #' * The `Analysis Value` column, displays the number of patients, the mean, standard deviation, median and range of @@ -25,26 +29,37 @@ #' #' @export #' -egt01_1_main <- function(adam_db, - arm_var = "ACTARM", - summaryvars = list("Value at Visit" = "AVAL", "Change from \nBaseline" = "CHG"), - visitvar = "AVISIT", # or ATPTN - deco = std_deco("EGT01"), - ...) { - summaryvars <- unlist(summaryvars) +egt01_main <- function(adam_db, + arm_var = "ACTARM", + summaryvars = c("AVAL", "CHG"), + visitvar = "AVISIT", # or ATPTN + precision = list(), + default_precision = 2, + ...) { + assert_all_tablenames(adam_db, c("adsl", "adeg")) + assert_valid_variable(adam_db$adeg, c("PARAM", "PARAMCD"), types = list("character", "factor"), na_ok = FALSE) + assert_valid_variable(adam_db$adeg, summaryvars, types = list(c("numeric")), na_ok = TRUE, empty_ok = TRUE) + assert_valid_variable(adam_db$adeg, c(visitvar), types = c("character", "factor")) + assert_valid_var_pair(adam_db$adsl, adam_db$adeg, arm_var) + assert_valid_variable(adam_db$adeg, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + checkmate::assert_list(precision, types = "integerish", names = "unique") + vapply(precision, checkmate::assert_integerish, FUN.VALUE = numeric(1), lower = 0, len = 1) + checkmate::assert_integerish(default_precision, lower = 0, len = 1) + lbl_avisit <- var_labels_for(adam_db$adeg, visitvar) lbl_param <- var_labels_for(adam_db$adeg, "PARAM") + summaryvars_lbls <- var_labels_for(adam_db$adeg, summaryvars) - summaryvars_lbls <- get_labels(adam_db$adeg, summaryvars) - - lyt <- egt01_1_lyt( + lyt <- egt01_lyt( arm_var = arm_var, summaryvars = summaryvars, summaryvars_lbls = summaryvars_lbls, visitvar = visitvar, lbl_avisit = lbl_avisit, lbl_param = lbl_param, - deco = deco + precision = precision, + default_precision = default_precision ) tbl <- build_table( @@ -53,7 +68,7 @@ egt01_1_main <- function(adam_db, ) } -#' @describeIn egt01_1 Layout +#' `egt01` Layout #' #' @inheritParams gen_args #' @@ -64,21 +79,20 @@ egt01_1_main <- function(adam_db, #' @param lbl_avisit (`string`) label of the `visitvar` variable. #' @param lbl_param (`string`) label of the `PARAM` variable. #' -#' @export -egt01_1_lyt <- function(arm_var, - summaryvars, - summaryvars_lbls, - visitvar, - lbl_avisit, - lbl_param, - deco) { - # TODE solve the problem of the overall column - # remove change from baseline in BASELINE - - basic_table_deco(deco) %>% +#' @keywords internal +egt01_lyt <- function(arm_var, + summaryvars, + summaryvars_lbls, + visitvar, + lbl_avisit, + lbl_param, + precision, + default_precision) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% split_rows_by( - "PARAM", + "PARAMCD", + labels_var = "PARAM", split_fun = drop_split_levels, label_pos = "hidden", split_label = paste(lbl_param) @@ -94,52 +108,108 @@ egt01_1_lyt <- function(arm_var, varlabels = summaryvars_lbls, nested = TRUE ) %>% - summarize_colvars() %>% + analyze_colvars( + afun = function(x, .var, .spl_context, precision, default_precision, ...) { + param_val <- .spl_context$value[which(.spl_context$split == "PARAMCD")] + + pcs <- precision[[param_val]] %||% default_precision + + # Create context dependent function. + n_fun <- sum(!is.na(x), na.rm = TRUE) + if (n_fun == 0) { + mean_sd_fun <- c(NA, NA) + median_fun <- NA + min_max_fun <- c(NA, NA) + } else { + mean_sd_fun <- c(mean(x, na.rm = TRUE), sd(x, na.rm = TRUE)) + median_fun <- median(x, na.rm = TRUE) + min_max_fun <- c(min(x), max(x)) + } + + # Identify context- + is_chg <- .var == "CHG" + + is_baseline <- .spl_context$value[which(.spl_context$split == "AVISIT")] == "BASELINE" + + if (is_baseline && is_chg) { + n_fun <- mean_sd_fun <- median_fun <- min_max_fun <- NULL + } + + in_rows( + "n" = n_fun, + "Mean (SD)" = mean_sd_fun, + "Median" = median_fun, + "Min - Max" = min_max_fun, + .formats = list( + "n" = "xx", + "Mean (SD)" = h_format_dec(format = "%f (%f)", digits = pcs + 1), + "Median" = h_format_dec(format = "%f", digits = pcs + 1), + "Min - Max" = h_format_dec(format = "%f - %f", digits = pcs) + ), + .format_na_strs = list( + "n" = "NE", + "Mean (SD)" = "NE (NE)", + "Median" = "NE", + "Min - Max" = "NE - NE" + ) + ) + }, + extra_args = list( + precision = precision, + default_precision = default_precision + ) + ) %>% append_topleft(paste(lbl_param)) %>% append_topleft(c(paste(" ", lbl_avisit), " ")) } -#' @describeIn egt01_1 Preprocessing +#' @describeIn egt01 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -egt01_1_pre <- function(adam_db, ...) { +egt01_pre <- function(adam_db, ...) { assert_all_tablenames(adam_db, c("adsl", "adeg")) adam_db$adeg <- adam_db$adeg %>% - filter(.data$ANL01FL == "Y") + filter(.data$ANL01FL == "Y") %>% + mutate( + AVAL = with_label(.data$AVAL, "Value at Visit"), + CHG = with_label(.data$CHG, "Change from \nBaseline") + ) adam_db } -#' @describeIn egt01_1 Postprocessing +#' @describeIn egt01 Postprocessing #' #' @inheritParams gen_args #' #' @export -egt01_1_post <- function(tlg, prune_0 = TRUE, ...) { +egt01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) tlg <- smart_prune(tlg) std_postprocess(tlg) } -#' `EGT01` Table 1 (Default) ECG Assessments and Change from Baseline by Visit Table 1. +#' `EGT01` ECG Assessments and Change from Baseline by Visit Table. #' -#' The `EGT01` table 1 summarizes +#' The `EGT01` table summarizes #' several electrocardiogram parameters and their evolution throughout the study. #' #' @include chevron_tlg-S4class.R #' @export #' #' @examples -#' db <- syn_data -#' run(egt01_1, db) -#' run(egt01_1, db, summaryvars = list("AVAL", "Change" = "CHG")) -egt01_1 <- chevron_t( - main = egt01_1_main, - preprocess = egt01_1_pre, - postprocess = egt01_1_post, +#' run(egt01, syn_data, precision = list( +#' "HR" = 1, +#' "QT" = 1, +#' "RR" = 0 +#' )) +egt01 <- chevron_t( + main = egt01_main, + preprocess = egt01_pre, + postprocess = egt01_post, adam_datasets = c("adeg") ) diff --git a/R/egt02.R b/R/egt02.R index 778bf41c4..48f61c5a5 100644 --- a/R/egt02.R +++ b/R/egt02.R @@ -3,8 +3,7 @@ #' @describeIn egt02_1 Main TLG function #' #' @inheritParams gen_args -#' @param lbl_vs_assessment (`string`) the label of the assessment variable. -#' @param lbl_vs_abnormality (`string`) the label of the abnormality variable. +#' @param exclude_base_abn (`flag`) whether baseline abnormality should be excluded. #' #' @details #' * Only count LOW or HIGH values. @@ -19,40 +18,47 @@ #' egt02_1_main <- function(adam_db, arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", lbl_overall = NULL, - deco = std_deco("EGT02"), + exclude_base_abn = FALSE, ...) { - dbsel <- get_db_data(adam_db, "adsl", "adeg") - - lyt <- egt02_1_lyt( + assert_all_tablenames(adam_db, c("adsl", "adeg")) + assert_valid_variable(adam_db$adeg, c("PARAM"), types = list(c("character", "factor")), na_ok = FALSE) + assert_valid_variable(adam_db$adeg, c("ANRIND", "BNRIND"), types = list(c("character", "factor")), na_ok = TRUE) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + checkmate::assert_flag(exclude_base_abn) + assert_valid_var_pair(adam_db$adsl, adam_db$adeg, arm_var) + assert_valid_variable(adam_db$adeg, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + + lyt <- egt02_lyt( arm_var = arm_var, - lbl_vs_assessment = lbl_vs_assessment, - lbl_vs_abnormality = lbl_vs_abnormality, + lbl_vs_assessment = "Assessment", + lbl_vs_abnormality = "Abnormality", lbl_overall = lbl_overall, - deco = deco + exclude_base_abn = exclude_base_abn ) - tbl <- build_table(lyt, dbsel$adeg, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$adeg, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn egt02_1 Layout +#' `egt02` Layout #' #' @inheritParams gen_args #' @param lbl_vs_assessment (`string`) the label of the assessment variable. #' @param lbl_vs_abnormality (`string`) the label of the abnormality variable. +#' @param exclude_base_abn (`flag`) whether to exclude subjects with baseline abnormality from numerator and +#' denominator. #' -#' @export +#' @keywords internal #' -egt02_1_lyt <- function(arm_var = "ACTARM", - lbl_vs_assessment, - lbl_vs_abnormality, - lbl_overall, - deco) { - basic_table_deco(deco) %>% +egt02_lyt <- function(arm_var = "ACTARM", + lbl_vs_assessment = "Assessment", + lbl_vs_abnormality = "Abnormality", + lbl_overall, + exclude_base_abn) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% @@ -61,18 +67,19 @@ egt02_1_lyt <- function(arm_var = "ACTARM", "ANRIND", abnormal = list(Low = "LOW", High = "HIGH"), variables = list(id = "USUBJID", baseline = "BNRIND"), - exclude_base_abn = FALSE + exclude_base_abn = exclude_base_abn ) %>% append_topleft(paste0(" ", lbl_vs_abnormality)) } + #' @describeIn egt02_1 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -egt02_1_pre <- function(adam_db, ...) { +egt02_pre <- function(adam_db, ...) { assert_all_tablenames(adam_db, c("adsl", "adeg")) adam_db$adeg <- adam_db$adeg %>% @@ -88,14 +95,13 @@ egt02_1_pre <- function(adam_db, ...) { #' #' @export #' -egt02_1_post <- function(tlg, ...) { +egt02_post <- function(tlg, ...) { std_postprocess(tlg) } -#' `EGT02` Table 1 (Default) ECG Abnormalities Table 1. +#' `EGT02` ECG Abnormalities Table. #' -#' Assessments Outside Normal Limits Regardless of Abnormality at -#' Baseline Table. +#' ECG Parameters outside Normal Limits Regardless of Abnormality at Baseline Table. #' #' @include chevron_tlg-S4class.R #' @export @@ -104,8 +110,8 @@ egt02_1_post <- function(tlg, ...) { #' run(egt02_1, syn_data) egt02_1 <- chevron_t( main = egt02_1_main, - preprocess = egt02_1_pre, - postprocess = egt02_1_post, + preprocess = egt02_pre, + postprocess = egt02_post, adam_datasets = c("adsl", "adeg") ) @@ -113,98 +119,14 @@ egt02_1 <- chevron_t( #' @describeIn egt02_2 Main TLG function #' -#' @inheritParams gen_args -#' @param lbl_vs_assessment (`string`) the label of the assessment variable. -#' @param lbl_vs_abnormality (`string`) the label of the abnormality variable. -#' -#' @details -#' * Only count LOW or HIGH values. -#' * Results of "LOW LOW" are treated as the same as "LOW", and "HIGH HIGH" the same as "HIGH". -#' * Does not include a total column by default. -#' * Does not remove zero-count rows unless overridden with `prune_0 = TRUE`. -#' -#' @note -#' * `adam_db` object must contain an `adeg` table with the `"PARAM"`, `"ANRIND"` and `"BNRIND"` columns. -#' +#' @inherit egt02_1_main #' @export #' -egt02_2_main <- function(adam_db, - arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", - lbl_overall = NULL, - deco = std_deco("EGT02_2"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adeg") - - lyt <- egt02_2_lyt( - arm_var = arm_var, - lbl_vs_assessment = lbl_vs_assessment, - lbl_vs_abnormality = lbl_vs_abnormality, - lbl_overall = lbl_overall, - deco = deco - ) - - tbl <- build_table(lyt, dbsel$adeg, alt_counts_df = dbsel$adsl) - - tbl -} - -#' @describeIn egt02_2 Layout -#' -#' @inheritParams gen_args -#' @param lbl_vs_assessment (`string`) the label of the assessment variable. -#' @param lbl_vs_abnormality (`string`) the label of the abnormality variable. -#' -#' @export -#' -egt02_2_lyt <- function(arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", - lbl_overall = NULL, - deco = std_deco("EGT02_2")) { - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - split_rows_by("PARAM", split_fun = drop_split_levels, label_pos = "topleft", split_label = lbl_vs_assessment) %>% - count_abnormal( - "ANRIND", - abnormal = list(Low = "LOW", High = "HIGH"), - variables = list(id = "USUBJID", baseline = "BNRIND"), - exclude_base_abn = TRUE - ) %>% - append_topleft(paste0(" ", lbl_vs_abnormality)) -} - -#' @describeIn egt02_2 Preprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -egt02_2_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adeg")) - - adam_db$adeg <- adam_db$adeg %>% - filter(.data$ANRIND != "") %>% - filter(.data$ONTRTFL == "Y") - - adam_db -} -#' @describeIn egt02_2 Postprocessing -#' -#' @inheritParams gen_args -#' -#' @export -egt02_2_post <- function(tlg, ...) { - std_postprocess(tlg) -} +egt02_2_main <- modify_default_args(egt02_1_main, exclude_base_abn = TRUE) -#' `EGT02` Table 2 (Supplementary) ECG Abnormalities Table 2. +#' `EGT02_2` ECG Abnormalities Table. #' -#' Assessments Outside Normal Limits Among Subject Without -#' Abnormality at Baseline. +#' ECG Parameters outside Normal Limits Among Patients without Abnormality at Baseline Table. #' #' @include chevron_tlg-S4class.R #' @export @@ -213,7 +135,7 @@ egt02_2_post <- function(tlg, ...) { #' run(egt02_2, syn_data) egt02_2 <- chevron_t( main = egt02_2_main, - preprocess = egt02_2_pre, - postprocess = egt02_2_post, + preprocess = egt02_pre, + postprocess = egt02_post, adam_datasets = c("adsl", "adeg") ) diff --git a/R/egt03.R b/R/egt03.R index ff769a56e..d10dbb1e2 100755 --- a/R/egt03.R +++ b/R/egt03.R @@ -1,13 +1,11 @@ -# egt03_1 ---- -#' @describeIn egt03_1 Main TLG function +# egt03 ---- +#' @describeIn egt03 Main TLG function #' #' @param arm_var (`character`) the arm variables used for row split, typically `"ARMCD"`. -#' @param summaryvar (`list`) variables to be analyzed, typically `"BNRIND"`. Names are used as -#' subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adeg` table of `adam_db` is used. -#' @param splitvar (`list`) variables to be analyzed, typically `"BNRIND"`. Names are used as -#' subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adeg` table of `adam_db` is used. +#' @param summaryvar (`character`) variables to be analyzed, typically `"BNRIND"`. Labels of the corresponding columns +#' are used as subtitles. +#' @param splitvar (`character`) variables to be analyzed, typically `"ANRIND"`. Labels of the corresponding columns are +#' used as subtitles. #' #' @details #' * ADEG data are subsetted to contain only "POST-BASELINE MINIMUM" visit @@ -23,29 +21,34 @@ #' #' @export #' -egt03_1_main <- function(adam_db, - arm_var = "ARMCD", - summaryvar = list("Baseline Reference Range Indicator" = "BNRIND"), - splitvar = list("Analysis Reference Range Indicator" = "ANRIND"), - deco = std_deco("EGT03"), - ...) { - summaryvar <- unlist(summaryvar) - splitvar <- unlist(splitvar) +egt03_main <- function(adam_db, + arm_var = "ARMCD", + summaryvar = "BNRIND", + splitvar = "ANRIND", + visit_var = "AVISIT", + ...) { + assert_all_tablenames(adam_db, c("adsl", "adeg")) + checkmate::assert_string(summaryvar) + assert_valid_variable(adam_db$adeg, summaryvar, types = list("character", "factor")) + checkmate::assert_string(splitvar) + assert_valid_variable(adam_db$adeg, splitvar, types = list("character", "factor")) + assert_single_value(adam_db$adeg[[visit_var]]) + assert_valid_var_pair(adam_db$adsl, adam_db$adeg, arm_var) + assert_valid_variable(adam_db$adeg, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) lbl_armvar <- var_labels_for(adam_db$adeg, arm_var) - lbl_summaryvars <- get_labels(adam_db$adeg, summaryvar) - lbl_splitvar <- get_labels(adam_db$adeg, splitvar) + lbl_summaryvars <- var_labels_for(adam_db$adeg, summaryvar) + lbl_splitvar <- var_labels_for(adam_db$adeg, splitvar) - lyt <- egt03_1_lyt( + lyt <- egt03_lyt( arm_var = arm_var, splitvar = splitvar, summaryvar = summaryvar, lbl_armvar = lbl_armvar, - lbl_splitvar = lbl_splitvar, - lbl_summaryvars = lbl_summaryvars, - deco = deco + lbl_summaryvars = lbl_summaryvars ) - + adam_db$adeg$SPLIT_LABEL <- lbl_splitvar tbl <- build_table( lyt, df = adam_db$adeg @@ -55,29 +58,26 @@ egt03_1_main <- function(adam_db, } -#' @describeIn egt03_1 Layout +#' `egt03` Layout #' #' @inheritParams gen_args -#' @inheritParams egt03_1_main +#' @inheritParams egt03_main #' #' @param lbl_armvar (`string`) label of the `arm_var` variable. -#' @param lbl_splitvar (`string`) label of the `splitvar` variable. #' @param lbl_summaryvars (`string`) label of the `summaryvar` variable. #' -#' @export -egt03_1_lyt <- function(arm_var, - splitvar, - summaryvar, - lbl_armvar, - lbl_splitvar, - lbl_summaryvars, - deco) { +#' @keywords internal +egt03_lyt <- function(arm_var, + splitvar, + summaryvar, + lbl_armvar, + lbl_summaryvars) { indent <- 1L space <- paste(rep(" ", indent * 2), collapse = "") lbl_summaryvars <- paste0(space, lbl_summaryvars) - basic_table_deco(deco) %>% - split_cols_by("min_label") %>% + basic_table(show_colcounts = FALSE) %>% + split_cols_by("SPLIT_LABEL") %>% split_cols_by(splitvar) %>% split_rows_by(arm_var, split_fun = drop_split_levels, @@ -89,58 +89,18 @@ egt03_1_lyt <- function(arm_var, append_topleft(lbl_summaryvars) } -#' @describeIn egt03_1 Checks -#' -#' @inheritParams gen_args -#' @export -egt03_1_check <- function(adam_db, - req_tables, - visit_var, - paramcd_value, - visit_value) { - assert_all_tablenames(adam_db, req_tables) - checkmate::assert_subset(c(visit_var, "PARAMCD"), colnames(adam_db$adeg)) - msg <- NULL - - adeg_layout_col <- "USUBJID" - - msg <- c(msg, check_all_colnames(adam_db$adeg, c(adeg_layout_col, visit_var))) - msg_warn <- c( - check_col_contains(adam_db$adeg, visit_value, visit_var, "ADEG"), - check_col_contains(adam_db$adeg, paramcd_value, "PARAMCD", "ADEG") - ) - if (!is.null(msg_warn)) { - warning(paste(msg_warn, collapse = "\n"), .call = FALSE) - } - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, sep = "\n")) - } -} - -#' @describeIn egt03_1 Preprocessing +#' @describeIn egt03 Preprocessing #' #' @inheritParams gen_args -#' @inheritParams egt03_1_main +#' @inheritParams egt03_main #' #' @export -egt03_1_pre <- function(adam_db, visit_var = "AVISIT", paramcd_value = "HR", ...) { - assert_all_tablenames(adam_db, c("adsl", "adeg")) - - visit_value <- "POST-BASELINE MINIMUM" - egt03_1_check( - adam_db, - req_tables = "adeg", visit_var = "AVISIT", - paramcd_value = paramcd_value, visit_value = visit_value - ) - +egt03_pre <- function(adam_db, ...) { adam_db$adeg <- adam_db$adeg %>% filter( - .data$PARAMCD == paramcd_value & - !!sym(visit_var) == visit_value # "Analysis Visit" + .data$PARAMCD == "HR" & + .data$AVISIT == "POST-BASELINE MINIMUM" ) %>% - mutate(min_label = "Minimum Post-Baseline Assessment") %>% mutate(BNRIND = factor( .data$BNRIND, levels = c("LOW", "NORMAL", "HIGH", "Missing"), @@ -150,195 +110,40 @@ egt03_1_pre <- function(adam_db, visit_var = "AVISIT", paramcd_value = "HR", ... .data$ANRIND, levels = c("LOW", "NORMAL", "HIGH", "Missing"), labels = c("LOW", "NORMAL", "HIGH", "Missing") - )) - - adam_db -} - -#' @describeIn egt03_1 Postprocessing -#' -#' @inheritParams gen_args -#' -#' @export -egt03_1_post <- function(tlg, prune_0 = FALSE, ...) { - if (prune_0) tlg <- smart_prune(tlg) - - std_postprocess(tlg) -} - -#' `EGT03` Table 1 (Default) Shift Table of ECG Interval Data - Baseline versus Minimum Post-Baseline -#' -#' The `EGT03` Table entries provide the number of patients by baseline assessment and minimum post-baseline -#' assessment. Percentages are based on the total number of patients in a treatment group. Baseline is the -#' patient's last observation prior to initiation of study drug. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' db <- syn_data -#' run(egt03_1, db) -egt03_1 <- chevron_t( - main = egt03_1_main, - preprocess = egt03_1_pre, - postprocess = egt03_1_post, - adam_datasets = c("adeg") -) - - -# egt03_2 ---- -#' @describeIn egt03_2 Main TLG function -#' -#' @inheritParams gen_args -#' @param arm_var (`string`) the arm variables used for row split, typically `"ARMCD"`. -#' @param summaryvar (`list`) variables to be analyzed, typically `"BNRIND"`. Names are used as -#' subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adeg` table of `adam_db` is used. -#' @param splitvar (`list`) variables to be analyzed, typically `"BNRIND"`. Names are used as -#' subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adeg` table of `adam_db` is used. -#' -#' @details -#' * ADEG data are subsetted to contain only "POST-BASELINE MAXIMUM" visit -#' * the number of patients by baseline assessment and maximum post-baseline assessment. -#' * Percentages are based on the total number of patients in a treatment group. -#' * Split columns by Analysis Reference Range Indicator, typically `ANRIND`. -#' * Does not include a total column by default. -#' * Sorted based on factor level. -#' -#' @note -#' * `adam_db` object must contain an `adeg` table with a `"ARMCD"` column as well as columns specified in -#' `summaryvar` and `splitvar`. -#' -#' @export -#' -egt03_2_main <- function(adam_db, - arm_var = "ARMCD", - summaryvar = list("Baseline Reference Range Indicator" = "BNRIND"), - splitvar = list("Analysis Reference Range Indicator" = "ANRIND"), - deco = std_deco("EGT03"), - ...) { - summaryvar <- unlist(summaryvar) - splitvar <- unlist(splitvar) - - lbl_armvar <- var_labels_for(adam_db$adeg, arm_var) - lbl_summaryvars <- get_labels(adam_db$adeg, summaryvar) - lbl_splitvar <- get_labels(adam_db$adeg, splitvar) - - lyt <- egt03_2_lyt( - arm_var = arm_var, - splitvar = splitvar, - summaryvar = summaryvar, - lbl_armvar = lbl_armvar, - lbl_splitvar = lbl_splitvar, - lbl_summaryvars = lbl_summaryvars, - deco = deco - ) - - tbl <- build_table( - lyt, - df = adam_db$adeg - ) - - return(tbl) -} - - -#' @describeIn egt03_2 Layout -#' -#' @inheritParams gen_args -#' @inheritParams egt03_2_main -#' @param lbl_armvar (`string`) label of the `arm_var` variable. -#' @param lbl_splitvar (`string`) label of the `splitvar` variable. -#' @param lbl_summaryvars (`string`) label of the `summaryvar` variable. -#' -#' @export -egt03_2_lyt <- function(arm_var, - splitvar, - summaryvar, - lbl_armvar, - lbl_splitvar, - lbl_summaryvars, - deco) { - indent <- 1L - space <- paste(rep(" ", indent * 2), collapse = "") - lbl_summaryvars <- paste0(space, lbl_summaryvars) - - basic_table_deco(deco) %>% - split_cols_by("max_label") %>% - split_cols_by(splitvar) %>% - split_rows_by(arm_var, - split_fun = drop_split_levels, - label_pos = "topleft", - split_label = lbl_armvar - ) %>% - add_rowcounts() %>% - summarize_vars(summaryvar, denom = "N_row", .stats = "count_fraction") %>% - append_topleft(lbl_summaryvars) -} - -#' @describeIn egt03_2 Preprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -egt03_2_pre <- function(adam_db, visit_var = "AVISIT", paramcd_value = "HR", ...) { - assert_all_tablenames(adam_db, c("adsl", "adeg")) - - visit_value <- "POST-BASELINE MAXIMUM" - egt03_1_check( - adam_db, - req_tables = "adeg", visit_var = "AVISIT", - paramcd_value = paramcd_value, visit_value = visit_value - ) - adam_db$adeg <- adam_db$adeg %>% - filter( - .data$PARAMCD == paramcd_value & - !!sym(visit_var) == visit_value # "Analysis Visit" - ) %>% - mutate(max_label = "Maximum Post-Baseline Assessment") %>% - mutate(BNRIND = factor( - .data$BNRIND, - levels = c("LOW", "NORMAL", "HIGH", "Missing"), - labels = c("LOW", "NORMAL", "HIGH", "Missing") )) %>% - mutate(ANRIND = factor( - .data$ANRIND, - levels = c("LOW", "NORMAL", "HIGH", "Missing"), - labels = c("LOW", "NORMAL", "HIGH", "Missing") - )) + mutate( + BNRIND = with_label(.data$BNRIND, "Baseline Reference Range Indicator"), + ANRIND = with_label(.data$ANRIND, "Minimum Post-Baseline Assessment") + ) adam_db } -#' @describeIn egt03_2 Postprocessing +#' @describeIn egt03 Postprocessing #' #' @inheritParams gen_args #' -#' #' @export -egt03_2_post <- function(tlg, prune_0 = FALSE, ...) { +egt03_post <- function(tlg, prune_0 = FALSE, ...) { if (prune_0) tlg <- smart_prune(tlg) std_postprocess(tlg) } -#' `EGT03` Table 2 Shift Table of ECG Interval Data - Baseline versus Maximum Post-Baseline +#' `EGT03` Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline #' -#' The `EGT03` Table entries provide the number of patients by baseline assessment and maximum post-baseline -#' assessment. Percentages are based on the total number of patients in a treatment group. Baseline is the -#' patient's last observation prior to initiation of study drug. +#' The `EGT03` Table entries provide the number of patients by baseline assessment and minimum or maximum post-baseline +#' assessment. Percentages are based on the total number of patients in a treatment group. Baseline is the patient's +#' last observation prior to initiation of study drug. #' #' @include chevron_tlg-S4class.R #' @export #' #' @examples -#' db <- syn_data -#' run(egt03_2, db) -egt03_2 <- chevron_t( - main = egt03_2_main, - preprocess = egt03_2_pre, - postprocess = egt03_2_post, - adam_datasets = c("adeg") +#' run(egt03, syn_data) +egt03 <- chevron_t( + main = egt03_main, + preprocess = egt03_pre, + postprocess = egt03_post, + adam_datasets = c("adsl", "adeg") ) diff --git a/R/egt05_qtcat.R b/R/egt05_qtcat.R index a9e99239a..00fa669e3 100644 --- a/R/egt05_qtcat.R +++ b/R/egt05_qtcat.R @@ -1,10 +1,11 @@ -# egt05_qtcat_1 ---- +# egt05_qtcat ---- -#' @describeIn egt05_qtcat_1 Main TLG function +#' @describeIn egt05_qtcat Main TLG function #' #' @inheritParams gen_args +#' @param summaryvars (`character`) variables to be analyzed. The label attribute of the corresponding column in `adeg` +#' table of `adam_db` is used as name. #' @param visitvar (`string`) typically `"AVISIT"` (Default) or `"ATPTN"`. -#' @param paramvar (`string`) typically `"QT"` (Default). It should come from `"PARAMCD"`. #' #' @details #' * The `Value at Visit` column, displays the categories of the specific `"PARAMCD"` value for patients. @@ -22,22 +23,26 @@ #' #' @export #' -egt05_qtcat_1_main <- function(adam_db, - arm_var = "ACTARM", - summaryvars = list("Value at Visit" = "AVALCAT1", "Change from Baseline" = "CHGCAT1"), - summaryvars_lbls = get_labels(adam_db$adeg, summaryvars), - lbl_overall = NULL, - visitvar = "AVISIT", - lbl_avisit = var_labels_for(adam_db$adeg, visitvar), - paramvar = "QT", - lbl_param = var_labels_for(adam_db$adeg, "PARAM"), - deco = std_deco("EGT05_QTCAT"), - lbl_cat = "Category", - lbl_headvisit = "Analysis Visit", - ...) { - summaryvars <- unlist(summaryvars) +egt05_qtcat_main <- function(adam_db, + arm_var = "ACTARM", + summaryvars = c("AVALCAT1", "CHGCAT1"), + lbl_overall = NULL, + visitvar = "AVISIT", + ...) { + assert_all_tablenames(adam_db, c("adsl", "adeg")) + checkmate::assert_string(visitvar) + assert_valid_variable(adam_db$adeg, visitvar, types = list("character", "factor")) + assert_valid_variable(adam_db$adeg, c("PARAM", "PARAMCD"), types = list(c("character", "factor")), na_ok = FALSE) + assert_valid_variable(adam_db$adeg, summaryvars, types = list(c("factor")), na_ok = TRUE) + assert_valid_var_pair(adam_db$adsl, adam_db$adeg, arm_var) + assert_valid_variable(adam_db$adeg, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + + summaryvars_lbls <- var_labels_for(adam_db$adeg, summaryvars) # Value at visit / change from baseline + lbl_avisit <- var_labels_for(adam_db$adeg, visitvar) + lbl_param <- var_labels_for(adam_db$adeg, "PARAM") - lyt <- egt05_qtcat_1_lyt( + lyt <- egt05_qtcat_lyt( arm_var = arm_var, summaryvars = summaryvars, summaryvars_lbls = summaryvars_lbls, @@ -45,19 +50,18 @@ egt05_qtcat_1_main <- function(adam_db, visitvar = visitvar, lbl_avisit = lbl_avisit, lbl_param = lbl_param, - deco = deco, - lbl_cat = lbl_cat, - lbl_headvisit = lbl_headvisit + lbl_cat = "Category", + lbl_headvisit = lbl_avisit ) - tbl <- build_table( + build_table( lyt, - df = adam_db$adeg %>% filter(.data$PARAMCD %in% paramvar), + df = adam_db$adeg, alt_counts_df = adam_db$adsl ) } -#' @describeIn egt05_qtcat_1 Layout +#' `egt05_qtcat` Layout #' #' @inheritParams gen_args #' @@ -70,18 +74,17 @@ egt05_qtcat_1_main <- function(adam_db, #' @param lbl_cat (`string`) label of the Category of `summaryvars` variable. Default as `Category`. #' @param lbl_headvisit (`string`) label of Visits in the header. Default as `Analysis Visit`. #' -#' @export -egt05_qtcat_1_lyt <- function(arm_var, - summaryvars, - summaryvars_lbls, - lbl_overall, - visitvar, - lbl_avisit, - lbl_param, - deco, - lbl_cat, - lbl_headvisit) { - basic_table_deco(deco) %>% +#' @keywords internal +egt05_qtcat_lyt <- function(arm_var, + summaryvars, + summaryvars_lbls, + lbl_overall, + visitvar, + lbl_avisit, + lbl_param, + lbl_cat, + lbl_headvisit) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% @@ -95,68 +98,56 @@ egt05_qtcat_1_lyt <- function(arm_var, split_rows_by( visitvar, split_fun = drop_split_levels, - label_pos = "hidden", - split_label = lbl_avisit + label_pos = "hidden" ) %>% - summarize_vars( + summarize_vars_allow_na( vars = summaryvars, - var_labels = summaryvars_lbls + var_labels = summaryvars_lbls, + inclNAs = FALSE ) %>% append_topleft(paste(lbl_param)) %>% append_topleft(paste0(" ", lbl_headvisit)) %>% append_topleft(paste0(" ", lbl_cat)) } -#' @describeIn egt05_qtcat_1 Preprocessing +#' @describeIn egt05_qtcat Preprocessing #' #' @inheritParams gen_args #' #' @export #' -egt05_qtcat_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adeg")) - assert_colnames(adam_db$adeg, c("AVALCAT1", "CHGCAT1")) - +egt05_qtcat_pre <- function(adam_db, ...) { adam_db$adeg <- adam_db$adeg %>% filter( - .data$ANL01FL == "Y" - ) - - new_format <- list( - adeg = list( - AVALCAT1 = rule(), - CHGCAT1 = rule() + .data$ANL01FL == "Y", + .data$PARAMCD %in% "QT" ) - ) - - dunlin::reformat(adam_db, new_format, na_last = TRUE) + adam_db } -#' @describeIn egt05_qtcat_1 Postprocessing +#' @describeIn egt05_qtcat Postprocessing #' #' @inheritParams gen_args #' #' @export -egt05_qtcat_1_post <- function(tlg, prune_0 = TRUE, ...) { +egt05_qtcat_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) tlg <- smart_prune(tlg) std_postprocess(tlg) } -#' `EGT05_QTCAT` Table 1 (Default) ECG Actual Values and Changes from Baseline by Visit Table 1. +#' `EGT05_QTCAT` ECG Actual Values and Changes from Baseline by Visit Table. #' -#' The `EGT05_QTCAT` table 1 summarizes several electrocardiogram parameters and their evolution +#' The `EGT05_QTCAT` table summarizes several electrocardiogram parameters and their evolution #' throughout the study. #' #' @include chevron_tlg-S4class.R #' @export #' #' @examples -#' db <- syn_data -#' run(egt05_qtcat_1, db) -#' run(egt05_qtcat_1, db, summaryvars = list("AVALCAT1", "Change" = "CHGCAT1")) -egt05_qtcat_1 <- chevron_t( - main = egt05_qtcat_1_main, - preprocess = egt05_qtcat_1_pre, - postprocess = egt05_qtcat_1_post, - adam_datasets = c("adeg") +#' run(egt05_qtcat, syn_data) +egt05_qtcat <- chevron_t( + main = egt05_qtcat_main, + preprocess = egt05_qtcat_pre, + postprocess = egt05_qtcat_post, + adam_datasets = c("adsl", "adeg") ) diff --git a/R/ext01.R b/R/ext01.R index 5442e81b1..344a58255 100755 --- a/R/ext01.R +++ b/R/ext01.R @@ -1,10 +1,10 @@ -# ext01_1 ---- +# ext01 ---- -#' @describeIn ext01_1 Main TLG function +#' @describeIn ext01 Main TLG function #' #' @inheritParams gen_args -#' @param summaryvars (`list`) variables to be analyzed. Names are used as subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adex` table of `adam_db` is used. +#' @param summaryvars (`character`) variables to be analyzed. The label attribute of the corresponding column in `adex` +#' table of `adam_db` is used as label. #' #' @details #' * Default Exposure table @@ -21,152 +21,25 @@ #' #' @export #' -ext01_1_main <- function(adam_db, - arm_var = "ACTARM", - summaryvars = "AVAL", - lbl_overall = NULL, - deco = std_deco("EXT01"), - ...) { - summaryvars <- unlist(summaryvars) - assert_colnames(adam_db$adex, summaryvars) - - summaryvars_lbls <- get_labels(adam_db$adex, summaryvars) - - lyt <- ext01_1_lyt( - arm_var = arm_var, - summaryvars = summaryvars, - summaryvars_lbls = summaryvars_lbls, - lbl_overall = lbl_overall, - deco = deco - ) - - tbl <- build_table(lyt, adam_db$adex, adam_db$adsl) - - tbl -} - -#' @describeIn ext01_1 Layout -#' -#' @inheritParams gen_args -#' -#' @param summaryvars `(string)` the name of the variable to be analyzed. By default `"AVAL"`. -#' @param summaryvars_lbls `(string)` the label associated with the analyzed variable. -#' -#' -#' @export -#' -ext01_1_lyt <- function(arm_var, - summaryvars, - summaryvars_lbls, - lbl_overall, - deco) { - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - split_rows_by( - "PARAM", - split_fun = drop_split_levels - ) %>% - summarize_vars(vars = summaryvars, var_labels = summaryvars_lbls) -} - -#' @describeIn ext01_1 Preprocessing -#' -#' @inheritParams gen_args -#' @param paramcd_order (`character`) providing the `PARAMCD` values in the desired order. -#' -#' -#' @export -#' -ext01_1_pre <- function(adam_db, - paramcd_order = list("TNDOSE", "DOSE", "NDOSE", "TDOSE"), - ...) { +ext01_main <- function(adam_db, + arm_var = "ACTARM", + summaryvars = "AVAL", + lbl_overall = NULL, + ...) { assert_all_tablenames(adam_db, c("adsl", "adex")) + assert_valid_variable(adam_db$adex, summaryvars, empty_ok = TRUE) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_var_pair(adam_db$adsl, adam_db$adex, arm_var) + assert_valid_variable(adam_db$adex, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) - adam_db$adex <- adam_db$adex %>% - filter(.data$PARCAT1 == "OVERALL") - - if (nrow(adam_db$adex) > 0L) { - param_vars <- adam_db$adex %>% - dplyr::select("PARAM", "PARAMCD") %>% - dunlin::co_relevels("PARAMCD", "PARAM", unlist(paramcd_order)) + summaryvars_lbls <- var_labels_for(adam_db$adex, summaryvars) - adam_db$adex <- adam_db$adex %>% - mutate(PARAM = param_vars$PARAM, PARAMCD = param_vars$PARAMCD) - } - - adam_db -} -#' @describeIn ext01_1 Postprocessing -#' -#' @inheritParams gen_args -#' -#' -#' @export -ext01_1_post <- function(tlg, prune_0 = TRUE, ...) { - if (prune_0) tlg <- smart_prune(tlg) - std_postprocess(tlg) -} - -#' EXT01 Table 1 (Default) Exposure Summary Table. -#' -#' The EXT01 table provides an overview of the of the exposure of the -#' patients in terms of Total dose administered or missed, and treatment duration. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' run(ext01_1, syn_data) -ext01_1 <- chevron_t( - main = ext01_1_main, - preprocess = ext01_1_pre, - postprocess = ext01_1_post, - adam_datasets = c("adsl", "adex") -) - - -# ext01_2 ---- - -#' @describeIn ext01_2 Main TLG function -#' -#' @inheritParams gen_args -#' @param summaryvars (`list`) variables to be analyzed. Names are used as subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adex` table of `adam_db` is used. -#' -#' @details -#' * Supplementary Exposure table with binning of desired analysis values. -#' * The `n` row provides the number of non-missing values. The percentages for categorical variables is based on `n`. -#' The percentages for `Total number of patients with at least one dose modification` are based on the number of -#' patients in the corresponding analysis population given by `N`. -#' * Split columns by arm, typically `ACTARM`. -#' * Does not include a total column by default. -#' * Sorted by alphabetic order of the `PARAM` value. Transform to factor and re-level for custom order. -#' * `ANL01FL` is not relevant subset -#' -#' @note -#' * `adam_db` object must contain an `adex` table with columns specified in `summaryvars`. -#' -#' @export -#' -ext01_2_main <- function(adam_db, - summaryvars = list("AVAL", "AVALCAT1"), - arm_var = "ACTARM", - lbl_overall = NULL, - deco = std_deco("EXT01"), - ...) { - summaryvars <- unlist(summaryvars) - # Provide a clearer error message in the case of missing variable. - assert_colnames(adam_db$adex, summaryvars) - summaryvars_lbls <- get_labels(adam_db$adex, summaryvars) - - lyt <- ext01_2_lyt( + lyt <- ext01_lyt( arm_var = arm_var, summaryvars = summaryvars, summaryvars_lbls = summaryvars_lbls, - lbl_overall = lbl_overall, - deco = deco + lbl_overall = lbl_overall ) tbl <- build_table(lyt, adam_db$adex, adam_db$adsl) @@ -174,58 +47,65 @@ ext01_2_main <- function(adam_db, tbl } -#' @describeIn ext01_2 Layout +#' ext01 Layout #' #' @inheritParams gen_args #' -#' @param summaryvars (`string`) the name of the variable to be analyzed. By default `"AVAL"`. -#' @param summaryvars_lbls (`string`) the label associated with the analyzed variable. +#' @param summaryvars (`character`) the name of the variable to be analyzed. By default `"AVAL"`. +#' @param summaryvars_lbls (`character`) the label associated with the analyzed variable. #' #' -#' @export +#' @keywords internal #' -ext01_2_lyt <- function(arm_var, - summaryvars, - summaryvars_lbls, - lbl_overall, - deco = std_deco("EXT01")) { - basic_table_deco(deco) %>% +ext01_lyt <- function(arm_var, + summaryvars, + summaryvars_lbls, + lbl_overall) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% split_rows_by( "PARAM", - split_fun = NULL + split_fun = drop_split_levels ) %>% summarize_vars( vars = summaryvars, - show_labels = "hidden", var_labels = summaryvars_lbls, + show_labels = "hidden", .formats = list(count_fraction = format_count_fraction_fixed_dp) ) } -#' @describeIn ext01_2 Preprocessing +#' @describeIn ext01 Preprocessing #' #' @inheritParams gen_args +#' @param paramcd_order (`character`) providing the `PARAMCD` values in the desired order. #' @param show_stats (`character`) providing the name of the parameters whose statistical summary should be #' presented. To analyze all, provide `show_stats = "ALL"` (Default), to analyze none, provide `show_stats = ""`. #' #' @param show_bins (`character`) providing the name of the parameters whose categorical summary should be #' presented. To analyze all, provide `show_bins = "ALL"` (Default), to analyze none, provide `show_bins = ""`. #' -#' #' @export #' -ext01_2_pre <- function(adam_db, - show_stats = c("ALL"), - show_bins = c("ALL"), - ...) { - assert_all_tablenames(adam_db, c("adsl", "adex")) - +ext01_pre <- function(adam_db, + paramcd_order = c("TNDOSE", "DOSE", "NDOSE", "TDOSE"), + show_stats = "ALL", + show_bins = "ALL", + ...) { adam_db$adex <- adam_db$adex %>% filter(.data$PARCAT1 == "OVERALL") + if (nrow(adam_db$adex) > 0L) { + param_vars <- adam_db$adex %>% + dplyr::select("PARAM", "PARAMCD") %>% + dunlin::co_relevels("PARAMCD", "PARAM", paramcd_order) + + adam_db$adex <- adam_db$adex %>% + mutate(PARAM = param_vars$PARAM, PARAMCD = param_vars$PARAMCD) + } + if (!"ALL" %in% show_stats) { adam_db$adex <- adam_db$adex %>% mutate(AVAL = ifelse(.data$PARAM %in% show_stats, .data$AVAL, NA)) @@ -238,29 +118,31 @@ ext01_2_pre <- function(adam_db, adam_db } - -#' @describeIn ext01_2 Postprocessing +#' @describeIn ext01 Postprocessing #' #' @inheritParams gen_args #' #' #' @export -#' -ext01_2_post <- function(tlg, prune_0 = TRUE, ...) { +ext01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) tlg <- smart_prune(tlg) std_postprocess(tlg) } -#' EXT01 Table 2 (Supplementary) Exposure Summary Table with grouping options +#' EXT01 Exposure Summary Table. +#' +#' The EXT01 table provides an overview of the of the exposure of the +#' patients in terms of Total dose administered or missed, and treatment duration. #' #' @include chevron_tlg-S4class.R #' @export #' #' @examples -#' run(ext01_2, syn_data) -ext01_2 <- chevron_t( - main = ext01_2_main, - preprocess = ext01_2_pre, - postprocess = ext01_2_post, +#' run(ext01, syn_data) +#' run(ext01, syn_data, summaryvars = c("AVAL", "AVALCAT1")) +ext01 <- chevron_t( + main = ext01_main, + preprocess = ext01_pre, + postprocess = ext01_post, adam_datasets = c("adsl", "adex") ) diff --git a/R/gen_args.R b/R/gen_args.R index bcfbc3b42..0c07ee2c2 100644 --- a/R/gen_args.R +++ b/R/gen_args.R @@ -23,6 +23,7 @@ #' @param key_cols (`character`) names of columns that should be treated as key columns when rendering the listing. #' Key columns allow you to group repeat occurrences. #' @param disp_cols (`character`) names of non-key columns which should be displayed when the listing is rendered. +#' @param split_var (`character`) recursive split row variable. #' @param ... not used. #' #' @details the following arguments are better provided through the study object: `lbl_overall`, `arm_var`. @@ -30,5 +31,5 @@ gen_args <- function(adam_db, main, preprocess, postprocess, adam_datasets, type, arm_var, lbl_overall, prune_0, req_tables, deco, group, tlg, tlgfname, visit_var, visit_value, paramcd_value, - key_cols, disp_cols, ...) { + key_cols, disp_cols, split_var, ...) { } diff --git a/R/kmg01.R b/R/kmg01.R index 2b8f048bb..57c89a91c 100644 --- a/R/kmg01.R +++ b/R/kmg01.R @@ -1,112 +1,75 @@ -# kmg01_1 ---- +# kmg01 ---- -#' @describeIn kmg01_1 Main TLG Function +#' @describeIn kmg01 Main TLG Function #' #' @details #' * No overall value. #' #' @inheritParams gen_args #' @param dataset (`string`) the name of a table in the `adam_db` object. -#' @param x_name (`string`) the name of the x-axis. -#' @param y_name (`string`) the name of the x-axis. -#' @param show_statis (`flag`) should the summary statistic table be displayed. -#' @param show_censor (`flag`) should the censor flag be displayed. -#' @param pval_method (`string`) should the censor flag be displayed. -#' @param ties (`string`) should the censor flag be displayed. -#' @param conf_level (`numeric`) the level of confidence interval, default is 0.95. -#' @param position_coxph (`numeric`) x and y positions for plotting survival::coxph() model. -#' @param position_surv_med (`numeric`) x and y positions for plotting annotation table estimating -#' median survival time per group. -#' @param line_col (`list`) describing the colors to use for the lines or a named `list` -#' associating values of `arm_var` with color names. +#' @param ... Further arguments passed to `g_km` and `control_coxph`. For details, see +#' the documentation in `tern`. +#' Commonly used arguments include `col`, `pval_method`, `ties`, `conf_level`, `conf_type`, +#' `annot_coxph`, `annot_stats`, etc. #' #' @note #' * `adam_db` object must contain the table specified by `dataset` with the columns specified by `arm_var`. #' #' @return a list of `ggplot` objects. #' @export -kmg01_1_main <- function(adam_db, - dataset = "adtte", - arm_var = "ARM", - x_name = "Time (Days)", - y_name = "Survival Probability", - show_statis = TRUE, - show_censor = TRUE, - pval_method = "wald", - ties = "exact", - conf_level = 0.95, - position_coxph = c(0, 0.05), - position_surv_med = c(0.9, 0.9), - line_col = as.list(nestcolor::color_palette()), - ...) { - anl <- adam_db[[dataset]] - assert_colnames(anl, c("PARAMCD", "is_event", arm_var)) - assert_single_paramcd(anl$PARAMCD) - checkmate::assert_string(x_name) - checkmate::assert_string(y_name) - checkmate::assert_flag(show_statis) - checkmate::assert_flag(show_censor) - - line_col <- unlist(line_col) - checkmate::assert_character(line_col, null.ok = TRUE) - - assert_colnames(anl, "AVAL") +kmg01_main <- function(adam_db, + dataset = "adtte", + arm_var = "ARM", + ...) { + assert_all_tablenames(adam_db, c("adsl", dataset)) + df_lbl <- paste0("adam_db$", dataset) + assert_valid_variable(adam_db[[dataset]], "AVAL", types = list("numeric"), lower = 0, label = df_lbl) + assert_valid_variable(adam_db[[dataset]], "is_event", types = list("logical"), label = df_lbl) + assert_valid_variable( + adam_db[[dataset]], + c("PARAMCD", arm_var), + types = list(c("character", "factor")), + na_ok = FALSE, + label = df_lbl + ) + assert_single_value(adam_db[[dataset]]$PARAMCD, label = past0(df_lbl, "$PARAMCD")) + assert_valid_variable(adam_db[[dataset]], "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) variables <- list(tte = "AVAL", is_event = "is_event", arm = arm_var) - - if (!is.null(names(line_col))) { - color_lvl <- sort(unique(anl[[arm_var]])) - col <- line_col[as.character(color_lvl)] - - if (anyNA(col)) { - missing_col <- setdiff(color_lvl, names(col)) - stop(paste("Missing color matching for", toString(missing_col))) - } - - col <- unname(col) - } else { - col <- line_col - } - - g_km( - df = anl, + control_cox <- execute_with_args(control_coxph, ...) + control_surv <- execute_with_args(control_surv_timepoint, ...) + execute_with_args( + g_km, + df = adam_db[[dataset]], variables = variables, - censor_show = show_censor, - xlab = x_name, - ylab = y_name, - annot_surv_med = !show_statis, - annot_coxph = show_statis, - control_coxph_pw = control_coxph(pval_method = pval_method, ties = ties, conf_level = conf_level), - position_coxph = position_coxph, - position_surv_med = position_surv_med + control_surv = control_surv, + control_coxph_pw = control_cox, + ... ) } -#' @describeIn kmg01_1 Preprocessing +#' @describeIn kmg01 Preprocessing #' -#' @inheritParams kmg01_1_main +#' @inheritParams kmg01_main #' #' @export -kmg01_1_pre <- function(adam_db, dataset = "adtte", ...) { - assert_all_tablenames(adam_db, c("adsl", dataset)) - assert_colnames(adam_db[[dataset]], "CNSR") - +kmg01_pre <- function(adam_db, dataset = "adtte", ...) { adam_db[[dataset]] <- adam_db[[dataset]] %>% mutate(is_event = .data$CNSR == 0) adam_db } -#' @describeIn kmg01_1 Postprocessing +#' @describeIn kmg01 Postprocessing #' #' @inheritParams gen_args #' #' @export -kmg01_1_post <- function(tlg, ...) { +kmg01_post <- function(tlg, ...) { tlg } -# `kmg01_1` Pipeline ---- +# `kmg01` Pipeline ---- #' `KMG01` Kaplan-Meier Plot 1. #' @@ -118,20 +81,20 @@ kmg01_1_post <- function(tlg, ...) { #' library(dplyr) #' library(dunlin) #' -#' col <- list( +#' col <- c( #' "A: Drug X" = "black", #' "B: Placebo" = "blue", #' "C: Combination" = "gray" #' ) #' #' syn_data2 <- log_filter(syn_data, PARAMCD == "OS", "adtte") -#' run(kmg01_1, syn_data2, dataset = "adtte", line_col = col) +#' run(kmg01, syn_data2, dataset = "adtte", line_col = col) #' #' syn_data3 <- log_filter(syn_data, PARAMCD == "AEREPTTE", "adaette") -#' run(kmg01_1, syn_data3, dataset = "adaette") -kmg01_1 <- chevron_g( - main = kmg01_1_main, - preproces = kmg01_1_pre, - postprocess = kmg01_1_post, +#' run(kmg01, syn_data3, dataset = "adaette") +kmg01 <- chevron_g( + main = kmg01_main, + preproces = kmg01_pre, + postprocess = kmg01_post, adam_datasets = c("adsl") ) diff --git a/R/lbt01.R b/R/lbt01.R index bb6afc0a2..cfcb70fbf 100755 --- a/R/lbt01.R +++ b/R/lbt01.R @@ -1,10 +1,10 @@ -# lbt01_1 ---- +# lbt01 ---- -#' @describeIn lbt01_1 Main TLG function +#' @describeIn lbt01 Main TLG function #' #' @inheritParams gen_args -#' @param summaryvars (`list`) variables to be analyzed. Names are used as subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `adlb` table of `adam_db` is used. +#' @param summaryvars (`character`) variables to be analyzed. The label attribute of the corresponding column in `adlb` +#' table of `adam_db` is used as label. #' @param visitvar (`string`) the type of time point to use. Typically one of `"AVISIT"` (Default) or `"ATPTN"`. #' @param precision (named `list` of `integer`) where names are values found in the `PARAMCD` column and the the values #' indicate the number of digits that should be represented for `min`, `max` and `median`. `Mean` and `sd` are @@ -27,36 +27,36 @@ #' #' @export #' -lbt01_1_main <- function(adam_db, - arm_var = "ACTARM", - summaryvars = list("Value at Visit" = "AVAL", "Change from \nBaseline" = "CHG"), - visitvar = "AVISIT", - precision = list(), - default_precision = 2, - deco = std_deco("LBT01"), - ...) { - summaryvars <- unlist(summaryvars) +lbt01_main <- function(adam_db, + arm_var = "ACTARM", + summaryvars = c("AVAL", "CHG"), + visitvar = "AVISIT", + precision = list(), + default_precision = 2, + ...) { + assert_all_tablenames(adam_db, c("adsl", "adlb")) + checkmate::assert_string(arm_var) + assert_valid_variable(adam_db$adlb, c("PARAM", "PARAMCD"), types = list("character", "factor"), na_ok = FALSE) + assert_valid_variable(adam_db$adlb, c(summaryvars), types = list("numeric"), na_ok = TRUE, empty_ok = TRUE) + assert_valid_variable(adam_db$adlb, c(visitvar), types = c("character", "factor")) + assert_valid_variable(adam_db$adlb, c("USUBJID"), types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$adsl, c("USUBJID"), types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adlb, arm_var) checkmate::assert_list(precision, types = "integerish", names = "unique") vapply(precision, checkmate::assert_integerish, FUN.VALUE = numeric(1), lower = 0, len = 1) - - assert_colnames(adam_db$adlb, c("PARAM", "PARAMCD")) - assert_colnames(adam_db$adlb, summaryvars) - assert_colnames(adam_db$adlb, arm_var) - assert_colnames(adam_db$adlb, visitvar) + checkmate::assert_integerish(default_precision, lower = 0, len = 1) lbl_avisit <- var_labels_for(adam_db$adlb, visitvar) lbl_param <- var_labels_for(adam_db$adlb, "PARAM") + summaryvars_lbls <- var_labels_for(adam_db$adlb, summaryvars) - summaryvars_lbls <- get_labels(adam_db$adlb, summaryvars) - - lyt <- lbt01_1_lyt( + lyt <- lbt01_lyt( arm_var = arm_var, summaryvars = summaryvars, summaryvars_lbls = summaryvars_lbls, visitvar = visitvar, lbl_avisit = lbl_avisit, lbl_param = lbl_param, - deco = deco, precision = precision, default_precision = default_precision ) @@ -66,9 +66,9 @@ lbt01_1_main <- function(adam_db, tbl } -#' @describeIn lbt01_1 Layout +#' @describeIn lbt01 Layout #' -#' @inheritParams lbt01_1_main +#' @inheritParams lbt01_main #' #' @param summaryvars (`character`) the variables to be analyzed. For this table, `AVAL` and `CHG` by default. #' @param summaryvars_lbls (`character`) the label of the variables to be analyzed. @@ -78,18 +78,17 @@ lbt01_1_main <- function(adam_db, #' @param lbl_param (`string`) label of the `PARAM` variable. #' #' -#' @export +#' @keywords internal #' -lbt01_1_lyt <- function(arm_var, - summaryvars, - summaryvars_lbls, - visitvar, - lbl_avisit, - lbl_param, - deco, - precision, - default_precision) { - basic_table_deco(deco) %>% +lbt01_lyt <- function(arm_var, + summaryvars, + summaryvars_lbls, + visitvar, + lbl_avisit, + lbl_param, + precision, + default_precision) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% split_rows_by( var = "PARAMCD", @@ -111,7 +110,7 @@ lbt01_1_lyt <- function(arm_var, ) %>% analyze_colvars( afun = function(x, .var, .spl_context, precision, default_precision, ...) { - param_val <- .spl_context$value[1] + param_val <- .spl_context$value[which(.spl_context$split == "PARAMCD")] pcs <- precision[[param_val]] %||% default_precision @@ -164,34 +163,35 @@ lbt01_1_lyt <- function(arm_var, append_topleft(c(paste(" ", lbl_avisit), " ")) } -#' @describeIn lbt01_1 Preprocessing +#' @describeIn lbt01 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt01_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adlb")) - - +lbt01_pre <- function(adam_db, ...) { adam_db$adlb <- adam_db$adlb %>% - filter(.data$ANL01FL == "Y") + filter(.data$ANL01FL == "Y") %>% + mutate( + AVAL = with_label(.data$AVAL, "Value at Visit"), + CHG = with_label(.data$CHG, "Change from \nBaseline") + ) adam_db } -#' @describeIn lbt01_1 Postprocessing +#' @describeIn lbt01 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt01_1_post <- function(tlg, prune_0 = TRUE, ...) { +lbt01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) tlg <- tlg %>% trim_rows() std_postprocess(tlg) } -#' `LBT01` Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. +#' `LBT01` Laboratory Test Results and Change from Baseline by Visit Table. #' #' The `LBT01` table provides an #' overview of the analysis values and its change from baseline of each respective arm over the course of the trial. @@ -200,13 +200,13 @@ lbt01_1_post <- function(tlg, prune_0 = TRUE, ...) { #' @export #' #' @examples -#' run(lbt01_1, syn_data, precision = list( +#' run(lbt01, syn_data, precision = list( #' "ALT" = 0, #' "CRP" = 1 #' )) -lbt01_1 <- chevron_t( - main = lbt01_1_main, - preprocess = lbt01_1_pre, - postprocess = lbt01_1_post, +lbt01 <- chevron_t( + main = lbt01_main, + preprocess = lbt01_pre, + postprocess = lbt01_post, adam_datasets = c("adlb") ) diff --git a/R/lbt04.R b/R/lbt04.R old mode 100755 new mode 100644 index 1362712fd..e6f889387 --- a/R/lbt04.R +++ b/R/lbt04.R @@ -1,10 +1,8 @@ -# lbt04_1 ---- +# lbt04 ---- -#' @describeIn lbt04_1 Main TLG function +#' @describeIn lbt04 Main TLG function #' #' @inheritParams gen_args -#' @param lbl_param (`string`) label of the `PARAM` variable. -#' @param lbl_anrind (`string`) label of the `ANRIND` variable. #' #' @details #' * Only count LOW or HIGH values. @@ -18,17 +16,32 @@ #' #' @export #' -lbt04_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_param = "Laboratory Test", - lbl_anrind = "Direction of Abnormality", - deco = std_deco("LBT04"), - ...) { - lyt <- lbt04_1_lyt( +lbt04_main <- function(adam_db, + arm_var = "ACTARM", + ...) { + assert_all_tablenames(adam_db, c("adsl", "adlb")) + checkmate::assert_string(arm_var) + assert_valid_variable( + adam_db$adlb, c("PARAM", "PARCAT1"), + types = list("characater", "factor") + ) + assert_valid_variable(adam_db$adlb, c("AVALCAT1", "ANRIND"), na_ok = TRUE, empty_ok = TRUE, min_chars = 0L) + assert_valid_variable(adam_db$adlb, c("USUBJID"), types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$adsl, c("USUBJID"), types = list(c("character", "factor"))) + checkmate::assert_true( + any(lvls(adam_db$adlb$ANRIND) %in% c("HIGH HIGH", "HIGH", "LOW", "LOW LOW")) || all(is.na(adam_db$adlb$ANRIND)) + ) + assert_valid_var_pair(adam_db$adsl, adam_db$adlb, arm_var) + lbl_anrind <- var_labels_for(adam_db$adlb, "ANRIND") + lbl_param <- var_labels_for(adam_db$adlb, "PARAM") + + lyt <- lbt04_lyt( arm_var = arm_var, + var_parcat = "PARCAT1", + var_param = "PARAM", lbl_param = lbl_param, - lbl_anrind = lbl_anrind, - deco = deco + var_anrind = "ANRIND", + lbl_anrind = lbl_anrind ) tbl <- build_table(lyt, adam_db$adlb, alt_counts_df = adam_db$adsl) @@ -36,7 +49,7 @@ lbt04_1_main <- function(adam_db, tbl } -#' @describeIn lbt04_1 Layout +#' `lbt04` Layout #' #' @inheritParams gen_args #' @@ -44,24 +57,29 @@ lbt04_1_main <- function(adam_db, #' @param lbl_param (`string`) label of the `PARAM` variable. #' @param lbl_anrind (`string`) label of the `ANRIND` variable. #' -#' @export +#' @keywords internal #' -lbt04_1_lyt <- function(arm_var, - lbl_param, - lbl_anrind, - deco) { - basic_table_deco(deco, show_colcounts = TRUE) %>% +lbt04_lyt <- function(arm_var, + var_parcat, + var_param, + lbl_param, + var_anrind, + lbl_anrind) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% - split_rows_by("PARCAT1") %>% split_rows_by( - "PARAM", + var_parcat, + split_fun = drop_split_levels + ) %>% + split_rows_by( + var_param, split_fun = drop_split_levels, label_pos = "topleft", - split_label = paste(lbl_param), + split_label = lbl_param, indent_mod = 0L ) %>% count_abnormal( - var = "ANRIND", + var = var_anrind, abnormal = list(Low = c("LOW", "LOW LOW"), High = c("HIGH", "HIGH HIGH")), exclude_base_abn = TRUE, .formats = list(fraction = format_fraction_fixed_dp) @@ -69,68 +87,50 @@ lbt04_1_lyt <- function(arm_var, append_topleft(paste(" ", lbl_anrind)) } -#' @describeIn lbt04_1 Preprocessing +#' @describeIn lbt04 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt04_1_pre <- function(adam_db, req_tables = c("adsl", "adlb"), arm_var = "ACTARM", ...) { - lbt04_1_check(adam_db, req_tables = req_tables, arm_var = arm_var) - - new_format <- list( - adlb = list( - ANRIND = rule("" = c("", NA, "")) - ) - ) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - +lbt04_pre <- function(adam_db, ...) { adam_db$adlb <- adam_db$adlb %>% filter( .data$ONTRTFL == "Y", .data$PARCAT2 == "SI", - .data$ANRIND != "" + !is.na(.data$ANRIND) + ) %>% + mutate( + PARAM = with_label(.data$PARAM, "Laboratory Test"), + ANRIND = with_label(.data$ANRIND, "Direction of Abnormality") + ) %>% + mutate( + ANRIND = reformat( + .data$ANRIND, + rule( + "HIGH HIGH" = "HIGH HIGH", + "HIGH" = "HIGH", + "LOW" = "LOW", + "LOW LOW" = "LOW LOW", + "NORMAL" = "NORMAL" + ) + ) ) adam_db } -#' @describeIn lbt04_1 Checks -#' -#' @inheritParams gen_args -#' @export -lbt04_1_check <- function(adam_db, - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM") { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - adlb_layout_col <- c("USUBJID", "ONTRTFL", "PARCAT1", "PARCAT2", "PARAM", "ANRIND") - adsl_layout_col <- c("USUBJID") - - msg <- c(msg, check_all_colnames(adam_db$adlb, c(arm_var, adlb_layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(adsl_layout_col))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } -} - -#' @describeIn lbt04_1 Postprocessing +#' @describeIn lbt04 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt04_1_post <- function(tlg, ...) { +lbt04_post <- function(tlg, ...) { std_postprocess(tlg) } -#' `LBT04` Table 1 (Default) Laboratory Abnormalities Not Present at Baseline. +#' `LBT04` Laboratory Abnormalities Not Present at Baseline Table. #' #' The `LBT04` table provides an #' overview of laboratory abnormalities not present at baseline. @@ -139,10 +139,10 @@ lbt04_1_post <- function(tlg, ...) { #' @export #' #' @examples -#' run(lbt04_1, syn_data) -lbt04_1 <- chevron_t( - main = lbt04_1_main, - preprocess = lbt04_1_pre, - postprocess = lbt04_1_post, +#' run(lbt04, syn_data) +lbt04 <- chevron_t( + main = lbt04_main, + preprocess = lbt04_pre, + postprocess = lbt04_post, adam_datasets = c("adsl", "adlb") ) diff --git a/R/lbt05.R b/R/lbt05.R index 479e72cb4..2220bd289 100755 --- a/R/lbt05.R +++ b/R/lbt05.R @@ -1,10 +1,8 @@ -# lbt05_1 ---- +# lbt05 ---- -#' @describeIn lbt05_1 Main TLG function +#' @describeIn lbt05 Main TLG function #' #' @inheritParams gen_args -#' @param lbl_param (`string`) label of the `PARAM` variable. -#' @param lbl_anrind (`string`) label of the `ANRIND` variable. #' #' @details #' * Does not remove rows with zero counts by default. @@ -17,27 +15,34 @@ #' #' @export #' -lbt05_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_param = "Laboratory Test", - lbl_anrind = "Direction of Abnormality", - deco = std_deco("LBT05"), - ...) { +lbt05_main <- function(adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, c("adsl", "adlb")) + checkmate::assert_string(arm_var) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable(adam_db$adlb, c("PARAM", "AVALCAT1", "ABN_DIR"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adlb, c("USUBJID"), types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$adsl, c("USUBJID"), types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adlb, arm_var) + + lbl_anrind <- var_labels_for(adam_db$adlb, "ABN_DIR") + lbl_param <- var_labels_for(adam_db$adlb, "PARAM") + map <- expand.grid( PARAM = levels(adam_db$adlb$PARAM), - abn_dir = c("Low", "High"), + ABN_DIR = c("Low", "High"), stringsAsFactors = FALSE ) %>% - arrange(.data$PARAM, desc(.data$abn_dir)) + arrange(.data$PARAM, desc(.data$ABN_DIR)) - lyt <- lbt05_1_lyt( + lyt <- lbt05_lyt( arm_var = arm_var, lbl_overall = lbl_overall, lbl_param = lbl_param, lbl_anrind = lbl_anrind, - map = map, - deco = deco + map = map ) tbl <- build_table(lyt, adam_db$adlb, alt_counts_df = adam_db$adsl) @@ -45,7 +50,7 @@ lbt05_1_main <- function(adam_db, tbl } -#' @describeIn lbt05_1 Layout +#' `lbt05` Layout #' #' @inheritParams gen_args #' @@ -54,15 +59,14 @@ lbt05_1_main <- function(adam_db, #' @param lbl_anrind (`string`) label of the `ANRIND` variable. #' @param map (`data.frame`) mapping of `PARAM`s to directions of abnormality. #' -#' @export +#' @keywords internal #' -lbt05_1_lyt <- function(arm_var, - lbl_overall, - lbl_param, - lbl_anrind, - map, - deco) { - basic_table_deco(deco, show_colcounts = TRUE) %>% +lbt05_lyt <- function(arm_var, + lbl_overall, + lbl_param, + lbl_anrind, + map) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% ifneeded_add_overall_col(lbl_overall) %>% split_rows_by( @@ -71,79 +75,53 @@ lbt05_1_lyt <- function(arm_var, split_label = lbl_param ) %>% summarize_num_patients(var = "USUBJID", .stats = "unique_count") %>% - split_rows_by("abn_dir", split_fun = trim_levels_to_map(map)) %>% + split_rows_by("ABN_DIR", split_fun = trim_levels_to_map(map)) %>% count_abnormal_by_marked( var = "AVALCAT1", - variables = list(id = "USUBJID", param = "PARAM", direction = "abn_dir"), + variables = list(id = "USUBJID", param = "PARAM", direction = "ABN_DIR"), .formats = c("count_fraction" = format_count_fraction_fixed_dp) ) %>% append_topleft(paste(" ", lbl_anrind)) } -#' @describeIn lbt05_1 Preprocessing +#' @describeIn lbt05 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt05_1_pre <- function(adam_db, arm_var = "ACTARM", ...) { - lbt05_1_check(adam_db, arm_var = arm_var, req_tables = "adlb") - +lbt05_pre <- function(adam_db, ...) { adam_db$adlb <- adam_db$adlb %>% filter( .data$ONTRTFL == "Y", .data$PARCAT2 == "LS", !is.na(.data$AVAL) ) %>% - mutate(abn_dir = factor(case_when( + mutate(ABN_DIR = factor(case_when( ANRIND == "LOW LOW" ~ "Low", ANRIND == "HIGH HIGH" ~ "High", TRUE ~ "" - ), levels = c("Low", "High"))) - - missing_rule <- rule("" = c("", NA, "", "No Coding Available")) - - new_format <- list( - adlb = list( - AVALCAT1 = missing_rule, - abn_dir = missing_rule + ), levels = c("Low", "High"))) %>% + mutate( + ABN_DIR = with_label(.data$ABN_DIR, "Direction of Abnormality"), + PARAM = with_label(.data$PARAM, "Laboratory Test") + ) %>% + mutate( + across(all_of(c("AVALCAT1", "ABN_DIR")), ~ reformat(.x, .env$missing_rule, na_last = TRUE)) ) - ) - dunlin::reformat(adam_db, new_format, na_last = TRUE) -} -#' @describeIn lbt05_1 Checks -#' -#' @inheritParams gen_args -#' @export -lbt05_1_check <- function(adam_db, - req_tables, - arm_var) { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - adlb_layout_col <- c("USUBJID", "ONTRTFL", "PARCAT2", "PARAM", "ANRIND", "AVALCAT1") - adsl_layout_col <- c("USUBJID") - - msg <- c(msg, check_all_colnames(adam_db$adlb, c(arm_var, adlb_layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(adsl_layout_col))) - - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } + adam_db } -#' @describeIn lbt05_1 Postprocessing + +#' @describeIn lbt05 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt05_1_post <- function(tlg, prune_0 = FALSE, ...) { +lbt05_post <- function(tlg, prune_0 = FALSE, ...) { if (prune_0) { has_lbl <- function(lbl) CombinationFunction(function(tr) obj_label(tr) == lbl) tlg <- prune_table(tlg, keep_rows(has_lbl("Any Abnormality"))) @@ -163,10 +141,10 @@ lbt05_1_post <- function(tlg, prune_0 = FALSE, ...) { #' @export #' #' @examples -#' run(lbt05_1, syn_data) -lbt05_1 <- chevron_t( - main = lbt05_1_main, - preprocess = lbt05_1_pre, - postprocess = lbt05_1_post, +#' run(lbt05, syn_data) +lbt05 <- chevron_t( + main = lbt05_main, + preprocess = lbt05_pre, + postprocess = lbt05_post, adam_datasets = c("adsl", "adlb") ) diff --git a/R/lbt07.R b/R/lbt07.R index d657b75f8..54ab16762 100755 --- a/R/lbt07.R +++ b/R/lbt07.R @@ -1,15 +1,13 @@ -# lbt07_1 ---- +# lbt07 ---- -#' @describeIn lbt07_1 Main TLG function +#' @describeIn lbt07 Main TLG function #' #' @inheritParams gen_args -#' @param grade_var (`list`) `PARAM` and variables derived from the standard lab grade variable `ATOXGR`: -#' * A grade direction variable (`GRADE_DIR`) is required in order to obtain -#' the correct denominators when building the layout as it is used to define row splitting. -#' * A toxicity grade variable (e.g. `GRADE_ANL`) where all negative values from +#' @param param_var (`string`) the name of the column storing the parameters name. +#' @param grad_dir_var (`string`) the name of the column storing the grade direction variable which is required in +#' order to obtain the correct denominators when building the layout as it is used to define row splitting. +#' @param grad_anl_var (`string`) the name of the column storing toxicity grade variable where all negative values from #' `ATOXGR` are replaced by their absolute values. -#' @param lbl_grade_var (`list`) label of the variables in `grade_var`. If `NULL`, uses the label -#' attribute of the columns selected in `grade_var`. #' #' @details #' * Split columns by arm, typically `ACTARM`. @@ -20,38 +18,48 @@ #' #' @export #' -lbt07_1_main <- function(adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - grade_var = list("PARAM", "GRADE_DIR", "GRADE_ANL"), - deco = std_deco("LBT07"), - lbl_grade_var = list("Parameter", "Direction of Abnormality", "Toxicity Grade"), - req_tables = c("adsl", "adlb"), - ...) { - lbt07_1_check(adam_db, req_tables = req_tables, arm_var = arm_var) - - checkmate::assert_list(grade_var, types = "character") - grade_var <- unlist(grade_var) - checkmate::assert_list(lbl_grade_var, types = "character", null.ok = TRUE) - lbl_grade_var <- unlist(lbl_grade_var) - checkmate::assert_character(lbl_grade_var, len = length(grade_var), null.ok = TRUE) +lbt07_main <- function(adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + param_var = "PARAM", + grad_dir_var = "GRADE_DIR", + grad_anl_var = "GRADE_ANL", + ...) { + assert_all_tablenames(adam_db, c("adsl", "adlb")) + checkmate::assert_string(arm_var) + checkmate::assert_string(param_var) + checkmate::assert_string(grad_dir_var) + checkmate::assert_string(grad_anl_var) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable( + adam_db$adlb, c("ATOXGR", param_var, grad_dir_var, grad_anl_var), + types = list(c("character", "factor")) + ) + assert_valid_variable(adam_db$adlb, c("USUBJID"), types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$adsl, c("USUBJID"), types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adlb, arm_var) - lbl_grade_var <- if (is.null(lbl_grade_var)) var_labels_for(adam_db$adlb, grade_var) else lbl_grade_var + lbl_param_var <- var_labels_for(adam_db$adlb, param_var) + lbl_grad_dir_var <- var_labels_for(adam_db$adlb, grad_dir_var) map <- expand.grid( - PARAM = levels(adam_db$adlb$PARAM), + PARAM = levels(adam_db$adlb[[param_var]]), GRADE_DIR = c("LOW", "HIGH"), GRADE_ANL = as.character(1:4), stringsAsFactors = FALSE ) %>% arrange(.data$PARAM, desc(.data$GRADE_DIR), .data$GRADE_ANL) - lyt <- lbt07_1_lyt( + names(map) <- c(param_var, grad_dir_var, grad_anl_var) + + lyt <- lbt07_lyt( arm_var = arm_var, + param_var = param_var, + grad_dir_var = grad_dir_var, + grad_anl_var = grad_anl_var, + lbl_param_var = lbl_param_var, + lbl_grad_dir_var = lbl_grad_dir_var, lbl_overall = lbl_overall, - grade_var = grade_var, - lbl_grade_var = lbl_grade_var, - deco = deco, map = map ) @@ -60,33 +68,32 @@ lbt07_1_main <- function(adam_db, tbl } -#' @describeIn lbt07_1 Layout +#' @describeIn lbt07 Layout #' #' @inheritParams gen_args +#' @inheritParams lbt07_main #' -#' @param lbl_param (`string`) label of the `PARAM` variable. -#' @param lbl_gradedir (`string`) label of the `GRADE_DIR` variable. +#' @param lbl_param_var (`string`) label of the `param_var` variable. +#' @param lbl_grad_dir_var (`string`) label for the `grad_dir_var` variable. #' @param map (`data.frame`) mapping of `PARAM`s to directions of abnormality. #' -#' @export -#' -lbt07_1_lyt <- function(arm_var, - lbl_overall, - lbl_gradedir, - lbl_param, - grade_var, - lbl_grade_var, - deco, - map) { - names(lbl_grade_var) <- grade_var - - basic_table_deco(deco, show_colcount = TRUE) %>% +#' @keywords internal +#' +lbt07_lyt <- function(arm_var, + param_var, + grad_dir_var, + grad_anl_var, + lbl_param_var, + lbl_grad_dir_var, + lbl_overall, + map) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% ifneeded_add_overall_col(lbl_overall) %>% split_rows_by( - "PARAM", + param_var, label_pos = "topleft", - split_label = lbl_grade_var[1] + split_label = lbl_param_var ) %>% summarize_num_patients( var = "USUBJID", @@ -94,38 +101,31 @@ lbt07_1_lyt <- function(arm_var, .stats = "unique_count" ) %>% split_rows_by( - "GRADE_DIR", + grad_dir_var, label_pos = "topleft", - split_label = lbl_grade_var[2], + split_label = lbl_grad_dir_var, split_fun = trim_levels_to_map(map) ) %>% count_abnormal_by_worst_grade( - var = "GRADE_ANL", - variables = list(id = "USUBJID", param = "PARAM", grade_dir = "GRADE_DIR"), + var = grad_anl_var, + variables = list(id = "USUBJID", param = param_var, grade_dir = grad_dir_var), .formats = list(count_fraction = tern::format_count_fraction_fixed_dp), .indent_mods = 4L ) %>% append_topleft(" Highest NCI CTCAE Grade") } -#' @describeIn lbt07_1 Preprocessing +#' @describeIn lbt07 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt07_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "adlb")) - - new_format <- list( - adlb = list( - ATOXGR = rule("" = c("", NA, "", "No Coding available")) - ) - ) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - +lbt07_pre <- function(adam_db, ...) { adam_db$adlb <- adam_db$adlb %>% + mutate( + ATOXGR = reformat(.data$ATOXGR, missing_rule, na_last = TRUE) + ) %>% filter( .data$ATOXGR != "", .data$ONTRTFL == "Y", @@ -145,41 +145,23 @@ lbt07_1_pre <- function(adam_db, ...) { PARAM = as.factor(.data$PARAM) ) - adam_db -} - -#' @describeIn lbt07_1 Checks -#' -#' @inheritParams gen_args -#' @export -lbt07_1_check <- function(adam_db, - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM") { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - adlb_layout_col <- c("USUBJID", "ATOXGR", "ONTRTFL") - adsl_layout_col <- c("USUBJID") - - msg <- c(msg, check_all_colnames(adam_db$adlb, c(arm_var, adlb_layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(adsl_layout_col))) + adam_db$adlb <- adam_db$adlb %>% + mutate( + PARAM = with_label(.data$PARAM, "Parameter"), + GRADE_DIR = with_label(.data$GRADE_DIR, "Direction of Abnormality"), + GRADE_ANL = with_label(.data$GRADE_ANL, "Toxicity Grade") + ) - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } + adam_db } - -#' @describeIn lbt07_1 Postprocessing +#' @describeIn lbt07 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -lbt07_1_post <- function(tlg, prune_0 = TRUE, ...) { +lbt07_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) { tlg <- smart_prune(tlg) } @@ -194,10 +176,10 @@ lbt07_1_post <- function(tlg, prune_0 = TRUE, ...) { #' @export #' #' @examples -#' run(lbt07_1, syn_data) -lbt07_1 <- chevron_t( - main = lbt07_1_main, - preprocess = lbt07_1_pre, - postprocess = lbt07_1_post, +#' run(lbt07, syn_data) +lbt07 <- chevron_t( + main = lbt07_main, + preprocess = lbt07_pre, + postprocess = lbt07_post, adam_datasets = c("adlb", "adsl") ) diff --git a/R/lbt14.R b/R/lbt14.R index 7e41519e5..f39a6397e 100755 --- a/R/lbt14.R +++ b/R/lbt14.R @@ -1,17 +1,19 @@ -# lbt14_1 ---- +# lbt14 ---- -#' @describeIn lbt14_1 Main TLG function +#' @describeIn lbt14 Main TLG function #' #' @inheritParams gen_args -#' @param gr_missing how missing baseline grades should be handled. Defaults to `"incl"` to include the `"Missing"` +#' @param gr_missing (`string`) how missing baseline grades should be handled. Defaults to `"incl"` to include the +#' `"Missing"` #' level. Other options are `"excl"` to exclude patients with missing baseline grades and `"gr_0"` to convert missing #' baseline grades to grade 0. -#' @param title table title to display. Defaults to `"LBT14 - Low Direction"`. +#' @param direction (`string`) one of `"high"` or `"low"` indicating which shift direction should be detailed. #' #' @details #' * Only the worst grade recorded for each patient is included in the table. #' * If no missing baseline lab results, the "Missing" level of `BTOXGR` is excluded. -#' * Grades 0, 1, 2, 3, and 4 are counted as `"Not Low"`. +#' * Grades 0, 1, 2, 3, and 4 are counted as `"Not Low"` when `direction = "low"`. Conversely, when `direction = +#' "high"`, Grades 0, -1, -2, -3, and -4 are counted as `"Not High". #' * Remove zero-count rows unless overridden with `prune_0 = FALSE`. #' * Split columns by arm, typically `ACTARM`. #' @@ -21,17 +23,22 @@ #' #' @export #' -lbt14_1_main <- function(adam_db, - arm_var = "ACTARM", - gr_missing = "incl", - title = "LBT14 - Low Direction", - deco = std_deco("LBT14"), - ...) { - lyt <- lbt14_1_lyt( +lbt14_main <- function(adam_db, + arm_var = "ACTARM", + gr_missing = "incl", + ...) { + assert_all_tablenames(adam_db, c("adsl", "adlb")) + checkmate::assert_string(arm_var) + checkmate::assert_choice(gr_missing, c("incl", "excl", "gr_0")) + assert_valid_variable(adam_db$adlb, c("BTOXGR_GRP", "BTOXGR_GRP"), types = list("factor"), na_ok = FALSE) + assert_valid_variable(adam_db$adlb, c("PARAM"), types = list(c("character", "factor")), na_ok = FALSE) + assert_valid_variable(adam_db$adlb, c("USUBJID"), types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$adsl, c("USUBJID"), types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adlb, arm_var) + + lyt <- lbt14_lyt( arm_var = arm_var, - gr_missing = gr_missing, - title = title, - deco = deco + gr_missing = gr_missing ) tbl <- build_table(lyt, adam_db$adlb, alt_counts_df = adam_db$adsl) @@ -39,24 +46,15 @@ lbt14_1_main <- function(adam_db, tbl } -#' @describeIn lbt14_1 Layout +#' @describeIn lbt14 Layout #' -#' @inheritParams lbt14_1_main +#' @inheritParams lbt14_main #' -#' @export +#' @keywords internal #' -lbt14_1_lyt <- function(arm_var, - gr_missing, - title, - deco) { - deco$title <- title - if (gr_missing == "excl") { - deco$main_footer <- "Patients with missing baseline values are excluded from the analysis." - } else if (gr_missing == "gr_0") { - deco$main_footer <- "Patients with missing baseline values are assumed to be Grade 0 at baseline." - } - - lyt <- basic_table_deco(deco, show_colcounts = TRUE) %>% +lbt14_lyt <- function(arm_var, + gr_missing) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% split_rows_by( "PARAM", @@ -75,34 +73,25 @@ lbt14_1_lyt <- function(arm_var, append_topleft(" Post-baseline NCI-CTCAE Grade") } -#' @describeIn lbt14_1 Preprocessing +#' @describeIn lbt14 Preprocessing #' #' @inheritParams gen_args -#' @inheritParams lbt14_1_main +#' @inheritParams lbt14_main #' #' @export #' -lbt14_1_pre <- function(adam_db, - gr_missing = "incl", - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM", - ...) { - assert_all_tablenames(adam_db, c("adsl", "adlb")) - +lbt14_pre <- function(adam_db, + gr_missing = "incl", + direction = "low", + ...) { checkmate::assert_choice(gr_missing, c("incl", "excl", "gr_0")) - - lbt14_1_check(adam_db, req_tables = req_tables, arm_var = arm_var) + checkmate::assert_choice(direction, c("low", "high")) missing_rule <- rule("" = c("", NA, "", "No Coding Available")) - - new_format <- list( - adlb = list( - BTOXGR = missing_rule, - ATOXGR = missing_rule + adam_db$adlb <- adam_db$adlb %>% + mutate( + across(all_of(c("BTOXGR", "ATOXGR")), ~ reformat(.x, .env$missing_rule)) ) - ) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) if (gr_missing == "excl") { adam_db$adlb <- adam_db$adlb %>% @@ -114,292 +103,79 @@ lbt14_1_pre <- function(adam_db, } else { .data$BTOXGR }) %>% - mutate(BTOXGR = forcats::fct_collapse(.data$BTOXGR, "0" = c("0", ""))) + mutate(BTOXGR = reformat(.data$BTOXGR, rule("0" = c("0", "")))) } - adam_db$adlb <- adam_db$adlb %>% - filter(.data$WGRLOFL == "Y") %>% - mutate( - ATOXGR_GRP = factor( - case_when( - ATOXGR %in% c(0, 1, 2, 3, 4) ~ "Not Low", - ATOXGR == -1 ~ "1", - ATOXGR == -2 ~ "2", - ATOXGR == -3 ~ "3", - ATOXGR == -4 ~ "4", - ATOXGR == "" ~ "Missing" - ), - levels = c("Not Low", "1", "2", "3", "4", "Missing") - ), - BTOXGR_GRP = factor( - case_when( - BTOXGR %in% c(0, 1, 2, 3, 4) ~ "Not Low", - BTOXGR == -1 ~ "1", - BTOXGR == -2 ~ "2", - BTOXGR == -3 ~ "3", - BTOXGR == -4 ~ "4", - BTOXGR == "" ~ "Missing" - ), - levels = if (gr_missing == "incl" & any(.data$BTOXGR == "")) { - c("Not Low", "1", "2", "3", "4", "Missing") - } else { - c("Not Low", "1", "2", "3", "4") - } - ), + grade_rule <- if (direction == "high") { + rule( + "Not High" = c("0", "-1", "-2", "-3", "-4"), + "1" = "1", + "2" = "2", + "3" = "3", + "4" = "4", + "Missing" = "" ) - - adam_db -} - -#' @describeIn lbt14_1 Checks -#' -#' @inheritParams gen_args -#' @export -lbt14_1_check <- function(adam_db, - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM") { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - adlb_layout_col <- c("USUBJID", "PARAM", "BTOXGR", "ATOXGR") - adsl_layout_col <- c("USUBJID") - - msg <- c(msg, check_all_colnames(adam_db$adlb, c(arm_var, adlb_layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(adsl_layout_col))) - - if (is.null(msg)) { - TRUE } else { - stop(paste(msg, collapse = "\n ")) - } -} - -#' @describeIn lbt14_1 Postprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -lbt14_1_post <- function(tlg, prune_0 = TRUE, ...) { - if (prune_0) tlg <- tlg %>% trim_rows() - std_postprocess(tlg) -} - -#' `LBT14` Table 1 (Low Direction) Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by -#' Baseline Grade. -#' -#' @include chevron_tlg-S4class.R -#' @export -#' -#' @examples -#' run(lbt14_1, syn_data) -lbt14_1 <- chevron_t( - main = lbt14_1_main, - preprocess = lbt14_1_pre, - postprocess = lbt14_1_post, - adam_datasets = c("adsl", "adlb") -) - -# lbt14_2 ---- - -#' @describeIn lbt14_2 Main TLG function -#' -#' @inheritParams gen_args -#' @param gr_missing how missing baseline grades should be handled. Defaults to `"incl"` to include the `"Missing"` -#' level. Other options are `"excl"` to exclude patients with missing baseline grades and `"gr_0"` to convert missing -#' baseline grades to grade 0. -#' @param title table title to display. Defaults to `"LBT14 - High Direction"`. -#' -#' @details -#' * Only the worst grade recorded for each patient is included in the table. -#' * If no missing baseline lab results, the "Missing" level of `BTOXGR` is excluded. -#' * Grades 0, -1, -2, -3, and -4 are counted as `"Not High"`. -#' * Remove zero-count rows unless overridden with `prune_0 = FALSE`. -#' * Split columns by arm, typically `ACTARM`. -#' -#' @note -#' * `adam_db` object must contain an `adlb` table with columns `"USUBJID"`, `"PARAM"`, `"BTOXGR"`, `"ATOXGR"`, -#' and the column specified by `arm_var`. -#' -#' @export -#' -lbt14_2_main <- function(adam_db, - arm_var = "ACTARM", - gr_missing = "incl", - title = "LBT14 - High Direction", - deco = std_deco("LBT14"), - ...) { - lyt <- lbt14_2_lyt( - arm_var = arm_var, - gr_missing = gr_missing, - title = title, - deco = deco - ) - - tbl <- build_table(lyt, adam_db$adlb, alt_counts_df = adam_db$adsl) - - tbl -} - -#' @describeIn lbt14_2 Layout -#' -#' @inheritParams lbt14_2_main -#' -#' @export -#' -lbt14_2_lyt <- function(arm_var, - gr_missing, - title, - deco) { - deco$title <- title - if (gr_missing == "excl") { - deco$main_footer <- "Patients with missing baseline values are excluded from the analysis." - } else if (gr_missing == "gr_0") { - deco$main_footer <- "Patients with missing baseline values are assumed to be Grade 0 at baseline." + rule( + "Not Low" = c("0", "1", "2", "3", "4"), + "1" = "-1", + "2" = "-2", + "3" = "-3", + "4" = "-4", + "Missing" = "" + ) } - lyt <- basic_table_deco(deco, show_colcounts = TRUE) %>% - split_cols_by(arm_var) %>% - split_rows_by( - "PARAM", - split_fun = drop_split_levels, - label_pos = "topleft", - split_label = "Parameter" - ) %>% - split_rows_by( - "BTOXGR_GRP", - label_pos = "topleft", - split_label = " Baseline NCI-CTCAE Grade", - indent_mod = 2L + adam_db$adlb <- adam_db$adlb %>% + mutate( + ATOXGR_GRP = as.character(.data$ATOXGR), + BTOXGR_GRP = as.character(.data$BTOXGR) ) %>% - summarize_num_patients(var = "USUBJID", .stats = c("unique_count"), unique_count_suffix = FALSE) %>% - count_occurrences("ATOXGR_GRP", denom = "n", drop = FALSE, .indent_mods = 3L) %>% - append_topleft(" Post-baseline NCI-CTCAE Grade") -} - -#' @describeIn lbt14_2 Preprocessing -#' -#' @inheritParams gen_args -#' @inheritParams lbt14_2_main -#' -#' @export -#' -lbt14_2_pre <- function(adam_db, - gr_missing = "incl", - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM", - ...) { - assert_all_tablenames(adam_db, c("adsl", "adlb")) - - checkmate::assert_choice(gr_missing, c("incl", "excl", "gr_0")) - - lbt14_2_check(adam_db, req_tables = req_tables, arm_var = arm_var) - - missing_rule <- rule("" = c("", NA, "", "No Coding Available")) - - new_format <- list( - adlb = list( - BTOXGR = missing_rule, - ATOXGR = missing_rule + mutate( + across(all_of(c("ATOXGR_GRP", "BTOXGR_GRP")), ~ reformat(.x, .env$grade_rule, na_last = TRUE)) ) - ) - - adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE) - - if (gr_missing == "excl") { - adam_db$adlb <- adam_db$adlb %>% - filter(.data$BTOXGR != "") - } else if (gr_missing == "gr_0") { - adam_db$adlb <- adam_db$adlb %>% - mutate(BTOXGR = if (all(adam_db$adlb$BTOXGR == "")) { - factor(.data$BTOXGR, levels = c("0", "")) - } else { - .data$BTOXGR - }) %>% - mutate(BTOXGR = forcats::fct_collapse(.data$BTOXGR, "0" = c("0", ""))) - } adam_db$adlb <- adam_db$adlb %>% - filter(.data$WGRHIFL == "Y") %>% mutate( - ATOXGR_GRP = factor( - case_when( - ATOXGR %in% c(0, -1, -2, -3, -4) ~ "Not High", - ATOXGR == 1 ~ "1", - ATOXGR == 2 ~ "2", - ATOXGR == 3 ~ "3", - ATOXGR == 4 ~ "4", - ATOXGR == "" ~ "Missing" - ), - levels = c("Not High", "1", "2", "3", "4", "Missing") - ), - BTOXGR_GRP = factor( - case_when( - BTOXGR %in% c(0, -1, -2, -3, -4) ~ "Not High", - BTOXGR == 1 ~ "1", - BTOXGR == 2 ~ "2", - BTOXGR == 3 ~ "3", - BTOXGR == 4 ~ "4", - BTOXGR == "" ~ "Missing" - ), - levels = if (gr_missing == "incl" & any(.data$BTOXGR == "")) { - c("Not High", "1", "2", "3", "4", "Missing") - } else { - c("Not High", "1", "2", "3", "4") - } - ) + BTOXGR_GRP = if (gr_missing != "incl" || any(.data$BTOXGR == "")) { + forcats::fct_drop(.data$BTOXGR_GRP, only = "Missing") + } else { + .data$BTOXGR_GRP + } ) adam_db } -#' @describeIn lbt14_2 Checks +#' @describeIn lbt14 Postprocessing #' #' @inheritParams gen_args +#' #' @export -lbt14_2_check <- function(adam_db, - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM") { - assert_all_tablenames(adam_db, req_tables) - - msg <- NULL - - adlb_layout_col <- c("USUBJID", "PARAM", "BTOXGR", "ATOXGR") - adsl_layout_col <- c("USUBJID") - - msg <- c(msg, check_all_colnames(adam_db$adlb, c(arm_var, adlb_layout_col))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c(adsl_layout_col))) +#' +lbt14_post <- function(tlg, prune_0 = TRUE, gr_missing = "incl", direction = "low", ...) { + if (prune_0) tlg <- tlg %>% trim_rows() - if (is.null(msg)) { - TRUE + main_title(tlg) <- if (direction == "low") { + "LBT14 - Low Direction" } else { - stop(paste(msg, collapse = "\n ")) + "LBT14 - High Direction" } -} -#' @describeIn lbt14_2 Postprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -lbt14_2_post <- function(tlg, prune_0 = TRUE, ...) { - if (prune_0) tlg <- tlg %>% trim_rows() std_postprocess(tlg) } -#' `LBT14` Table 2 (High Direction) Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by -#' Baseline Grade. +#' `LBT14` Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by +#' Baseline Grade (Low or High Direction). #' #' @include chevron_tlg-S4class.R #' @export #' #' @examples -#' run(lbt14_2, syn_data) -lbt14_2 <- chevron_t( - main = lbt14_2_main, - preprocess = lbt14_2_pre, - postprocess = lbt14_2_post, - adam_datasets = c("adlb") +#' run(lbt14, syn_data) +lbt14 <- chevron_t( + main = lbt14_main, + preprocess = lbt14_pre, + postprocess = lbt14_post, + adam_datasets = c("adsl", "adlb") ) diff --git a/R/mht01.R b/R/mht01.R index 073c7eea4..6340bae43 100644 --- a/R/mht01.R +++ b/R/mht01.R @@ -1,12 +1,8 @@ -# mht01_1 ---- +# mht01 ---- -#' @describeIn mht01_1 Main TLG function +#' @describeIn mht01 Main TLG function #' #' @inheritParams gen_args -#' @param lbl_mhbodsys (`string`) text label for `MHBODSYS`. If `NULL`, the value of the argument defaults to the label -#' of the corresponding column in the `admh` table. -#' @param lbl_mhdecod (`string`) text label for `MHDECOD`. If `NULL`, the value of the argument defaults to the label of -#' the corresponding column in the `admh` table. #' #' @details #' * Numbers represent absolute numbers of patients and fraction of `N`, or absolute number of event when specified. @@ -21,43 +17,47 @@ #' #' @export #' -mht01_1_main <- function(adam_db, - arm_var = "ARM", - lbl_overall = NULL, - lbl_mhbodsys = "MedDRA System Organ Class", - lbl_mhdecod = "MedDRA Preferred Term", - deco = std_deco("MHT01"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "admh") +mht01_main <- function(adam_db, + arm_var = "ARM", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, c("admh", "adsl")) + checkmate::assert_string(arm_var) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable(adam_db$admh, c("MHBODSYS", "MHDECOD"), types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$admh, "USUBJID", types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$adsl, "USUBJID", types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$admh, arm_var) - if (is.null(lbl_mhbodsys)) lbl_mhbodsys <- var_labels_for(adam_db$admh, "MHBODSYS") - if (is.null(lbl_mhdecod)) lbl_mhdecod <- var_labels_for(adam_db$admh, "MHDECOD") + lbl_mhbodsys <- var_labels_for(adam_db$admh, "MHBODSYS") + lbl_mhdecod <- var_labels_for(adam_db$admh, "MHDECOD") - lyt <- mht01_1_lyt( + lyt <- mht01_lyt( arm_var = arm_var, lbl_overall = lbl_overall, lbl_mhbodsys = lbl_mhbodsys, - lbl_mhdecod = lbl_mhdecod, - deco = deco + lbl_mhdecod = lbl_mhdecod ) - tbl <- build_table(lyt, dbsel$admh, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$admh, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn mht01_1 Layout +#' @describeIn mht01 Layout #' -#' @inheritParams mht01_1_main +#' @inheritParams gen_args +#' @inheritParams mht01_main +#' @param lbl_mhbodsys (`string`) label associated with `"MHBODSYS"`. +#' @param lbl_mhdecod (`string`) label associated with `"MHDECOD"`. #' -#' @export +#' @keywords internal #' -mht01_1_lyt <- function(arm_var, - lbl_overall, - lbl_mhbodsys, - lbl_mhdecod, - deco) { - basic_table_deco(deco) %>% +mht01_lyt <- function(arm_var, + lbl_overall, + lbl_mhbodsys, + lbl_mhdecod) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% @@ -94,40 +94,35 @@ mht01_1_lyt <- function(arm_var, append_topleft(paste0(" ", lbl_mhdecod)) } -#' @describeIn mht01_1 Preprocessing +#' @describeIn mht01 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -mht01_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "admh")) - - +mht01_pre <- function(adam_db, ...) { adam_db$admh <- adam_db$admh %>% filter(.data$ANL01FL == "Y") - new_format <- list( - admh = list( - MHBODSYS = rule( - "No Coding available" = c("", NA) - ), - MHDECOD = rule( - "No Coding available" = c("", NA) - ) + adam_db$admh <- adam_db$admh %>% + mutate( + across(all_of(c("MHBODSYS", "MHDECOD")), ~ reformat(.x, nocoding, na_last = TRUE)) + ) %>% + mutate( + MHBODSYS = with_label(.data$MHBODSYS, "MedDRA System Organ Class"), + MHDECOD = with_label(.data$MHDECOD, "MedDRA Preferred Term") ) - ) - dunlin::reformat(adam_db, new_format, na_last = TRUE) + adam_db } -#' @describeIn mht01_1 Postprocessing +#' @describeIn mht01 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -mht01_1_post <- function(tlg, prune_0 = TRUE, ...) { +mht01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) { tlg <- smart_prune(tlg) } @@ -141,7 +136,7 @@ mht01_1_post <- function(tlg, prune_0 = TRUE, ...) { std_postprocess(tbl_sorted) } -#' `MHT01` Table 1 (Default) Medical History Table 1. +#' `MHT01` Medical History Table. #' #' The `MHT01` table provides an overview of the subjects medical #' history by SOC and Preferred Term. @@ -150,10 +145,10 @@ mht01_1_post <- function(tlg, prune_0 = TRUE, ...) { #' @export #' #' @examples -#' run(mht01_1, syn_data) -mht01_1 <- chevron_t( - main = mht01_1_main, - preprocess = mht01_1_pre, - postprocess = mht01_1_post, +#' run(mht01, syn_data) +mht01 <- chevron_t( + main = mht01_main, + preprocess = mht01_pre, + postprocess = mht01_post, adam_datasets = c("adsl", "admh") ) diff --git a/R/mng01.R b/R/mng01.R index 59cfe9ad9..6d7d85067 100755 --- a/R/mng01.R +++ b/R/mng01.R @@ -1,6 +1,6 @@ -# mng01_1 ---- +# mng01 ---- -#' @describeIn mng01_1 Main TLG Function +#' @describeIn mng01 Main TLG Function #' #' @details #' * No overall value. @@ -11,7 +11,7 @@ #' @param x_var (`string`) the name of a column in the `dataset` to represent on the x-axis. #' @param y_var (`string`) the name of the variable to be represented on the y-axis. #' @param y_name (`string`) the variable name for `y`. Used for plot's subtitle. -#' @param y_unit (`string`) the name of the variable with the units of `y`. Used for plot's subtitle. if `NA`, only +#' @param y_unit (`string`) the name of the variable with the units of `y`. Used for plot's subtitle. if `NULL`, only #' `y_name` is displayed as subtitle. #' @param center_fun (`string`) the function to compute the estimate value. #' @param interval_fun (`string`) the function defining the crossbar range. @@ -21,8 +21,8 @@ #' @param show_h_grid (`flag`) should horizontal grid be displayed. #' @param show_v_grid (`flag`) should vertical grid be displayed. #' @param legend_pos (`string`) the position of the legend. -#' @param line_col (`list`) describing the colors to use for the lines or a named `list` associating values of `arm_var` -#' with color names. +#' @param line_col (`character`) describing the colors to use for the lines or a named `character` associating values of +#' `arm_var` with color names. #' #' @note #' * `adam_db` object must contain the table specified by `dataset` with the columns specified by `x_var`, `y_var`, @@ -30,40 +30,53 @@ #' #' @return a list of `ggplot` objects. #' @export -mng01_1_main <- function(adam_db, - dataset = "adlb", - x_var = "AVISIT", - y_var = "AVAL", - y_name = "PARAM", - y_unit = NA, - arm_var = "ACTARM", - center_fun = "mean", - interval_fun = "mean_ci", - show_table = TRUE, - jitter = TRUE, - show_n = TRUE, - show_h_grid = TRUE, - show_v_grid = FALSE, - legend_pos = "top", - line_col = as.list(nestcolor::color_palette()), - ...) { - df <- adam_db[[dataset]] +mng01_main <- function(adam_db, + dataset = "adlb", + x_var = "AVISIT", + y_var = "AVAL", + y_name = "PARAM", + y_unit = NULL, + arm_var = "ACTARM", + center_fun = "mean", + interval_fun = "mean_ci", + show_table = TRUE, + jitter = TRUE, + show_n = TRUE, + show_h_grid = TRUE, + show_v_grid = FALSE, + legend_pos = "top", + line_col = nestcolor::color_palette(), + ...) { + assert_all_tablenames(adam_db, c(dataset, "adsl")) + checkmate::assert_character(x_var) + checkmate::assert_string(y_var) + checkmate::assert_string(y_name) + checkmate::assert_string(y_unit, null.ok = TRUE) + checkmate::assert_string(arm_var) checkmate::assert_string(center_fun) checkmate::assert_string(interval_fun) - line_col <- unlist(line_col) - - data_ls <- split(df, df$PARAM, drop = TRUE) - x_var <- paste(x_var, collapse = "_") - - checkmate::assert_subset(center_fun, c("mean", "median")) - checkmate::assert_subset(interval_fun, c("mean_ci", "mean_sei", "mean_sdi", "median_ci", "quantiles", "range")) - + checkmate::assert_names(center_fun, subset.of = c("mean", "median")) + checkmate::assert_choice(interval_fun, c("mean_ci", "mean_sei", "mean_sdi", "median_ci", "quantiles", "range")) checkmate::assert_flag(show_table) checkmate::assert_flag(jitter) checkmate::assert_flag(show_n) checkmate::assert_flag(show_h_grid) checkmate::assert_flag(show_v_grid) + checkmate::assert_choice(legend_pos, c("top", "bottom", "right", "left")) checkmate::assert_character(line_col, null.ok = TRUE) + assert_valid_variable(adam_db[[dataset]], x_var) + assert_valid_variable(adam_db[[dataset]], y_var, types = list(c("numeric"))) + assert_valid_variable(adam_db[[dataset]], y_unit, types = list(c("character", "factor"))) + assert_valid_variable(adam_db[[dataset]], arm_var, types = list(c("character", "factor")), na_ok = FALSE) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db[[dataset]], "USUBJID", types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_var_pair(adam_db$adsl, adam_db[[dataset]], arm_var) + + df <- adam_db[[dataset]] + line_col <- unlist(line_col) + + data_ls <- split(df, df$PARAM, drop = TRUE) + x_var <- paste(x_var, collapse = "_") interval_title <- switch(interval_fun, "mean_ci" = "95% Confidence Intervals", @@ -92,6 +105,7 @@ mng01_1_main <- function(adam_db, "range" = c("min", "max") ) + y_unit <- if (is.null(y_unit)) NA else y_unit variables <- c( x = x_var, y = y_var, @@ -158,31 +172,29 @@ mng01_1_main <- function(adam_db, do.call(gg_list, ret) } -#' @describeIn mng01_1 Preprocessing +#' @describeIn mng01 Preprocessing #' -#' @inheritParams mng01_1_main +#' @inheritParams mng01_main #' #' @export -mng01_1_pre <- function(adam_db, dataset, x_var = "AVISIT", ...) { - assert_all_tablenames(adam_db, c("adsl", dataset)) - +mng01_pre <- function(adam_db, dataset, x_var = "AVISIT", ...) { adam_db[[dataset]] <- adam_db[[dataset]] %>% filter(.data$ANL01FL == "Y") dunlin::ls_unite(adam_db, dataset, cols = x_var, sep = "_") } -#' @describeIn mng01_1 Postprocessing +#' @describeIn mng01 Postprocessing #' #' @inheritParams gen_args #' -mng01_1_post <- function(tlg, ...) { +mng01_post <- function(tlg, ...) { tlg } -# `mng01_1` Pipeline ---- +# `mng01` Pipeline ---- -#' `MNG01` Graph 1 (Default) Mean Plot 1. +#' `MNG01` Mean Plot Graph. #' #' Overview of a summary statistics across time and arm for a selected data set. #' @@ -196,10 +208,10 @@ mng01_1_post <- function(tlg, ...) { #' "C: Combination" = "gray" #' ) #' -#' run(mng01_1, syn_data, dataset = "adlb", x_var = c("AVISIT", "AVISITN"), line_col = col) -mng01_1 <- chevron_g( - main = mng01_1_main, - preproces = mng01_1_pre, - postprocess = mng01_1_post, +#' run(mng01, syn_data, dataset = "adlb", x_var = c("AVISIT", "AVISITN"), line_col = col) +mng01 <- chevron_g( + main = mng01_main, + preproces = mng01_pre, + postprocess = mng01_post, adam_datasets = c("adsl", "adlb", "adeg", "advs") ) diff --git a/R/package.R b/R/package.R index 00b4eef52..ef174e736 100755 --- a/R/package.R +++ b/R/package.R @@ -4,18 +4,22 @@ #' @import methods #' @import rtables #' @import tern +#' @importFrom formatters with_label #' @importFrom rlistings as_listing #' @importFrom rtables drop_split_levels #' @importFrom checkmate check_class -#' @importFrom dunlin rule +#' @importFrom dunlin rule reformat #' @importFrom forcats fct_relevel #' @importFrom ggplot2 theme #' @importFrom glue glue #' @importFrom magrittr %>% #' @importFrom methods is setValidity #' @importFrom nestcolor color_palette -#' @importFrom rlang sym .data .env !!! %||% +#' @importFrom purrr reduce +#' @importFrom rlang sym .data .env !!! %||% abort #' @importFrom rlistings as_listing #' @importFrom stats setNames median sd quantile +#' @importFrom stringr str_dup #' @importFrom tibble tribble +#' @importFrom utils modifyList "_PACKAGE" diff --git a/R/pdt01.R b/R/pdt01.R index 31e16069b..7f6e0ac6a 100755 --- a/R/pdt01.R +++ b/R/pdt01.R @@ -1,12 +1,10 @@ -# pdt01_1 ---- +# pdt01 ---- -#' @describeIn pdt01_1 Main TLG function +#' @describeIn pdt01 Main TLG function #' #' @inheritParams gen_args #' @param dvcode_var (`string`) the variable defining the protocol deviation coded term. By default `DVDECOD`. -#' @param lbl_dvcode_var (`string`) label for the variable defining the protocol deviation coded term. #' @param dvterm_var (`string`) the variable defining the protocol deviation term. By default `DVTERM`. -#' @param lbl_dvterm_var (`string`) label for the variable defining the protocol deviation term. #' #' @details #' * Data should be filtered for major protocol deviations. `(DVCAT == "MAJOR")`. @@ -23,52 +21,55 @@ #' #' @export #' -pdt01_1_main <- function(adam_db, - arm_var = "ARM", - dvcode_var = "DVDECOD", - lbl_dvcode_var = "Protocol Deviation Coded Term", - dvterm_var = "DVTERM", - lbl_dvterm_var = "Category", - lbl_overall = NULL, - deco = std_deco("pdt01_1"), - ...) { - assert_colnames(adam_db$addv, c(dvcode_var, dvterm_var)) +pdt01_main <- function(adam_db, + arm_var = "ARM", + dvcode_var = "DVDECOD", + dvterm_var = "DVTERM", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, c("adsl", "addv")) + checkmate::assert_string(arm_var) + checkmate::assert_string(dvcode_var) + checkmate::assert_string(dvterm_var) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable(adam_db$addv, c(dvcode_var, dvterm_var, "DVSEQ"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$addv, "USUBJID", types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_var_pair(adam_db$adsl, adam_db$addv, arm_var) - dbsel <- get_db_data(adam_db, "adsl", "addv") + lbl_dvcode_var <- var_labels_for(adam_db$addv, dvcode_var) + lbl_dvterm_var <- var_labels_for(adam_db$addv, dvterm_var) - lyt <- pdt01_1_lyt( + lyt <- pdt01_lyt( arm_var = arm_var, lbl_overall = lbl_overall, dvcode_var = dvcode_var, lbl_dvcode_var = lbl_dvcode_var, dvterm_var = dvterm_var, - lbl_dvterm_var = lbl_dvterm_var, - deco = deco + lbl_dvterm_var = lbl_dvterm_var ) - tbl <- build_table(lyt, dbsel$addv, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$addv, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn pdt01_1 Layout +#' @describeIn pdt01 Layout #' #' @inheritParams gen_args -#' @param dvcode_var (`string`) the variable defining the protocol deviation coded term. By default `DVDECOD`. +#' @inheritParams pdt01_main #' @param lbl_dvcode_var (`string`) label for the variable defining the protocol deviation coded term. -#' @param dvterm_var (`string`) the variable defining the protocol deviation term. By default `DVTERM`. #' @param lbl_dvterm_var (`string`) label for the variable defining the protocol deviation term. #' -#' @export +#' @keywords internal #' -pdt01_1_lyt <- function(arm_var, - lbl_overall, - dvcode_var, - lbl_dvcode_var, - dvterm_var, - lbl_dvterm_var, - deco) { - basic_table_deco(deco) %>% +pdt01_lyt <- function(arm_var, + lbl_overall, + dvcode_var, + lbl_dvcode_var, + dvterm_var, + lbl_dvterm_var) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% add_colcounts() %>% summarize_num_patients( @@ -93,39 +94,32 @@ pdt01_1_lyt <- function(arm_var, append_topleft(paste0(" Description")) } -#' @describeIn pdt01_1 Preprocessing +#' @describeIn pdt01 Preprocessing #' -#' @inheritParams pdt01_1_main +#' @inheritParams pdt01_main #' #' @export #' -pdt01_1_pre <- function(adam_db, dvcode_var = "DVDECOD", dvterm_var = "DVTERM", ...) { - assert_all_tablenames(adam_db, c("adsl", "addv")) - - fmt_ls <- list( - dvcode_var = rule( - "No Coding available" = c("", NA) - ), - dvterm_var = rule( - "No Coding available" = c("", NA) - ), - DVSEQ = rule() - ) - - names(fmt_ls) <- c(dvcode_var, dvterm_var, "DVSEQ") - new_format <- list(addv = fmt_ls) +pdt01_pre <- function(adam_db, ...) { + adam_db$addv <- adam_db$addv %>% + mutate(across(all_of(c("DVDECOD", "DVTERM")), ~ reformat(.x, nocoding, na_last = TRUE))) %>% + mutate(across(all_of(c("DVSEQ")), ~ reformat(.x, rule(), na_last = TRUE))) %>% + mutate( + DVDECOD = with_label(.data$DVDECOD, "Protocol Deviation Coded Term"), + DVTERM = with_label(.data$DVTERM, "Category") + ) - dunlin::reformat(adam_db, new_format, na_last = TRUE) + adam_db } -#' @describeIn pdt01_1 Postprocessing +#' @describeIn pdt01 Postprocessing #' -#' @inheritParams pdt01_1_main +#' @inheritParams pdt01_main #' @inheritParams gen_args #' #' @export #' -pdt01_1_post <- function(tlg, prune_0 = TRUE, dvcode_var = "DVDECOD", dvterm_var = "DVTERM", ...) { +pdt01_post <- function(tlg, prune_0 = TRUE, dvcode_var = "DVDECOD", dvterm_var = "DVTERM", ...) { if (prune_0) { tlg <- smart_prune(tlg) } @@ -139,7 +133,7 @@ pdt01_1_post <- function(tlg, prune_0 = TRUE, dvcode_var = "DVDECOD", dvterm_var std_postprocess(tbl_sorted) } -#' `pdt01_1` Table 1 (Default) Major Protocol Deviations. +#' `pdt01` Major Protocol Deviations Table. #' #' A major protocol deviations #' table with the number of subjects and the total number of treatments by medication class sorted alphabetically and @@ -155,11 +149,11 @@ pdt01_1_post <- function(tlg, prune_0 = TRUE, dvcode_var = "DVDECOD", dvterm_var #' proc_data$addv <- proc_data$addv %>% #' filter(DVCAT == "MAJOR") #' -#' run(pdt01_1, proc_data) -pdt01_1 <- chevron_t( - main = pdt01_1_main, - lyt = pdt01_1_lyt, - preprocess = pdt01_1_pre, - postprocess = pdt01_1_post, +#' run(pdt01, proc_data) +pdt01 <- chevron_t( + main = pdt01_main, + lyt = pdt01_lyt, + preprocess = pdt01_pre, + postprocess = pdt01_post, adam_datasets = c("adsl", "addv") ) diff --git a/R/pdt02.R b/R/pdt02.R index f4aa805f3..d1222b1a3 100755 --- a/R/pdt02.R +++ b/R/pdt02.R @@ -1,12 +1,10 @@ -# pdt02_1 ---- +# pdt02 ---- -#' @describeIn pdt02_1 Main TLG function +#' @describeIn pdt02 Main TLG function #' #' @inheritParams gen_args #' @param dvreas_var (`string`) the variable defining the reason for deviation. By default `DVREAS`. -#' @param lbl_dvreas_var (`string`) label for the variable defining the reason for deviation. #' @param dvterm_var (`string`) the variable defining the protocol deviation term. By default `DVTERM`. -#' @param lbl_dvterm_var (`string`) label for the variable defining the protocol deviation term. #' #' @details #' * Data should be filtered for major protocol deviations related to epidemic/pandemic. @@ -19,61 +17,64 @@ #' the specific deviation term. #' #' @note -#' * `adam_db` object must contain an `addv` table with the columns specified in `dvreas_var` and `dvterm_var` as well -#' as `"DVSEQ"`. +#' * `adam_db` object must contain an `addv` table with the columns specified in `dvreas_var` and `dvterm_var`. #' #' @export #' -pdt02_1_main <- function(adam_db, - arm_var = "ARM", - dvreas_var = "DVREAS", - lbl_dvreas_var = "Primary Reason", - dvterm_var = "DVTERM", - lbl_dvterm_var = "Description", - lbl_overall = NULL, - deco = std_deco("pdt02_1"), - ...) { - assert_colnames(adam_db$addv, c(dvreas_var, dvterm_var)) +pdt02_main <- function(adam_db, + arm_var = "ARM", + dvreas_var = "DVREAS", + dvterm_var = "DVTERM", + lbl_overall = NULL, + ...) { + assert_all_tablenames(adam_db, c("adsl", "addv")) + checkmate::assert_string(arm_var) + checkmate::assert_string(dvreas_var) + checkmate::assert_string(dvterm_var) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + assert_valid_variable(adam_db$addv, c(dvreas_var, dvterm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$addv, c("AEPRELFL"), types = list("factor")) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$addv, "USUBJID", types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_var_pair(adam_db$adsl, adam_db$addv, arm_var) - dbsel <- get_db_data(adam_db, "adsl", "addv") + lbl_dvreas_var <- var_labels_for(adam_db$addv, dvreas_var) + lbl_dvterm_var <- var_labels_for(adam_db$addv, dvterm_var) - lyt <- pdt02_1_lyt( + lyt <- pdt02_lyt( arm_var = arm_var, lbl_overall = lbl_overall, dvreas_var = dvreas_var, lbl_dvreas_var = lbl_dvreas_var, dvterm_var = dvterm_var, - lbl_dvterm_var = lbl_dvterm_var, - deco = deco + lbl_dvterm_var = lbl_dvterm_var ) - tbl <- build_table(lyt, dbsel$addv, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$addv, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn pdt02_1 Layout +#' @describeIn pdt02 Layout #' #' @inheritParams gen_args -#' @param dvreas_var (`string`) the variable defining the reason for deviation. By default `DVREAS`. +#' @inheritParams pdt02_main #' @param lbl_dvreas_var (`string`) label for the variable defining the reason for deviation. -#' @param dvterm_var (`string`) the variable defining the protocol deviation term. By default `DVTERM`. #' @param lbl_dvterm_var (`string`) label for the variable defining the protocol deviation term. #' -#' @export +#' @keywords internal #' -pdt02_1_lyt <- function(arm_var, - lbl_overall, - dvreas_var, - lbl_dvreas_var, - dvterm_var, - lbl_dvterm_var, - deco) { - basic_table_deco(deco, show_colcounts = TRUE) %>% +pdt02_lyt <- function(arm_var, + lbl_overall, + dvreas_var, + lbl_dvreas_var, + dvterm_var, + lbl_dvterm_var) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% ifneeded_add_overall_col(lbl_overall) %>% - summarize_num_patients( - var = "USUBJID", + analyze_num_patients( + vars = "USUBJID", .stats = c("unique", "nonunique"), .labels = c( unique = "Total number of patients with at least one major protocol deviation related to epidemic/pandemic", @@ -83,7 +84,6 @@ pdt02_1_lyt <- function(arm_var, split_rows_by( dvreas_var, nested = FALSE, - indent_mod = -1L, split_fun = drop_split_levels, label_pos = "topleft", split_label = lbl_dvreas_var @@ -100,42 +100,34 @@ pdt02_1_lyt <- function(arm_var, append_topleft(paste(" ", lbl_dvterm_var)) } -#' @describeIn pdt02_1 Preprocessing +#' @describeIn pdt02 Preprocessing #' -#' @inheritParams pdt02_1_main +#' @inheritParams pdt02_main #' #' @export #' -pdt02_1_pre <- function(adam_db, dvreas_var = "DVREAS", dvterm_var = "DVTERM", ...) { - assert_all_tablenames(adam_db, c("adsl", "addv")) - +pdt02_pre <- function(adam_db, + ...) { adam_db$addv <- adam_db$addv %>% - filter(.data$DVCAT == "MAJOR" & .data$AEPRELFL == "Y") - - fmt_ls <- list( - dvreas_var = rule( - "No Coding available" = c("", NA) - ), - dvterm_var = rule( - "No Coding available" = c("", NA) - ), - DVSEQ = rule() - ) - - names(fmt_ls) <- c(dvreas_var, dvterm_var, "DVSEQ") - new_format <- list(addv = fmt_ls) + mutate(across(all_of(c("DVCAT", "AEPRELFL")), ~ reformat(.x, missing_rule, na_last = TRUE))) %>% + filter(.data$DVCAT == "MAJOR" & .data$AEPRELFL == "Y") %>% + mutate(across(all_of(c("DVREAS", "DVTERM")), ~ reformat(.x, nocoding, na_last = TRUE))) %>% + mutate( + DVREAS = with_label(.data$DVREAS, "Primary Reason"), + DVTERM = with_label(.data$DVTERM, "Description") + ) - dunlin::reformat(adam_db, new_format, na_last = TRUE) + adam_db } -#' @describeIn pdt02_1 Postprocessing +#' @describeIn pdt02 Postprocessing #' -#' @inheritParams pdt02_1_main +#' @inheritParams pdt02_main #' @inheritParams gen_args #' #' @export #' -pdt02_1_post <- function(tlg, prune_0 = TRUE, dvreas_var = "DVREAS", dvterm_var = "DVTERM", ...) { +pdt02_post <- function(tlg, prune_0 = TRUE, dvreas_var = "DVREAS", dvterm_var = "DVTERM", ...) { if (prune_0) { tlg <- smart_prune(tlg) } @@ -149,7 +141,7 @@ pdt02_1_post <- function(tlg, prune_0 = TRUE, dvreas_var = "DVREAS", dvterm_var std_postprocess(tbl_sorted) } -#' `pdt02_1` Table 1 (Default) Major Protocol Deviations Related to Epidemic/Pandemic. +#' `pdt02` Major Protocol Deviations Related to Epidemic/Pandemic Table. #' #' A major protocol deviations #' table with the number of subjects and the total number of Major Protocol Deviations Related @@ -159,11 +151,11 @@ pdt02_1_post <- function(tlg, prune_0 = TRUE, dvreas_var = "DVREAS", dvterm_var #' @export #' #' @examples -#' run(pdt02_1, syn_data) -pdt02_1 <- chevron_t( - main = pdt02_1_main, - lyt = pdt02_1_lyt, - preprocess = pdt02_1_pre, - postprocess = pdt02_1_post, +#' run(pdt02, syn_data) +pdt02 <- chevron_t( + main = pdt02_main, + lyt = pdt02_lyt, + preprocess = pdt02_pre, + postprocess = pdt02_post, adam_datasets = c("adsl", "addv") ) diff --git a/R/reexports.R b/R/reexports.R new file mode 100644 index 000000000..099354fd1 --- /dev/null +++ b/R/reexports.R @@ -0,0 +1,4 @@ +#' @export +formatters::with_label +#' @export +dunlin::reformat diff --git a/R/rmpt01.R b/R/rmpt01.R index c6570f4f1..69613d9e8 100644 --- a/R/rmpt01.R +++ b/R/rmpt01.R @@ -1,12 +1,11 @@ -# rmpt01_1 ---- +# rmpt01 ---- -#' @describeIn rmpt01_1 Main TLG function +#' @describeIn rmpt01 Main TLG function #' #' @inheritParams gen_args -#' @param anl_vars (`character`) the names of variables to be analyzed. -#' @param lbl_vars (`character`) the labels of the patient toll and time variables. +#' @param summaryvars (`character`) variables to be analyzed. The label attribute of the corresponding columns in `adex` +#' table of `adam_db` is used as label. #' @param parcat (`string`) the name of the variable initiating a new row split. -#' @param lbl_parcat (`string`) the label of the variable `parcat`. #' #' @details #' * Person time is the sum of exposure across all patients. @@ -20,117 +19,101 @@ #' #' @export #' -rmpt01_1_main <- function(adam_db, - anl_vars = c("AVALCAT1", "AVAL"), - lbl_vars = c("Patients", "Person time*"), - parcat = NULL, - lbl_parcat = "Parameter Category", - deco = std_deco("RMPT01"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "adex") - assert_colnames(dbsel$adex, anl_vars) +rmpt01_main <- function(adam_db, + summaryvars = c("AVALCAT1", "AVAL"), + parcat = NULL, + ...) { + assert_all_tablenames(adam_db, c("adsl", "adex")) checkmate::assert_string(parcat, null.ok = TRUE) + checkmate::assert_character(summaryvars, len = 2L) + assert_valid_variable(adam_db$adex, summaryvars[1], types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adex, summaryvars[2], types = list("numeric")) + assert_valid_variable(adam_db$adex, c("USUBJID", "PARAMCD", parcat)) + lbl_parcat <- var_labels_for(adam_db$adex, parcat) + lbl_summaryvars <- var_labels_for(adam_db$adex, summaryvars) - lyt <- rmpt01_1_lyt( - anl_vars = anl_vars, - lbl_vars = lbl_vars, + lyt <- rmpt01_lyt( + summaryvars = summaryvars, + lbl_summaryvars = lbl_summaryvars, parcat = parcat, - lbl_parcat = lbl_parcat, - deco = deco + lbl_parcat = lbl_parcat ) - tbl <- build_table(lyt, dbsel$adex, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$adex, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn rmpt01_1 Layout +#' `rmpt01` Layout #' #' @inheritParams gen_args +#' @inheritParams rmpt01_main +#' @param lbl_summaryvars (`character`) label associated with the analyzed variables. +#' @param lbl_parcat (`string`) the label associated with the variable initiating a new row split. #' -#' @export +#' @keywords internal #' -rmpt01_1_lyt <- function(anl_vars, - lbl_vars, - parcat, - lbl_parcat, - deco) { - basic_table_deco(deco) %>% - add_colcounts() %>% +rmpt01_lyt <- function(summaryvars, + lbl_summaryvars, + parcat, + lbl_parcat) { + basic_table(show_colcounts = TRUE) %>% ifneeded_split_row(parcat, lbl_parcat) %>% summarize_patients_exposure_in_cols( - var = anl_vars[2], + var = summaryvars[2], col_split = TRUE, .labels = c( - n_patients = lbl_vars[1], - sum_exposure = lbl_vars[2] + n_patients = lbl_summaryvars[1], + sum_exposure = lbl_summaryvars[2] ), custom_label = "Total Number of Patients and Person Time" ) %>% - split_rows_by( - var = anl_vars[1], - label_pos = "topleft", - split_label = "Duration of exposure" - ) %>% - summarize_patients_exposure_in_cols( - var = anl_vars[2], + analyze_patients_exposure_in_cols( + var = summaryvars[1], + ex_var = summaryvars[2], col_split = FALSE ) } -#' @describeIn rmpt01_1 Preprocessing +#' @describeIn rmpt01 Preprocessing #' #' @inheritParams gen_args #' #' @export #' -rmpt01_1_pre <- function(adam_db, anl_vars = c("AVALCAT1", "AVAL"), - parcat = NULL, ...) { - rmpt01_1_check(adam_db, anl_vars = anl_vars, parcat = parcat) - adam_db <- dunlin::log_filter(adam_db, PARAMCD == "TDURD", "adex") - adam_db$adex[[anl_vars[1]]] <- droplevels(adam_db$adex[[anl_vars[1]]]) - if (!is.null(parcat)) adam_db$adex[[parcat]] <- droplevels(adam_db$adex[[parcat]]) +rmpt01_pre <- function(adam_db, + parcat = NULL, + ...) { + adam_db$adex <- adam_db$adex %>% + filter(.data$PARAMCD == "TDURD") - adam_db -} - -#' @describeIn rmpt01_1 Checks -#' -#' @inheritParams gen_args -#' -#' @export -#' -rmpt01_1_check <- function(adam_db, - anl_vars, - parcat, - req_tables = c("adsl", "adex")) { - assert_all_tablenames(adam_db, req_tables) + adam_db$adex$AVALCAT1 <- droplevels(adam_db$adex$AVALCAT1) + if (!is.null(parcat)) adam_db$adex[[parcat]] <- droplevels(adam_db$adex[[parcat]]) - msg <- NULL + adam_db$adex <- adam_db$adex %>% + mutate( + AVALCAT1 = with_label(.data$AVALCAT1, "Patients"), + AVAL = with_label(.data$AVAL, "Person time*"), + PARCAT2 = with_label(.data$PARCAT2, "Parameter Category") + ) - msg <- c(msg, check_all_colnames(adam_db$adex, c("USUBJID", "PARAMCD", anl_vars, parcat))) - msg <- c(msg, check_all_colnames(adam_db$adsl, c("USUBJID"))) - if (is.null(msg)) { - TRUE - } else { - stop(paste(msg, collapse = "\n ")) - } + adam_db } -#' @describeIn rmpt01_1 Postprocessing +#' @describeIn rmpt01 Postprocessing #' #' @inheritParams gen_args #' #' @export #' -rmpt01_1_post <- function(tlg, prune_0 = FALSE, ...) { +rmpt01_post <- function(tlg, prune_0 = FALSE, ...) { if (prune_0) { tlg <- smart_prune(tlg) } std_postprocess(tlg) } -#' `RMPT01` Table 1 (Default) Duration of Exposure for Risk Management Plan Table 1. +#' `RMPT01`Duration of Exposure for Risk Management Plan Table. #' #' The `RMPT01` table provides an overview of duration of exposure. #' @@ -138,12 +121,12 @@ rmpt01_1_post <- function(tlg, prune_0 = FALSE, ...) { #' @export #' #' @examples -#' run(rmpt01_1, syn_data) +#' run(rmpt01, syn_data) #' -#' run(rmpt01_1, syn_data, parcat = "PARCAT2") -rmpt01_1 <- chevron_t( - main = rmpt01_1_main, - preprocess = rmpt01_1_pre, - postprocess = rmpt01_1_post, +#' run(rmpt01, syn_data, parcat = "PARCAT2") +rmpt01 <- chevron_t( + main = rmpt01_main, + preprocess = rmpt01_pre, + postprocess = rmpt01_post, adam_datasets = c("adsl", "adex") ) diff --git a/R/rspt01.R b/R/rspt01.R index 6b8aa5501..426473aad 100644 --- a/R/rspt01.R +++ b/R/rspt01.R @@ -1,6 +1,6 @@ -# rspt01_1 ---- +# rspt01 ---- -#' @describeIn rspt01_1 Main TLG function +#' @describeIn rspt01 Main TLG function #' #' @inheritParams gen_args #' @param dataset (`string`) the name of a table in the `adam_db` object. @@ -28,33 +28,53 @@ #' @details #' * No overall value. #' -#' #' @export #' #' -rspt01_1_main <- function(adam_db, - dataset = "adrs", - arm_var = "ARM", - ref_group = NULL, - odds_ratio = TRUE, - perform_analysis = c("unstrat"), - strata = NULL, - conf_level = 0.95, - methods = list(), - deco = std_deco("RSPT01"), - ...) { - anl <- adam_db[[dataset]] - assert_colnames(anl, c(arm_var, strata, "PARAMCD", "is_rsp", "rsp_lab")) - assert_single_paramcd(anl$PARAMCD) +rspt01_main <- function(adam_db, + dataset = "adrs", + arm_var = "ARM", + ref_group = NULL, + odds_ratio = TRUE, + perform_analysis = c("unstrat"), + strata = NULL, + conf_level = 0.95, + methods = list(), + ...) { + checkmate::assert_string(dataset) + assert_all_tablenames(adam_db, "adsl", dataset) checkmate::assert_string(ref_group, null.ok = TRUE) checkmate::assert_flag(odds_ratio) checkmate::assert_subset(perform_analysis, c("unstrat", "strat")) - checkmate::assert_character(strata, null.ok = !"stata" %in% perform_analysis) + checkmate::assert_character( + strata, + null.ok = !"stata" %in% perform_analysis, + min.len = as.integer(!"stata" %in% perform_analysis) + ) + checkmate::assert_string(arm_var) + df_label <- sprintf("adam_db$%s", dataset) + assert_valid_variable( + adam_db$adsl, c("USUBJID", arm_var), + types = list(c("character", "factor")) + ) + assert_valid_variable( + adam_db[[dataset]], c("USUBJID", arm_var, "RSP_LAB"), + types = list(c("character", "factor")), label = df_label + ) + assert_valid_variable(adam_db[[dataset]], "IS_RSP", types = list("logical"), label = df_label) + assert_valid_variable( + adam_db[[dataset]], c("PARAMCD", "PARAM"), + types = list(c("character", "factor")), label = df_label + ) + assert_single_value(adam_db[[dataset]]$PARAMCD, label = sprintf("adam_db$%s$PARAMCD", dataset)) + assert_valid_var_pair(adam_db$adsl, adam_db[[dataset]], arm_var) + checkmate::assert_subset(ref_group, lvls(adam_db[[dataset]][[arm_var]])) - arm_level <- lvls(anl[[arm_var]]) - ref_group <- ifelse(is.null(ref_group), as.character(arm_level[1]), ref_group) + if (is.null(ref_group)) { + ref_group <- lvls(adam_db[[dataset]][[arm_var]])[1] + } - lyt <- rspt01_1_lyt( + lyt <- rspt01_lyt( arm_var = arm_var, ref_group = ref_group, odds_ratio = odds_ratio, @@ -62,33 +82,32 @@ rspt01_1_main <- function(adam_db, strata = strata, conf_level = conf_level, methods = methods, - deco = deco + rsp_var = "IS_RSP" ) - tbl <- build_table(lyt, anl) + tbl <- build_table(lyt, adam_db[[dataset]], alt_counts_df = adam_db$adsl) tbl } -#' @describeIn rspt01_1 Layout +#' @describeIn rspt01 Layout #' #' @inheritParams gen_args #' +#' @keywords internal #' -#' @export -#' -rspt01_1_lyt <- function(arm_var, - ref_group, - odds_ratio, - perform_analysis, - strata, - conf_level, - methods, - deco) { +rspt01_lyt <- function(arm_var, + ref_group, + odds_ratio, + perform_analysis, + strata, + conf_level, + methods, + rsp_var) { lyt01 <- basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var, ref_group = ref_group) %>% estimate_proportion( - vars = "is_rsp", + vars = rsp_var, conf_level = conf_level, method = methods[["prop_conf_method"]] %||% "waldcc", table_names = "est_prop" @@ -101,13 +120,14 @@ rspt01_1_lyt <- function(arm_var, odds_ratio = odds_ratio, strata = if (perform == "strat") strata else NULL, conf_level = conf_level, - methods = methods + methods = methods, + rsp_var = rsp_var ) } lyt <- lyt01 %>% estimate_multinomial_response( - var = "rsp_lab", + var = "RSP_LAB", conf_level = conf_level, method = methods[["prop_conf_method"]] %||% "waldcc" ) @@ -115,35 +135,28 @@ rspt01_1_lyt <- function(arm_var, return(lyt) } -#' @describeIn rspt01_1 Preprocessing +#' @describeIn rspt01 Preprocessing #' #' @inheritParams gen_args -#' @param dataset (`string`) the name of a table in the `adam_db` object. -#' @param responder (`string`) responder defined in the table, by default use c("CR", "PR"). #' #' @export #' #' @examples -#' rspt01_1_pre(syn_data) -rspt01_1_pre <- function(adam_db, arm_var = "ARM", dataset = "adrs", responder = c("CR", "PR"), - ...) { - assert_all_tablenames(adam_db, c("adsl", dataset)) - assert_colnames(adam_db[[dataset]], c(arm_var, "AVALC")) - - adam_db[[dataset]] <- adam_db[[dataset]] %>% - mutate(rsp_lab = d_onco_rsp_label(AVALC)) %>% - mutate(is_rsp = AVALC %in% responder) - +#' rspt01_pre(syn_data) +rspt01_pre <- function(adam_db, ...) { + adam_db$adrs <- adam_db$adrs %>% + mutate(RSP_LAB = tern::d_onco_rsp_label(.data$AVALC)) %>% + mutate(IS_RSP = .data$AVALC %in% c("CR", "PR")) adam_db } -#' @describeIn rspt01_1 Postprocessing +#' @describeIn rspt01 Postprocessing #' #' @inheritParams gen_args #' #' #' @export -rspt01_1_post <- function(tlg, prune_0 = TRUE, ...) { +rspt01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) { tlg <- smart_prune(tlg) } @@ -163,58 +176,14 @@ rspt01_1_post <- function(tlg, prune_0 = TRUE, ...) { #' library(dunlin) #' #' syn_data2 <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") -#' run(rspt01_1, syn_data2) -#' run(rspt01_1, syn_data2, +#' run(rspt01, syn_data2) +#' run(rspt01, syn_data2, #' odds_ratio = FALSE, perform_analysis = c("unstrat", "strat"), #' strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher") #' ) -rspt01_1 <- chevron_t( - main = rspt01_1_main, - preprocess = rspt01_1_pre, - postprocess = rspt01_1_post, +rspt01 <- chevron_t( + main = rspt01_main, + preprocess = rspt01_pre, + postprocess = rspt01_post, adam_datasets = c("adsl") ) - -#' @describeIn rspt01_1 get proportion layout -#' -#' @inheritParams gen_args -#' @param lyt layout created by `rtables` -#' -#' @export -proportion_lyt <- function(lyt, arm_var, methods, strata, conf_level, odds_ratio = TRUE) { - lyt <- lyt %>% - estimate_proportion_diff( - vars = "is_rsp", - show_labels = "visible", - var_labels = if (is.null(strata)) "Unstratified Analysis" else "Stratified Analysis", - conf_level = conf_level, - method = if (is.null(strata)) { - methods[["diff_conf_method"]] %||% "waldcc" - } else { - methods[["strat_diff_conf_method"]] %||% "cmh" - }, - variables = list(strata = strata), - table_names = if (is.null(strata)) "est_prop_diff" else "est_prop_diff_strat" - ) %>% - test_proportion_diff( - vars = "is_rsp", - method = if (is.null(strata)) { - methods[["diff_pval_method"]] %||% "chisq" - } else { - methods[["strat_diff_pval_method"]] %||% "cmh" - }, - variables = list(strata = strata), - table_names = if (is.null(strata)) "test_prop_diff" else "test_prop_diff_strat" - ) - - if (odds_ratio) { - lyt <- lyt %>% - estimate_odds_ratio( - vars = "is_rsp", - variables = if (is.null(strata)) list(strata = NULL, arm = NULL) else list(strata = strata, arm = arm_var), - table_names = if (is.null(strata)) "est_or" else "est_or_strat" - ) - } - - lyt -} diff --git a/R/rtables_utils.R b/R/rtables_utils.R new file mode 100644 index 000000000..142c1156d --- /dev/null +++ b/R/rtables_utils.R @@ -0,0 +1,303 @@ +#' @keywords internal +split_and_summ_num_patients <- function(lyt, var, label, stats, summarize_labels, ...) { + checkmate::assert_string(var) + checkmate::assert_string(label) + lyt %>% + split_rows_by( + var, + child_labels = "visible", + nested = TRUE, + split_fun = rtables::drop_split_levels, + label_pos = "topleft", + split_label = label + ) %>% + summarize_num_patients( + var = "USUBJID", + .stats = stats, + .labels = setNames(summarize_labels, stats), + ... + ) +} +#' @keywords internal +get_sort_path <- function(x) { + checkmate::assert_character(x, null.ok = TRUE) + x2 <- as.character(rbind(x, rep("*", length(x)))) + x2[-length(x2)] +} +#' @keywords internal +tlg_sort_by_vars <- function(tlg, vars, scorefun = cont_n_allcols, ...) { + purrr::reduce( + .x = lapply(seq_len(length(vars)), function(i) vars[seq_len(i)]), + .f = tlg_sort_by_var, + .init = tlg, + scorefun = scorefun, + ... + ) +} +#' @keywords internal +tlg_sort_by_var <- function(tlg, var, scorefun = cont_n_allcols, ...) { + checkmate::assert_character(var) + if (length(var) == 0) { + return(tlg) + } + var_path <- get_sort_path(var) + tlg %>% + valid_sort_at_path( + path = var_path, + scorefun = scorefun, + ... + ) +} +#' @keywords internal +valid_sort_at_path <- function(tt, path, scorefun, ...) { + if (valid_row_path(tt, path)) { + sort_at_path(tt, path, scorefun, ...) + } else { + tt + } +} +#' @keywords internal +valid_row_path <- function(tlg, row_path) { + if (nrow(tlg) == 0) { + return(TRUE) + } + rpaths <- row_paths(tlg) + non_star <- which(row_path != "*") + 1 + rpaths_choice <- unique(lapply(rpaths, `[`, non_star)) + any(vapply(rpaths_choice, identical, FUN.VALUE = TRUE, y = row_path[non_star - 1])) +} + +#' Count patients recursively +#' @param lyt (`PreDataTableLayouts`) rtable layout. +#' @param anl_vars Named (`list`) of analysis variables. +#' @param anl_lbls (`character`) of labels. +#' @param lbl_vars Named (`list`) of analysis labels. +#' @keywords internal +count_patients_recursive <- function(lyt, anl_vars, anl_lbls, lbl_vars) { + checkmate::assert_list(anl_vars, names = "unique", types = "character") + checkmate::assert_character(anl_lbls, min.chars = 1L, len = length(anl_vars)) + nms <- names(anl_vars) + for (k in seq_len(length(anl_vars))) { + lyt <- lyt %>% + count_patients_with_flags( + var = "USUBJID", + flag_variables = setNames(lbl_vars[[k]], anl_vars[[k]]), + denom = "N_col", + var_labels = anl_lbls[k], + show_labels = "visible", + table_names = nms[k], + .indent_mods = 0L + ) + } + lyt +} +#' @keywords internal +score_all_sum <- function(tt) { + cleaf <- collect_leaves(tt)[[1]] + if (NROW(cleaf) == 0) { + stop("score_all_sum score function used at subtable [", obj_name(tt), "] that has no content.") + } + sum(sapply(row_values(cleaf), function(cv) cv[1])) +} +#' @keywords internal +summarize_row <- function(lyt, vars, afun, ...) { + summarize_row_groups(lyt = lyt, var = vars, cfun = afun, ...) +} + +#' Summary factor allowing NA +#' @param x (`factor`) input. +#' @param denom (`string`) denominator choice. +#' @param .N_row (`integer`) number of rows in row-splitted dataset. +#' @param .N_col (`integer`) number of rows in column-splitted dataset. +#' @param ... Not used +#' @keywords internal +s_summary_na <- function(x, labelstr, denom = c("n", "N_row", "N_col"), .N_row, .N_col, ...) { # nolint + denom <- match.arg(denom) + y <- list() + y$n <- length(x) + y$count <- as.list(table(x, useNA = "no")) + dn <- switch(denom, + n = length(x), + N_row = .N_row, + N_col = .N_col + ) + y$count_fraction <- lapply(y$count, function(x) { + c(x, ifelse(dn > 0, x / dn, 0)) + }) + y$n_blq <- sum(grepl("BLQ|LTR|<[1-9]", x)) + y +} +#' Summarize variables allow na +#' @keywords internal +summarize_vars_allow_na <- function( + lyt, vars, var_labels = vars, + nested = TRUE, ..., show_labels = "default", table_names = vars, + section_div = NA_character_, .stats = c("n", "count_fraction"), + .formats = list(count_fraction = format_count_fraction_fixed_dp), .labels = NULL, .indent_mods = NULL, inclNAs = TRUE) { # nolint + afun <- make_afun(s_summary_na, .stats, .formats, .labels, .indent_mods, .ungroup_stats = c("count_fraction")) + analyze( + lyt = lyt, vars = vars, var_labels = var_labels, + afun = afun, nested = nested, extra_args = list(...), + inclNAs = inclNAs, show_labels = show_labels, table_names = table_names, + section_div = section_div + ) +} + +#' Count or summarize by groups +#' @param lyt (`PreDataTableLayouts`) rtable layout. +#' @param var (`string`) of analysis variable. +#' @param level (`string`) level to be displayed. +#' @param detail_vars (`character`) of variables for detail information. +#' @keywords internal +count_or_summarize <- function(lyt, var, level, detail_vars, indent_mod = 0L, ...) { + checkmate::assert_string(level) + if (is.null(detail_vars)) { + lyt <- lyt %>% + count_values( + var, + values = level, + table_names = paste(var, level, sep = "_"), + .formats = list(count_fraction = format_count_fraction_fixed_dp), + .indent_mods = indent_mod, + ... + ) + } else { + lyt <- lyt %>% + split_rows_by(var, split_fun = keep_split_levels(level), indent_mod = indent_mod) %>% + summarize_row_groups( + format = format_count_fraction_fixed_dp + ) %>% + split_rows_by_recurive(detail_vars[-length(detail_vars)], split_fun = drop_split_levels) %>% + summarize_vars( + detail_vars[length(detail_vars)], + .stats = "count_fraction", + denom = "N_col", + show_labels = "hidden", + .formats = list(count_fraction = format_count_fraction_fixed_dp), + ... + ) + } + lyt +} + +#' Count or summarize by groups +#' @param lyt (`PreDataTableLayouts`) rtable layout. +#' @param split_var (`character`) variable to split rows by. +#' @param ... Further arguments for `split_rows_by` +#' @keywords internal +split_rows_by_recurive <- function(lyt, split_var, ...) { + purrr::reduce(.x = split_var, .f = split_rows_by, .init = lyt, ...) +} + +#' Proportion layout +#' +#' @inheritParams rspt01_main +#' @param lyt layout created by `rtables` +#' +#' @keywords internal +proportion_lyt <- function(lyt, arm_var, methods, strata, conf_level, odds_ratio = TRUE, rsp_var = "IS_RSP") { + non_stratified <- length(strata) == 0L + lyt <- lyt %>% + estimate_proportion_diff( + vars = rsp_var, + show_labels = "visible", + var_labels = if (non_stratified) "Unstratified Analysis" else "Stratified Analysis", + conf_level = conf_level, + method = if (non_stratified) { + methods[["diff_conf_method"]] %||% "waldcc" + } else { + methods[["strat_diff_conf_method"]] %||% "cmh" + }, + variables = list(strata = strata), + table_names = if (non_stratified) "est_prop_diff" else "est_prop_diff_strat" + ) %>% + test_proportion_diff( + vars = rsp_var, + method = if (non_stratified) { + methods[["diff_pval_method"]] %||% "chisq" + } else { + methods[["strat_diff_pval_method"]] %||% "cmh" + }, + variables = list(strata = strata), + table_names = if (non_stratified) "test_prop_diff" else "test_prop_diff_strat" + ) + + if (odds_ratio) { + lyt <- lyt %>% + estimate_odds_ratio( + vars = rsp_var, + variables = if (non_stratified) list(strata = strata, arm = arm_var), + table_names = if (non_stratified) "est_or" else "est_or_strat" + ) + } + + lyt +} + +#' Helper function to add a row split if specified +#' +#' @param lyt (`rtables`) object. +#' @param var (`string`) the name of the variable initiating a new row split. +#' @param lbl_var (`string`)the label of the variable `var`. +#' +#' @keywords internal +#' +#' @return `rtables` object. +#' +ifneeded_split_row <- function(lyt, var, lbl_var) { + if (is.null(var)) { + lyt + } else { + split_rows_by(lyt, var, + label_pos = "topleft", + split_label = lbl_var + ) + } +} + +#' Create a Null Report +#' @rdname report_null +#' @aliases null_report +#' @param tlg (`TableTree`) object. +#' @param ... not used. Important to be used directly as post processing function. +#' +#' @export +#' +#' @return original `TableTree` or a null report if no observation are found in the table. +#' +report_null <- function(tlg, ...) { + checkmate::assert_true(is.null(tlg) || rtables::is_rtable(tlg)) + + if (is.null(tlg) || nrow(tlg) == 0L) { + null_report + } else { + tlg + } +} + +#' @export +#' @rdname report_null +null_report <- rtables::rtable( + header = "", + rrow("", "Null Report: No observations met the reporting criteria for inclusion in this output.") +) + +#' @export +#' @rdname report_null +null_listing <- rlistings::as_listing( + df = data.frame(x = formatters::with_label( + "Null Report: No observations met the reporting criteria for inclusion in this output.", "" + )) +) + +has_overall_col <- function(lbl_overall) { + !is.null(lbl_overall) && !identical(lbl_overall, "") +} + +ifneeded_add_overall_col <- function(lyt, lbl_overall) { + if (has_overall_col(lbl_overall)) { + add_overall_col(lyt, label = lbl_overall) + } else { + lyt + } +} diff --git a/R/standard_rules.R b/R/standard_rules.R new file mode 100644 index 000000000..c42f0b128 --- /dev/null +++ b/R/standard_rules.R @@ -0,0 +1,6 @@ +#' No Coding Available rule +#' @export +nocoding <- rule("No Coding Available" = c("", NA)) +#' Missing rule +#' @export +missing_rule <- rule("" = c("", NA)) diff --git a/R/utils.R b/R/utils.R index 8aca6ea6a..4740efe43 100755 --- a/R/utils.R +++ b/R/utils.R @@ -12,119 +12,6 @@ var_labels_for <- function(df, vars) { unname(formatters::var_labels(df, fill = TRUE)[vars]) } - -#' Standard documentation lookup -#' -#' @param id standard id of output -#' @param ... not used at the moment -#' -#' @export -std_deco <- function(id, ...) { - list( - title = "", - subtitles = "", - main_footer = "" - ) -} - -basic_table_deco <- function(deco, ...) { - checkmate::assert_set_equal(names(deco), c("title", "subtitles", "main_footer")) - - basic_table(title = deco$title, subtitles = deco$subtitles, main_footer = deco$main_footer, ...) -} - -has_overall_col <- function(lbl_overall) { - !is.null(lbl_overall) && !identical(lbl_overall, "") -} - -ifneeded_add_overall_col <- function(lyt, lbl_overall) { - if (has_overall_col(lbl_overall)) { - add_overall_col(lyt, label = lbl_overall) - } else { - lyt - } -} - -#' Get Data from a DB -#' -#' @param db (named `list`) to extract elements form. -#' @param ... not used. -#' -#' @return named list of data sets. -#' -#' @examples -#' \dontrun{ -#' get_db_data(list(iris = iris, mtcars = mtcars, CO2 = CO2)) -#' get_db_data(list(iris = iris, mtcars = mtcars, CO2 = CO2), "iris") -#' get_db_data(list(iris = iris, mtcars = mtcars, CO2 = CO2), "iris", "CO2") -#' } -get_db_data <- function(db, ...) { - checkmate::assert_list(db, types = "data.frame") - datasets <- c(...) - - if (length(datasets) == 0) { - return(list()) - } - - checkmate::assert_subset(datasets, names(db)) - - db[datasets] -} - -#' Temporary function to add decorator to a table -#' -#' @param x (`rtables`) object. -#' @param deco (`list`) typically generated with `std_deco()`. -#' -#' @keywords internal -#' -#' @return `rtables` with set title, subtitle and footnotes. If one of this attribute is NULL, the slot is empty. -set_decoration <- function(x, deco) { - checkmate::assert_multi_class(x, c("TableTree", "ElementaryTable")) - checkmate::assert_list(deco, types = "character", max.len = 3, names = "unique") - checkmate::assert_subset(names(deco), c("title", "subtitles", "main_footer")) - - x@main_title <- deco$title - x@subtitles <- deco$subtitles - x@main_footer <- deco$main_footer - x -} - -#' Create a Null Report -#' @rdname report_null -#' @aliases null_report -#' @param tlg (`TableTree`) object. -#' @param ... not used. Important to be used directly as post processing function. -#' -#' @export -#' -#' @return original `TableTree` or a null report if no observation are found in the table. -#' -report_null <- function(tlg, ...) { - checkmate::assert_true(is.null(tlg) || rtables::is_rtable(tlg)) - - if (is.null(tlg) || nrow(tlg) == 0L) { - null_report - } else { - tlg - } -} - -#' @export -#' @rdname report_null -null_report <- rtables::rtable( - header = "", - rrow("Null Report: No observations met the reporting criteria for inclusion in this output.") -) - -#' @export -#' @rdname report_null -null_listing <- rlistings::as_listing( - df = data.frame(x = formatters::with_label( - "Null Report: No observations met the reporting criteria for inclusion in this output.", "" - )) -) - #' Prune Table up to an `ElementaryTable` #' #' Avoid returning `NULL` when the `table` is empty. @@ -144,51 +31,7 @@ smart_prune <- function(tlg) { res } -#' Get Labels -#' -#' @param df (`data.frame`). -#' @param x (`character`) the names of column in the `df` data frame. -#' -#' @return the name of each element in the `x` vector where missing names are replaced with the value of the label -#' attribute for the corresponding column in the `df` data frame. -#' -#' @keywords internal -#' -get_labels <- function(df, x) { - checkmate::assert_character(x) - assert_colnames(df, x) - - labels <- var_labels_for(df, x) - all_names <- names(x) - - if (is.null(all_names)) { - labels - } else { - if_else(all_names == "", labels, all_names) - } -} - -#' Helper function to add a row split if specified -#' -#' @param lyt (`rtables`) object. -#' @param var (`string`) the name of the variable initiating a new row split. -#' @param lbl_var (`string`)the label of the variable `var`. -#' -#' @keywords internal -#' -#' @return `rtables` object. -#' -ifneeded_split_row <- function(lyt, var, lbl_var) { - if (is.null(var)) { - lyt - } else { - split_rows_by(lyt, var, - label_pos = "topleft", - split_label = lbl_var - ) - } -} #' Standard Post processing #' @@ -293,13 +136,19 @@ droplevels.character <- function(x, ...) { x } -#' `lvls` objective to get unique level of variables -#' @param x (`character`) or (`factor`) variable to get level. +#' Obtain levels from vector +#' @param x (`character`) or (`factor`) object to obtain levels. +#' @details +#' For factors, the levels will be returned. For characters, the sorted unique values will be returned. #' @export lvls <- function(x) { UseMethod("lvls") } #' @export +lvls.default <- function(x) { + NULL +} +#' @export lvls.character <- function(x) { sort(unique(x)) } @@ -307,3 +156,25 @@ lvls.character <- function(x) { lvls.factor <- function(x) { levels(x) } + +#' @keywords internal +quote_str <- function(x) { + checkmate::assert_string(x) + paste0("`", x, "`") +} + +#' @keywords internal +modify_default_args <- function(fun, ...) { + ret <- fun + formals(ret) <- utils::modifyList(formals(fun), list(...), keep.null = TRUE) + return(ret) +} + +#' Execute function with given arguments +#' @details If the function has `...`, this function will not pass other arguments to `...`. +#' Only named arguments are passed. +#' @keywords internal +execute_with_args <- function(fun, ...) { + args <- list(...) + do.call(fun, args[intersect(names(args), formalArgs(fun))]) +} diff --git a/R/vst01.R b/R/vst01.R index a2eda3b1d..b92331ebe 100644 --- a/R/vst01.R +++ b/R/vst01.R @@ -1,12 +1,16 @@ -# vst01_1 ---- +# vst01 ---- -#' @describeIn vst01_1 Main TLG function +#' @describeIn vst01 Main TLG function #' #' @inheritParams gen_args -#' @param summaryvars (`list`) variables to be analyzed. Names are used as subtitles. For values -#' where no name is provided, the label attribute of the corresponding column in `advs` table of `adam_db` is used. +#' @param summaryvars (`character`) variables to be analyzed. The label attribute of the corresponding column in `advs` +#' table of `adam_db` is used as label. #' @param visitvar (`string`) typically one of `"AVISIT"` (Default) or `"ATPTN"` depending on the type of time point #' to be displayed +#' @param precision (named `list` of `integer`) where names are values found in the `PARAMCD` column and the the values +#' indicate the number of digits that should be represented for `min`, `max` and `median`. `Mean` and `sd` are +#' represented with one more decimal of precision. +#' @param default_precision (`integer`) the default number of digits. #' #' @details #' * The `Analysis Value` column, displays the number of patients, the mean, standard deviation, median and range of @@ -24,26 +28,40 @@ #' #' @export #' -vst01_1_main <- function(adam_db, - arm_var = "ACTARM", - summaryvars = list("Value at Visit" = "AVAL", "Change from \nBaseline" = "CHG"), - visitvar = "AVISIT", # or ATPTN - deco = std_deco("VST01"), - ...) { - summaryvars <- unlist(summaryvars) +vst01_main <- function(adam_db, + arm_var = "ACTARM", + summaryvars = c("AVAL", "CHG"), + visitvar = "AVISIT", + precision = list(), + default_precision = 2, + ...) { + assert_all_tablenames(adam_db, c("adsl", "advs")) + checkmate::assert_string(arm_var) + checkmate::assert_character(summaryvars, len = 2) + checkmate::assert_string(visitvar) + assert_valid_variable(adam_db$advs, c(summaryvars), types = list("numeric"), empty_ok = TRUE) + assert_valid_variable(adam_db$advs, c(visitvar, "PARAM"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$advs, "USUBJID", types = list(c("character", "factor")), empty_ok = TRUE) + assert_valid_variable(adam_db$adsl, "USUBJID", types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) + checkmate::assert_list(precision, types = "integerish", names = "unique") + vapply(precision, checkmate::assert_integerish, FUN.VALUE = numeric(1), lower = 0, len = 1) + checkmate::assert_integerish(default_precision, lower = 0, len = 1) + lbl_avisit <- var_labels_for(adam_db$advs, visitvar) lbl_param <- var_labels_for(adam_db$advs, "PARAM") - summaryvars_lbls <- get_labels(adam_db$advs, summaryvars) + summaryvars_lbls <- var_labels_for(adam_db$advs, summaryvars) - lyt <- vst01_1_lyt( + lyt <- vst01_lyt( arm_var = arm_var, summaryvars = summaryvars, summaryvars_lbls = summaryvars_lbls, visitvar = visitvar, lbl_avisit = lbl_avisit, lbl_param = lbl_param, - deco = deco + precision = precision, + default_precision = default_precision ) tbl <- build_table( @@ -55,9 +73,10 @@ vst01_1_main <- function(adam_db, tbl } -#' @describeIn vst01_1 Layout +#' `vst01` Layout #' #' @inheritParams gen_args +#' @inheritParams vst01_main #' #' @param summaryvars (`character`) the variables to be analyzed. For this table, `AVAL` and `CHG` by default. #' @param summaryvars_lbls (`character`) the label of the variables to be analyzed. @@ -66,23 +85,25 @@ vst01_1_main <- function(adam_db, #' @param lbl_avisit (`string`) label of the `visitvar` variable. #' @param lbl_param (`string`) label of the `PARAM` variable. #' -#' @export +#' @keywords internal #' -vst01_1_lyt <- function(arm_var, - summaryvars, - summaryvars_lbls, - visitvar, - lbl_avisit, - lbl_param, - deco) { +vst01_lyt <- function(arm_var, + summaryvars, + summaryvars_lbls, + visitvar, + lbl_avisit, + lbl_param, + precision, + default_precision) { # TODE solve the problem of the overall column # remove change from baseline in BASELINE # problem with the column count - basic_table_deco(deco) %>% + basic_table(show_colcounts = TRUE) %>% split_cols_by(arm_var) %>% split_rows_by( - "PARAM", + var = "PARAMCD", + labels_var = "PARAM", split_fun = drop_split_levels, label_pos = "hidden", split_label = paste(lbl_param) @@ -98,36 +119,87 @@ vst01_1_lyt <- function(arm_var, varlabels = summaryvars_lbls, nested = TRUE ) %>% - summarize_colvars() %>% + analyze_colvars( + afun = function(x, .var, .spl_context, precision, default_precision, ...) { + param_val <- .spl_context$value[which(.spl_context$split == "PARAMCD")] + + pcs <- precision[[param_val]] %||% default_precision + + # Create context dependent function. + n_fun <- sum(!is.na(x), na.rm = TRUE) + if (n_fun == 0) { + mean_sd_fun <- c(NA, NA) + median_fun <- NA + min_max_fun <- c(NA, NA) + } else { + mean_sd_fun <- c(mean(x, na.rm = TRUE), sd(x, na.rm = TRUE)) + median_fun <- median(x, na.rm = TRUE) + min_max_fun <- c(min(x), max(x)) + } + + # Identify context- + is_chg <- .var == "CHG" + + is_baseline <- .spl_context$value[which(.spl_context$split == "AVISIT")] == "BASELINE" + + if (is_baseline && is_chg) { + n_fun <- mean_sd_fun <- median_fun <- min_max_fun <- NULL + } + + in_rows( + "n" = n_fun, + "Mean (SD)" = mean_sd_fun, + "Median" = median_fun, + "Min - Max" = min_max_fun, + .formats = list( + "n" = "xx", + "Mean (SD)" = h_format_dec(format = "%f (%f)", digits = pcs + 1), + "Median" = h_format_dec(format = "%f", digits = pcs + 1), + "Min - Max" = h_format_dec(format = "%f - %f", digits = pcs) + ), + .format_na_strs = list( + "n" = "NE", + "Mean (SD)" = "NE (NE)", + "Median" = "NE", + "Min - Max" = "NE - NE" + ) + ) + }, + extra_args = list( + precision = precision, + default_precision = default_precision + ) + ) %>% append_topleft(paste(lbl_param)) %>% append_topleft(paste(" ", lbl_avisit)) } -#' @describeIn vst01_1 Preprocessing +#' @describeIn vst01 Preprocessing #' #' @inheritParams gen_args #' @export #' -vst01_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "advs")) - - +vst01_pre <- function(adam_db, ...) { adam_db$advs <- adam_db$advs %>% - filter(.data$ANL01FL == "Y") + filter(.data$ANL01FL == "Y") %>% + mutate( + AVAL = with_label(.data$AVAL, "Value at Visit"), + CHG = with_label(.data$CHG, "Change from \nBaseline") + ) adam_db } -#' @describeIn vst01_1 Postprocessing +#' @describeIn vst01 Postprocessing #' #' @inheritParams gen_args #' #' @export -vst01_1_post <- function(tlg, prune_0 = TRUE, ...) { +vst01_post <- function(tlg, prune_0 = TRUE, ...) { if (prune_0) tlg <- tlg %>% trim_rows() std_postprocess(tlg) } -#' `VST01` Table 1 (Default) Vital Sign Results and change from Baseline By Visit Table 1. +#' `VST01` Vital Sign Results and change from Baseline By Visit Table. #' #' The `VST01` table provides an #' overview of the Vital Sign values and its change from baseline of each respective arm @@ -137,10 +209,10 @@ vst01_1_post <- function(tlg, prune_0 = TRUE, ...) { #' @export #' #' @examples -#' run(vst01_1, syn_data) -vst01_1 <- chevron_t( - main = vst01_1_main, - preprocess = vst01_1_pre, - postprocess = vst01_1_post, +#' run(vst01, syn_data) +vst01 <- chevron_t( + main = vst01_main, + preprocess = vst01_pre, + postprocess = vst01_post, adam_datasets = c("adsl", "advs") ) diff --git a/R/vst02.R b/R/vst02.R index f74b4298b..0311bd6e7 100644 --- a/R/vst02.R +++ b/R/vst02.R @@ -3,8 +3,7 @@ #' @describeIn vst02_1 Main TLG function #' #' @inheritParams gen_args -#' @param lbl_vs_assessment (`string`) the label of the assessment variable. -#' @param lbl_vs_abnormality (`string`) the label of the abnormality variable. +#' @param exclude_base_abn (`flag`) whether baseline abnormality should be excluded. #' #' @details #' * Only count LOW or HIGH values. @@ -19,40 +18,49 @@ #' vst02_1_main <- function(adam_db, arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", lbl_overall = NULL, - prune_0 = FALSE, - deco = std_deco("VST02"), + exclude_base_abn = FALSE, ...) { - dbsel <- get_db_data(adam_db, "adsl", "advs") - - lyt <- vst02_1_lyt( + assert_all_tablenames(adam_db, "adsl", "advs") + checkmate::assert_string(arm_var) + checkmate::assert_flag(exclude_base_abn) + checkmate::assert_string(lbl_overall, null.ok = TRUE) + + assert_valid_variable(adam_db$advs, c(arm_var, "PARAM", "ANRIND", "BNRIND"), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor"))) + assert_valid_variable(adam_db$advs, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor"))) + assert_valid_var_pair(adam_db$adsl, adam_db$advs, arm_var) + + lbl_vs_assessment <- var_labels_for(adam_db$advs, "PARAM") + lbl_vs_abnormality <- var_labels_for(adam_db$advs, "ANRIND") + lyt <- vst02_lyt( arm_var = arm_var, + exclude_base_abn = exclude_base_abn, lbl_vs_assessment = lbl_vs_assessment, lbl_vs_abnormality = lbl_vs_abnormality, - lbl_overall = lbl_overall, - deco = deco + lbl_overall = lbl_overall ) - tbl <- build_table(lyt, dbsel$advs, alt_counts_df = dbsel$adsl) + tbl <- build_table(lyt, adam_db$advs, alt_counts_df = adam_db$adsl) tbl } -#' @describeIn vst02_1 Layout +#' `vst02_1` Layout #' #' @inheritParams gen_args #' @param lbl_vs_assessment (`string`) the label of the assessment variable. #' @param lbl_vs_abnormality (`string`) the label of the abnormality variable. +#' @param exclude_base_abn (`flag`) whether to exclude subjects with baseline abnormality from numerator and +#' denominator. #' -#' @export +#' @keywords internal #' -vst02_1_lyt <- function(arm_var, - lbl_vs_assessment, - lbl_vs_abnormality, - lbl_overall, - deco) { - basic_table_deco(deco) %>% +vst02_lyt <- function(arm_var, + exclude_base_abn, + lbl_vs_assessment, + lbl_vs_abnormality, + lbl_overall) { + basic_table(show_colcounts = TRUE) %>% split_cols_by(var = arm_var) %>% add_colcounts() %>% ifneeded_add_overall_col(lbl_overall) %>% @@ -61,7 +69,7 @@ vst02_1_lyt <- function(arm_var, "ANRIND", abnormal = list(Low = "LOW", High = "HIGH"), variables = list(id = "USUBJID", baseline = "BNRIND"), - exclude_base_abn = FALSE + exclude_base_abn = exclude_base_abn ) %>% append_topleft(paste0(" ", lbl_vs_abnormality)) } @@ -72,29 +80,18 @@ vst02_1_lyt <- function(arm_var, #' #' @export #' -vst02_1_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "advs")) - +vst02_pre <- function(adam_db, ...) { + high_low_format <- rule( + HIGH = c("HIGH HIGH", "HIGH"), + LOW = c("LOW LOW", "LOW") + ) adam_db$advs <- adam_db$advs %>% - filter(.data$ANRIND != "") %>% filter(.data$ONTRTFL == "Y") %>% mutate( - ANRIND = case_when( - .data$ANRIND == "HIGH HIGH" ~ "HIGH", - .data$ANRIND == "LOW LOW" ~ "LOW", - TRUE ~ as.character(.data$ANRIND) - ), - BNRIND = case_when( - .data$BNRIND == "HIGH HIGH" ~ "HIGH", - .data$BNRIND == "LOW LOW" ~ "LOW", - TRUE ~ as.character(.data$BNRIND) - ) - ) %>% - mutate( - ANRIND = as.factor(.data$ANRIND), - BNRIND = as.factor(.data$BNRIND) + PARAM = with_label(.data$PARAM, "Assessment"), + ANRIND = with_label(reformat(.data$ANRIND, high_low_format), "Abnormality"), + BNRIND = reformat(.data$BNRIND, high_low_format) ) - adam_db } @@ -104,17 +101,16 @@ vst02_1_pre <- function(adam_db, ...) { #' #' @export #' -vst02_1_post <- function(tlg, prune_0 = FALSE, ...) { +vst02_post <- function(tlg, prune_0 = FALSE, ...) { if (prune_0) { tlg <- smart_prune(tlg) } std_postprocess(tlg) } -#' `VST02` Table 1 (Default) Vital Sign Abnormalities Table 1. +#' `VST02` Vital Sign Abnormalities Table. #' -#' Assessments Outside Normal Limits Regardless of -#' Abnormality at Baseline Table. +#' Vital Sign Parameters outside Normal Limits Regardless of Abnormality at Baseline. #' #' @include chevron_tlg-S4class.R #' @export @@ -123,129 +119,21 @@ vst02_1_post <- function(tlg, prune_0 = FALSE, ...) { #' run(vst02_1, syn_data) vst02_1 <- chevron_t( main = vst02_1_main, - preprocess = vst02_1_pre, - postprocess = vst02_1_post, + preprocess = vst02_pre, + postprocess = vst02_post, adam_datasets = c("adsl", "advs") ) - # vst02_2 ---- #' @describeIn vst02_2 Main TLG function -#' -#' @inheritParams gen_args -#' @param lbl_vs_assessment (`character`) the label of the assessment variable. -#' @param lbl_vs_abnormality (`character`) the label of the abnormality variable. -#' -#' @details -#' * Only count LOW or HIGH values. -#' * Results of "LOW LOW" are treated as the same as "LOW", and "HIGH HIGH" the same as "HIGH". -#' * Does not include a total column by default. -#' * Does not remove zero-count rows unless overridden with `prune_0 = TRUE`. -#' -#' @note -#' * `adam_db` object must contain an `advs` table with the `"PARAM"`, `"ANRIND"` and `"BNRIND"` columns. -#' -#' @export -#' -vst02_2_main <- function(adam_db, - arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", - lbl_overall = NULL, - deco = std_deco("VST02_2"), - ...) { - dbsel <- get_db_data(adam_db, "adsl", "advs") - - lyt <- vst02_2_lyt( - arm_var = arm_var, - lbl_vs_assessment = lbl_vs_assessment, - lbl_vs_abnormality = lbl_vs_abnormality, - lbl_overall = lbl_overall, - deco = deco - ) - - tbl <- build_table(lyt, dbsel$advs, alt_counts_df = dbsel$adsl) - - tbl -} - -#' @describeIn vst02_2 Layout -#' -#' @inheritParams gen_args -#' @param lbl_vs_assessment (`character`) the label of the assessment variable. -#' @param lbl_vs_abnormality (`character`) the label of the abnormality variable. -#' -#' @export -#' -vst02_2_lyt <- function(arm_var, - lbl_vs_assessment, - lbl_vs_abnormality, - lbl_overall, - deco) { - basic_table_deco(deco) %>% - split_cols_by(var = arm_var) %>% - add_colcounts() %>% - ifneeded_add_overall_col(lbl_overall) %>% - split_rows_by("PARAM", split_fun = drop_split_levels, label_pos = "topleft", split_label = lbl_vs_assessment) %>% - count_abnormal( - "ANRIND", - abnormal = list(Low = "LOW", High = "HIGH"), - variables = list(id = "USUBJID", baseline = "BNRIND"), - exclude_base_abn = TRUE - ) %>% - append_topleft(paste0(" ", lbl_vs_abnormality)) -} - -#' @describeIn vst02_2 Preprocessing -#' -#' @inheritParams gen_args -#' +#' @inherit vst02_1_main #' @export #' -vst02_2_pre <- function(adam_db, ...) { - assert_all_tablenames(adam_db, c("adsl", "advs")) - - adam_db$advs <- adam_db$advs %>% - filter(.data$ANRIND != "") %>% - filter(.data$ONTRTFL == "Y") %>% - mutate( - ANRIND = case_when( - .data$ANRIND == "HIGH HIGH" ~ "HIGH", - .data$ANRIND == "LOW LOW" ~ "LOW", - TRUE ~ as.character(.data$ANRIND) - ), - BNRIND = case_when( - .data$BNRIND == "HIGH HIGH" ~ "HIGH", - .data$BNRIND == "LOW LOW" ~ "LOW", - TRUE ~ as.character(.data$BNRIND) - ) - ) %>% - mutate( - ANRIND = as.factor(.data$ANRIND), - BNRIND = as.factor(.data$BNRIND) - ) - - adam_db -} - -#' @describeIn vst02_2 Postprocessing -#' -#' @inheritParams gen_args -#' -#' @export -#' -vst02_2_post <- function(tlg, prune_0 = FALSE, ...) { - if (prune_0) { - tlg <- smart_prune(tlg) - } - std_postprocess(tlg) -} - -#' `VST02` Table 2 (Supplementary) Vital Sign Abnormalities Table 2. +vst02_2_main <- modify_default_args(vst02_1_main, exclude_base_abn = TRUE) +#' `VST02` Vital Sign Abnormalities Table. #' -#' Assessments Outside Normal Limits Among Subject -#' Without Abnormality at Baseline. +#' Vital Sign Parameters outside Normal Limits Among Patients without Abnormality at Baseline. #' #' @include chevron_tlg-S4class.R #' @export @@ -254,7 +142,7 @@ vst02_2_post <- function(tlg, prune_0 = FALSE, ...) { #' run(vst02_2, syn_data) vst02_2 <- chevron_t( main = vst02_2_main, - preprocess = vst02_2_pre, - postprocess = vst02_2_post, + preprocess = vst02_pre, + postprocess = vst02_post, adam_datasets = c("adsl", "advs") ) diff --git a/README.md b/README.md index 189d63996..40dc7093f 100644 --- a/README.md +++ b/README.md @@ -41,7 +41,7 @@ remotes::install_github("insightsengineering/chevron@*release") library(chevron) data(syn_data) -run(aet02_1, syn_data) +run(aet02, syn_data) ``` which returns diff --git a/_pkgdown.yaml b/_pkgdown.yaml old mode 100755 new mode 100644 index 899a8ff3b..f55f87f59 --- a/_pkgdown.yaml +++ b/_pkgdown.yaml @@ -24,7 +24,6 @@ articles: - title: All vignettes contents: - chevron - - layouts - adding_new_tlgs_to_chevron - script_generator @@ -53,48 +52,37 @@ reference: - title: chevron_tlg objects contents: - - ael01_nollt_1 - - aet01_1 - - aet01_2 - - aet01_aesi_1 - - aet02_1 - - aet02_2 - - aet02_3 - - aet03_1 - - aet04_1 - - aet10_1 - - cmt01a_1 - - cmt01a_2 - - cmt01a_3 - - cmt02_pt_1 - - coxt02_1 - - dmt01_1 - - dst01_1 - - dst01_2 - - dst01_3 - - dtht01_1 - - egt01_1 + - ael01_nollt + - aet01 + - aet01_aesi + - aet02 + - aet03 + - aet04 + - aet10 + - cmt01a + - cmt02_pt + - coxt02 + - dmt01 + - dst01 + - dtht01 + - egt01 - egt02_1 - egt02_2 - - egt03_1 - - egt03_2 - - egt05_qtcat_1 - - ext01_1 - - ext01_2 - - kmg01_1 - - rspt01_1 - - lbt01_1 - - lbt04_1 - - lbt05_1 - - lbt07_1 - - lbt14_1 - - lbt14_2 - - mht01_1 - - mng01_1 - - pdt01_1 - - pdt02_1 - - rmpt01_1 - - vst01_1 + - egt03 + - egt05_qtcat + - ext01 + - kmg01 + - lbt01 + - lbt04 + - lbt05 + - lbt07 + - lbt14 + - mht01 + - mng01 + - pdt01 + - pdt02 + - rmpt01 + - vst01 - vst02_1 - vst02_2 - title: Data @@ -104,16 +92,22 @@ reference: contents: - assert_colnames - assert_all_tablenames - - get_db_data + - assert_single_value + - assert_valid_type + - assert_valid_var + - assert_valid_var_pair + - assert_valid_variable - report_null - smart_prune - - std_deco - var_labels_for - - h_format_dec - gg_list - grob_list + - h_format_dec - lvls - - assert_single_paramcd + - title: Standard Reformatting Rules + contents: + - nocoding + - missing_rule - title: Non-exported Documented Functions for Packagage Developers contents: diff --git a/data-raw/syn_data_creation.R b/data-raw/syn_data_creation.R index 0cafb0e79..ad7e33584 100644 --- a/data-raw/syn_data_creation.R +++ b/data-raw/syn_data_creation.R @@ -18,11 +18,19 @@ syn_test_data <- function() { "Total dose administered", c(-Inf, 5000, 7000, 9000, Inf), c("<5000", "5000-7000", "7000-9000", ">9000") + ), + list( + "Total number of doses administered", + c(6, 8), + "7" ) ) sd$adex <- dunlin::cut_by_group(as.data.frame(sd$adex), "AVAL", "PARAM", group, "AVALCAT1") - sd$adex$AVALCAT1 <- forcats::fct_na_value_to_level(sd$adex$AVALCAT1, level = "") # nolint + sd$adex$AVALCAT1 <- factor( + sd$adex$AVALCAT1, + levels = c("<700", "700-900", "900-1200", ">1200", "<5000", "5000-7000", "7000-9000", ">9000", "7") + ) set.seed(1, kind = "Mersenne-Twister") sd$adex <- sd$adex %>% @@ -44,20 +52,26 @@ syn_test_data <- function() { sd$adeg <- sd$adeg %>% mutate( AVALCAT1 = case_when( - PARAMCD == "QT" & AVAL <= 450 ~ paste("<=450", " ", AVALU), - PARAMCD == "QT" & AVAL > 450 & AVAL <= 480 ~ paste(">450 to <=480", " ", AVALU), - PARAMCD == "QT" & AVAL > 480 & AVAL <= 500 ~ paste(">480 to <=500", " ", AVALU), - PARAMCD == "QT" & AVAL > 500 ~ paste(">500", " ", AVALU), - PARAMCD == "QT" & is.na(AVAL) ~ "" + PARAMCD == "QT" & AVAL <= 450 ~ "<=450 msec", + PARAMCD == "QT" & AVAL > 450 & AVAL <= 480 ~ ">450 to <=480 msec", + PARAMCD == "QT" & AVAL > 480 & AVAL <= 500 ~ ">480 to <=500 msec", + PARAMCD == "QT" & AVAL > 500 ~ ">500 msec", + PARAMCD == "QT" & is.na(AVAL) ~ NA_character_ ), CHGCAT1 = case_when( - PARAMCD == "QT" & CHG <= 30 ~ paste("<=30", " ", AVALU), - PARAMCD == "QT" & CHG > 30 & CHG <= 60 ~ paste(">30 to <=60", " ", AVALU), - PARAMCD == "QT" & CHG > 60 ~ paste(">60", " ", AVALU), - PARAMCD == "QT" & is.na(CHG) ~ "" + PARAMCD == "QT" & CHG <= 30 ~ "<=30 msec", + PARAMCD == "QT" & CHG > 30 & CHG <= 60 ~ ">30 to <=60 msec", + PARAMCD == "QT" & CHG > 60 ~ ">60 msec", + PARAMCD == "QT" & is.na(CHG) ~ NA_character_ ), - AVALCAT1 = factor(AVALCAT1), - CHGCAT1 = factor(CHGCAT1) + AVALCAT1 = with_label( + factor(AVALCAT1, levels = c("<=450 msec", ">450 to <=480 msec", ">480 to <=500 msec", ">500 msec")), + "Value at Visit" + ), + CHGCAT1 = with_label( + factor(CHGCAT1, levels = c("<=30 msec", ">30 to <=60 msec", ">60 msec")), + "Change from Baseline" + ) ) # useful for lbt04, lbt05 @@ -144,8 +158,8 @@ syn_test_data <- function() { mutate(ANL01FL = "Y") sd$adae <- sd$adae %>% - mutate(AEBODSYS = formatters::with_label(.data$AEBODSYS, "MedDRA System Organ Class")) %>% - mutate(AEDECOD = formatters::with_label(.data$AEDECOD, "MedDRA Preferred Term")) %>% + mutate(AEBODSYS = with_label(.data$AEBODSYS, "MedDRA System Organ Class")) %>% + mutate(AEDECOD = with_label(.data$AEDECOD, "MedDRA Preferred Term")) %>% mutate(ANL01FL = "Y") %>% mutate(ASEV = .data$AESEV) %>% mutate(AREL = .data$AEREL) %>% @@ -153,8 +167,8 @@ syn_test_data <- function() { sd$admh <- sd$admh %>% mutate(ANL01FL = "Y") %>% - mutate(MHBODSYS = formatters::with_label(.data$MHBODSYS, "MedDRA System Organ Class")) %>% - mutate(MHDECOD = formatters::with_label(.data$MHDECOD, "MedDRA Preferred Term")) + mutate(MHBODSYS = with_label(.data$MHBODSYS, "MedDRA System Organ Class")) %>% + mutate(MHDECOD = with_label(.data$MHDECOD, "MedDRA Preferred Term")) sd$advs <- sd$advs %>% mutate(ANL01FL = "Y") diff --git a/data/syn_data.rda b/data/syn_data.rda index 5c0a0a9fb..19bd623bd 100644 Binary files a/data/syn_data.rda and b/data/syn_data.rda differ diff --git a/inst/WORDLIST b/inst/WORDLIST index e55c4f612..621aedf9d 100755 --- a/inst/WORDLIST +++ b/inst/WORDLIST @@ -14,19 +14,31 @@ Repo Rua TLG TLGs +aesi +aet +catagory +cmt conf coxph +coxt de +df +dst +dtht funder +integerish +na postprocessing pre preprocess pval repo reproducibility -responder +rspt +rtable schouten speficied +splitted strat unstrat unstratified diff --git a/man/ael01_nollt_1.Rd b/man/ael01_nollt.Rd similarity index 63% rename from man/ael01_nollt_1.Rd rename to man/ael01_nollt.Rd index a319fe9d9..0c0980714 100644 --- a/man/ael01_nollt_1.Rd +++ b/man/ael01_nollt.Rd @@ -1,40 +1,35 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/ael01_nollt.R \docType{data} -\name{ael01_nollt_1_main} -\alias{ael01_nollt_1_main} -\alias{ael01_nollt_1_pre} -\alias{ael01_nollt_1_check} -\alias{ael01_nollt_1_post} -\alias{ael01_nollt_1} +\name{ael01_nollt_main} +\alias{ael01_nollt_main} +\alias{ael01_nollt_pre} +\alias{ael01_nollt_post} +\alias{ael01_nollt} \title{\code{AEL01_NOLLT} Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms.} \format{ An object of class \code{chevron_l} of length 1. } \usage{ -ael01_nollt_1_main( +ael01_nollt_main( adam_db, dataset = "adae", key_cols = c("AEBODSYS", "AEDECOD"), disp_cols = "AETERM", - deco = std_deco("AEL01_NOLLT"), ... ) -ael01_nollt_1_pre( +ael01_nollt_pre( adam_db, dataset = "adae", key_cols = c("AEBODSYS", "AEDECOD"), disp_cols = "AETERM", - new_lbls = NULL, ... ) -ael01_nollt_1_check(adam_db, dataset, vars) +ael01_nollt_post(tlg, ...) -ael01_nollt_1_post(tlg, ...) - -ael01_nollt_1 +ael01_nollt } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -46,15 +41,8 @@ Key columns allow you to group repeat occurrences.} \item{disp_cols}{(\code{character}) names of non-key columns which should be displayed when the listing is rendered.} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{new_lbls}{(named \code{list} of \code{strings}) list where names correspond to variable names in \code{dataset} and -strings to the new labels to apply to the named variables. Set to \code{NULL} to use default labels.} - -\item{vars}{(\code{character}) variables to be included in the listing.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} } \description{ @@ -70,13 +58,11 @@ strings to the new labels to apply to the named variables. Set to \code{NULL} to } \section{Functions}{ \itemize{ -\item \code{ael01_nollt_1_main()}: Main TLG function - -\item \code{ael01_nollt_1_pre()}: Preprocessing +\item \code{ael01_nollt_main()}: Main TLG function -\item \code{ael01_nollt_1_check()}: Checks +\item \code{ael01_nollt_pre()}: Preprocessing -\item \code{ael01_nollt_1_post()}: Postprocessing +\item \code{ael01_nollt_post()}: Postprocessing }} \note{ @@ -85,8 +71,6 @@ strings to the new labels to apply to the named variables. Set to \code{NULL} to } } \examples{ -run(ael01_nollt_1, syn_data, new_lbls = list( - AETERM = "Investigator-Specified\n Adverse Event Term" -)) +run(ael01_nollt, syn_data) } \keyword{datasets} diff --git a/man/aet01.Rd b/man/aet01.Rd new file mode 100644 index 000000000..73e8bb16c --- /dev/null +++ b/man/aet01.Rd @@ -0,0 +1,73 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aet01.R +\docType{data} +\name{aet01_main} +\alias{aet01_main} +\alias{aet01_pre} +\alias{aet01_post} +\alias{aet01} +\title{\code{AET01} Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1.} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +aet01_main( + adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + anl_vars = list(safety_var = c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", + "DSM", "REL", "RELWD", "RELDSM", "SEV")), + anl_lbls = "Total number of patients with at least one", + ... +) + +aet01_pre(adam_db, ...) + +aet01_post(tlg, prune_0 = FALSE, ...) + +aet01 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{anl_vars}{Named (\code{list}) of (\code{character}) variables the safety variables to be summarized.} + +\item{anl_lbls}{(\code{character}) of analysis labels.} + +\item{...}{not used.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} +} +\description{ +\code{AET01} Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. +} +\details{ +\itemize{ +\item Does not remove rows with zero counts by default. +} +} +\section{Functions}{ +\itemize{ +\item \code{aet01_main()}: Main TLG function + +\item \code{aet01_pre()}: Preprocessing + +\item \code{aet01_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adsl} table with the \code{"DTHFL"} and \code{"DCSREAS"} columns. +\item \code{adam_db} object must contain an \code{adae} table with the columns passed to \code{anl_vars}. +} +} +\examples{ +run(aet01, syn_data, arm_var = "ARM") +} +\keyword{datasets} diff --git a/man/aet01_1.Rd b/man/aet01_1.Rd deleted file mode 100644 index 10ac561b6..000000000 --- a/man/aet01_1.Rd +++ /dev/null @@ -1,101 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/aet01.R -\docType{data} -\name{aet01_1_main} -\alias{aet01_1_main} -\alias{aet01_1_lyt} -\alias{aet01_1_pre} -\alias{aet01_1_check} -\alias{aet01_post} -\alias{aet01_1} -\title{\code{AET01} Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -aet01_1_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - deco = std_deco("AET01"), - safety_var = list("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", - "RELWD", "RELDSM", "SEV"), - lbl_safety_var = NULL, - ... -) - -aet01_1_lyt(arm_var, lbl_overall, deco, safety_var, lbl_safety_var) - -aet01_1_pre( - adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM", - safety_var = list("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", - "RELWD", "RELDSM", "SEV"), - ... -) - -aet01_1_check( - adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM", - safety_var = c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", - "RELWD", "RELDSM", "SEV") -) - -aet01_post(tlg, prune_0 = FALSE, deco = std_deco("AET01"), ...) - -aet01_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{safety_var}{(\code{list}) the safety variables to be summarized.} - -\item{lbl_safety_var}{(\code{character}) the labels of the safety variables to be summarized.} - -\item{...}{not used.} - -\item{req_tables}{(\code{character}) names of the required tables.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -\code{AET01} Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. -} -\details{ -\itemize{ -\item Does not remove rows with zero counts by default. -} -} -\section{Functions}{ -\itemize{ -\item \code{aet01_1_main()}: Main TLG function - -\item \code{aet01_1_lyt()}: Layout - -\item \code{aet01_1_pre()}: Preprocessing - -\item \code{aet01_1_check()}: Checks - -\item \code{aet01_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adsl} table with the \code{"DTHFL"} and \code{"DCSREAS"} columns. -\item \code{adam_db} object must contain an \code{adae} table with the columns passed to \code{safety_var}. -} -} -\examples{ -run(aet01_1, syn_data, arm_var = "ARM") -} -\keyword{datasets} diff --git a/man/aet01_2.Rd b/man/aet01_2.Rd deleted file mode 100644 index 713a45559..000000000 --- a/man/aet01_2.Rd +++ /dev/null @@ -1,108 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/aet01.R -\docType{data} -\name{aet01_2_main} -\alias{aet01_2_main} -\alias{aet01_2_lyt} -\alias{aet01_2_pre} -\alias{aet01_2_check} -\alias{aet01_2} -\title{\code{AET01} Table 2 (Supplementary) Overview of Deaths and Adverse Events Summary Table 2. Overview of death and summary -of adverse events with medical concepts.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -aet01_2_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - deco = std_deco("AET01"), - safety_var = list("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", - "RELWD", "RELDSM", "SEV"), - lbl_safety_var = NULL, - medconcept_var = list("SMQ01", "SMQ02", "CQ01"), - lbl_medconcept_var = NULL, - ... -) - -aet01_2_lyt( - arm_var, - lbl_overall, - deco, - safety_var, - lbl_safety_var, - medconcept_var, - lbl_medconcept_var -) - -aet01_2_pre( - adam_db, - arm_var = "ACTARM", - safety_var = list("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", - "RELWD", "RELDSM", "SEV"), - medconcept_var = list("SMQ01", "SMQ02", "CQ01"), - ... -) - -aet01_2_check( - adam_db, - req_tables = c("adsl", "adae"), - arm_var, - safety_var, - medconcept_var -) - -aet01_2 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{safety_var}{(\code{character}) the safety variables to be summarized.} - -\item{lbl_safety_var}{(\code{character}) the labels of the safety variables to be summarized.} - -\item{medconcept_var}{(\code{character}) the medical concept variables to be summarized.} - -\item{lbl_medconcept_var}{(\code{character}) the label of the medical concept variables to be summarized.} - -\item{...}{not used.} - -\item{req_tables}{(\code{character}) names of the required tables.} -} -\description{ -\code{AET01} Table 2 (Supplementary) Overview of Deaths and Adverse Events Summary Table 2. Overview of death and summary -of adverse events with medical concepts. -} -\details{ -\itemize{ -\item Does not remove rows with zero counts by default. -} -} -\section{Functions}{ -\itemize{ -\item \code{aet01_2_main()}: Main TLG function - -\item \code{aet01_2_lyt()}: Layout - -\item \code{aet01_2_pre()}: Preprocessing - -\item \code{aet01_2_check()}: Checks - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adsl} table with the \code{"DTHFL"} and \code{"DCSREAS"} columns. -\item \code{adam_db} object must contain an \code{adae} table with the columns passed to \code{safety_var}. -} -} -\examples{ -run(aet01_2, syn_data) -} -\keyword{datasets} diff --git a/man/aet01_aesi_1.Rd b/man/aet01_aesi.Rd old mode 100755 new mode 100644 similarity index 68% rename from man/aet01_aesi_1.Rd rename to man/aet01_aesi.Rd index 0fe295de0..ce906cf1d --- a/man/aet01_aesi_1.Rd +++ b/man/aet01_aesi.Rd @@ -1,58 +1,43 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/aet01_aesi.R \docType{data} -\name{aet01_aesi_1_main} -\alias{aet01_aesi_1_main} -\alias{aet01_aesi_1_lyt} -\alias{aet01_aesi_1_pre} -\alias{aet01_aesi_1_check} +\name{aet01_aesi_main} +\alias{aet01_aesi_main} +\alias{aet01_aesi_pre} \alias{aet01_aesi_post} -\alias{aet01_aesi_1} +\alias{aet01_aesi} \title{\code{AET01_AESI} Table 1 (Default) Adverse Event of Special Interest Summary Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -aet01_aesi_1_main( +aet01_aesi_main( adam_db, arm_var = "ACTARM", - aesi_vars = list(NA_character_), - deco = std_deco("AET01_AESI"), + aesi_vars = NULL, grade_groups = NULL, + lbl_overall = NULL, ... ) -aet01_aesi_1_lyt(arm_var, aesi_vars, deco, lbl_aesi_vars, grade_groups) +aet01_aesi_pre(adam_db, ...) -aet01_aesi_1_pre( - adam_db, - req_tables = c("adsl", "adae"), - arm_var = "ACTARM", - ... -) - -aet01_aesi_1_check(adam_db, req_tables = c("adsl", "adae"), arm_var = "ACTARM") - -aet01_aesi_post(tlg, prune_0 = FALSE, deco = std_deco("AET01_AESI"), ...) +aet01_aesi_post(tlg, prune_0 = FALSE, ...) -aet01_aesi_1 +aet01_aesi } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{aesi_vars}{(\code{list}) the AESI variables to be included in the summary. Defaults to \code{NA}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{aesi_vars}{(\code{character}) the AESI variables to be included in the summary. Defaults to \code{NA}.} \item{grade_groups}{(\code{list}) the grade groups to be displayed.} -\item{...}{not used.} - -\item{lbl_aesi_vars}{(\code{character}) the labels of the AESI variables to be summarized.} +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{req_tables}{(\code{character}) names of the required tables.} +\item{...}{not used.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} @@ -68,13 +53,9 @@ aet01_aesi_1 } \section{Functions}{ \itemize{ -\item \code{aet01_aesi_1_main()}: Main TLG function - -\item \code{aet01_aesi_1_lyt()}: Layout - -\item \code{aet01_aesi_1_pre()}: Preprocessing +\item \code{aet01_aesi_main()}: Main TLG function -\item \code{aet01_aesi_1_check()}: Checks +\item \code{aet01_aesi_pre()}: Preprocessing \item \code{aet01_aesi_post()}: Postprocessing @@ -108,6 +89,6 @@ aet01_aesi_1 } } \examples{ -run(aet01_aesi_1, syn_data) +run(aet01_aesi, syn_data) } \keyword{datasets} diff --git a/man/aet01_aesi_lyt.Rd b/man/aet01_aesi_lyt.Rd new file mode 100644 index 000000000..5dc5a73f1 --- /dev/null +++ b/man/aet01_aesi_lyt.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aet01_aesi.R +\name{aet01_aesi_lyt} +\alias{aet01_aesi_lyt} +\title{aet01_aesi Layout} +\usage{ +aet01_aesi_lyt(arm_var, aesi_vars, lbl_overall, lbl_aesi_vars, grade_groups) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{lbl_aesi_vars}{(\code{character}) the labels of the AESI variables to be summarized.} +} +\description{ +aet01_aesi Layout +} +\keyword{internal} diff --git a/man/aet01_lyt.Rd b/man/aet01_lyt.Rd new file mode 100644 index 000000000..c79a24673 --- /dev/null +++ b/man/aet01_lyt.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aet01.R +\name{aet01_lyt} +\alias{aet01_lyt} +\title{aet01 Layout} +\usage{ +aet01_lyt(arm_var, lbl_overall, anl_vars, anl_lbls, lbl_vars) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{anl_vars}{Named (\code{list}) of analysis variables.} + +\item{anl_lbls}{(\code{character}) of labels.} + +\item{lbl_vars}{Named (\code{list}) of analysis labels.} +} +\description{ +aet01 Layout +} +\keyword{internal} diff --git a/man/aet02_1.Rd b/man/aet02.Rd similarity index 62% rename from man/aet02_1.Rd rename to man/aet02.Rd index 1eb837ea6..7aacfa37f 100644 --- a/man/aet02_1.Rd +++ b/man/aet02.Rd @@ -1,55 +1,41 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/aet02.R \docType{data} -\name{aet02_1_main} -\alias{aet02_1_main} -\alias{aet02_1_lyt} -\alias{aet02_1_pre} -\alias{aet02_1_check} -\alias{aet02_1_post} -\alias{aet02_1} +\name{aet02_main} +\alias{aet02_main} +\alias{aet02_pre} +\alias{aet02_post} +\alias{aet02} \title{\code{AET02} Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -aet02_1_main( +aet02_main( adam_db, arm_var = "ACTARM", + row_split_var = "AEBODSYS", lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET02"), ... ) -aet02_1_lyt(arm_var, lbl_overall, lbl_aebodsys, lbl_aedecod, deco) +aet02_pre(adam_db, row_split_var = "AEBODSYS", ...) -aet02_1_pre(adam_db, arm_var = "ACTARM", ...) +aet02_post(tlg, row_split_var = "AEBODSYS", prune_0 = TRUE, ...) -aet02_1_check(adam_db, req_tables = c("adsl", "adae"), arm_var = "ACTARM") - -aet02_1_post(tlg, prune_0 = TRUE, ...) - -aet02_1 +aet02 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{lbl_aebodsys}{(\code{string}) text label for \code{AEBODSYS}.} - -\item{lbl_aedecod}{(\code{string}) text label for \code{AEDECOD}.} +\item{row_split_var}{(\code{character}) row split variables.} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} \item{...}{not used.} -\item{req_tables}{(\code{character}) names of the required tables.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -70,15 +56,11 @@ events categorized by Body System and Dictionary-Derived Term. } \section{Functions}{ \itemize{ -\item \code{aet02_1_main()}: Main TLG function - -\item \code{aet02_1_lyt()}: Layout - -\item \code{aet02_1_pre()}: Preprocessing +\item \code{aet02_main()}: Main TLG function -\item \code{aet02_1_check()}: Checks +\item \code{aet02_pre()}: Preprocessing -\item \code{aet02_1_post()}: Postprocessing +\item \code{aet02_post()}: Postprocessing }} \note{ @@ -87,6 +69,6 @@ events categorized by Body System and Dictionary-Derived Term. } } \examples{ -run(aet02_1, syn_data) +run(aet02, syn_data) } \keyword{datasets} diff --git a/man/aet02_2.Rd b/man/aet02_2.Rd deleted file mode 100644 index e8df45db9..000000000 --- a/man/aet02_2.Rd +++ /dev/null @@ -1,96 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/aet02.R -\docType{data} -\name{aet02_2_main} -\alias{aet02_2_main} -\alias{aet02_2_lyt} -\alias{aet02_2_pre} -\alias{aet02_2_post} -\alias{aet02_2} -\title{\code{AET02} Table 2 (Supplementary) Adverse Events by System Organ Class, High Level Term and Preferred Term Table 2.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -aet02_2_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", - lbl_aehlt = "MedDRA High-Level Term", - deco = std_deco("AET02"), - ... -) - -aet02_2_lyt( - arm_var, - lbl_overall = NULL, - lbl_aebodsys, - lbl_aedecod, - lbl_aehlt, - deco -) - -aet02_2_pre(adam_db, ...) - -aet02_2_post(tlg, prune_0 = TRUE, ...) - -aet02_2 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{lbl_aebodsys}{(\code{character}) text label for \code{AEBODSYS}.} - -\item{lbl_aedecod}{(\code{character}) text label for \code{AEDECOD}.} - -\item{lbl_aehlt}{(\code{character}) text label for \code{AEHLT}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The \code{AET02_2} table provides an overview of the number of patients experiencing adverse events and the number of -adverse events categorized by Body System, High Level Term and Dictionary-Derived Term. -} -\details{ -\itemize{ -\item Numbers represent absolute numbers of patients and fraction of \code{N}, or absolute number of event when specified. -\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. -\item Split columns by arm. -\item Does not include a total column by default. -\item Sort Body System or Organ Class, High Level Term and Dictionary-Derived Term hierarchically by highest overall -frequencies. -\item Missing values of \code{AEBODSYS}, \code{AEDECOD} and \code{AEHLT} in \code{adae} are labeled by \verb{No Coding available}. -} -} -\section{Functions}{ -\itemize{ -\item \code{aet02_2_main()}: Main TLG function - -\item \code{aet02_2_lyt()}: Layout - -\item \code{aet02_2_pre()}: Preprocessing - -\item \code{aet02_2_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adae} table with the columns \code{"AEBODSYS"}, \code{"AEHLT"} and \code{"AEDECOD"}. -} -} -\examples{ -run(aet02_2, syn_data) -} -\keyword{datasets} diff --git a/man/aet02_3.Rd b/man/aet02_3.Rd deleted file mode 100644 index c4ffcf73d..000000000 --- a/man/aet02_3.Rd +++ /dev/null @@ -1,82 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/aet02.R -\docType{data} -\name{aet02_3_main} -\alias{aet02_3_main} -\alias{aet02_3_lyt} -\alias{aet02_3_pre} -\alias{aet02_3_post} -\alias{aet02_3} -\title{\code{AET02} Table 3 (Supplementary) Adverse Events by Dictionary-Derived Term Table 3.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -aet02_3_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET02"), - ... -) - -aet02_3_lyt(arm_var, lbl_overall, lbl_aedecod, deco) - -aet02_3_pre(adam_db, ...) - -aet02_3_post(tlg, prune_0 = TRUE, ...) - -aet02_3 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{lbl_aedecod}{(\code{character}) text label for \code{AEDECOD}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The \code{AET02_3} table provides an overview of the number of patients experiencing adverse events and the number of -adverse events categorized by Dictionary-Derived Term. -} -\details{ -\itemize{ -\item Numbers represent absolute numbers of patients and fraction of \code{N}, or absolute number of event when specified. -\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. -\item Split columns by arm. -\item Does not include a total column by default. -\item Sort Dictionary-Derived Code by highest overall frequencies. -\item Missing values of \code{AEDECOD} in \code{aead} are labeled by \verb{No Coding available}. -} -} -\section{Functions}{ -\itemize{ -\item \code{aet02_3_main()}: Main TLG function - -\item \code{aet02_3_lyt()}: Layout - -\item \code{aet02_3_pre()}: Preprocessing - -\item \code{aet02_3_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adae} table with the column \code{"AEDECOD"}. -} -} -\examples{ -run(aet02_3, syn_data) -} -\keyword{datasets} diff --git a/man/aet02_lyt.Rd b/man/aet02_lyt.Rd new file mode 100644 index 000000000..4b6b788fe --- /dev/null +++ b/man/aet02_lyt.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aet02.R +\name{aet02_lyt} +\alias{aet02_lyt} +\title{aet02 Layout} +\usage{ +aet02_lyt(arm_var, lbl_overall, row_split_var, lbl_row_split, lbl_aedecod) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{row_split_var}{(\code{character}) row split variables.} + +\item{lbl_row_split}{(\code{character}) label for \code{row_split_var}.} + +\item{lbl_aedecod}{(\code{string}) text label for \code{AEDECOD}.} +} +\description{ +aet02 Layout +} +\keyword{internal} diff --git a/man/aet03_1.Rd b/man/aet03.Rd similarity index 59% rename from man/aet03_1.Rd rename to man/aet03.Rd index be2da16e6..6fc13e7e9 100644 --- a/man/aet03_1.Rd +++ b/man/aet03.Rd @@ -1,41 +1,23 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/aet03.R \docType{data} -\name{aet03_1_main} -\alias{aet03_1_main} -\alias{aet03_1_lyt} -\alias{aet03_1_pre} -\alias{aet03_1_post} -\alias{aet03_1} +\name{aet03_main} +\alias{aet03_main} +\alias{aet03_pre} +\alias{aet03_post} +\alias{aet03} \title{\code{AET03} Table 1 (Default) Advert Events by Greatest Intensity Table 1.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -aet03_1_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET03"), - ... -) +aet03_main(adam_db, arm_var = "ACTARM", lbl_overall = NULL, ...) -aet03_1_lyt( - arm_var, - lbl_overall, - lbl_aebodsys, - lbl_aedecod, - intensity_grade, - deco -) +aet03_pre(adam_db, ...) -aet03_1_pre(adam_db, ...) +aet03_post(tlg, prune_0 = TRUE, ...) -aet03_1_post(tlg, prune_0 = TRUE, ...) - -aet03_1 +aet03 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -44,16 +26,8 @@ aet03_1 \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{lbl_aebodsys}{(\code{string}) text label for \code{AEBODSYS}.} - -\item{lbl_aedecod}{(\code{string}) text label for \code{AEDECOD}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{intensity_grade}{(\code{character}) describing the intensity levels present in the dataset.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -74,13 +48,11 @@ Organ Class, Dictionary-Derived Term and Greatest intensity. } \section{Functions}{ \itemize{ -\item \code{aet03_1_main()}: Main TLG function - -\item \code{aet03_1_lyt()}: Layout +\item \code{aet03_main()}: Main TLG function -\item \code{aet03_1_pre()}: Preprocessing +\item \code{aet03_pre()}: Preprocessing -\item \code{aet03_1_post()}: Postprocessing +\item \code{aet03_post()}: Postprocessing }} \note{ @@ -89,6 +61,6 @@ Organ Class, Dictionary-Derived Term and Greatest intensity. } } \examples{ -run(aet03_1, syn_data) +run(aet03, syn_data) } \keyword{datasets} diff --git a/man/aet03_lyt.Rd b/man/aet03_lyt.Rd new file mode 100644 index 000000000..e98904fd2 --- /dev/null +++ b/man/aet03_lyt.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aet03.R +\name{aet03_lyt} +\alias{aet03_lyt} +\title{aet03 Layout} +\usage{ +aet03_lyt(arm_var, lbl_overall, lbl_aebodsys, lbl_aedecod, intensity_grade) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{lbl_aebodsys}{(\code{string}) text label for \code{AEBODSYS}.} + +\item{lbl_aedecod}{(\code{string}) text label for \code{AEDECOD}.} + +\item{intensity_grade}{(\code{character}) describing the intensity levels present in the dataset.} +} +\description{ +aet03 Layout +} +\keyword{internal} diff --git a/man/aet04_1.Rd b/man/aet04.Rd similarity index 67% rename from man/aet04_1.Rd rename to man/aet04.Rd index 184981789..f54cc47c6 100644 --- a/man/aet04_1.Rd +++ b/man/aet04.Rd @@ -1,43 +1,29 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/aet04.R \docType{data} -\name{aet04_1_main} -\alias{aet04_1_main} -\alias{aet04_1_lyt} -\alias{aet04_1_pre} -\alias{aet04_1_post} -\alias{aet04_1} +\name{aet04_main} +\alias{aet04_main} +\alias{aet04_pre} +\alias{aet04_post} +\alias{aet04} \title{\code{AET04} Table 1 (Default) Adverse Events by Highest \code{NCI} \code{CTACAE} \code{AE} Grade Table 1.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -aet04_1_main( +aet04_main( adam_db, arm_var = "ACTARM", lbl_overall = NULL, - lbl_aebodsys = "MedDRA System Organ Class", - lbl_aedecod = "MedDRA Preferred Term", grade_groups = NULL, - deco = std_deco("AET04"), ... ) -aet04_1_lyt( - arm_var, - lbl_overall, - lbl_aebodsys, - lbl_aedecod, - toxicity_grade, - grade_groups, - deco -) - -aet04_1_pre(adam_db, ...) +aet04_pre(adam_db, ...) -aet04_1_post(tlg, prune_0 = TRUE, ...) +aet04_post(tlg, prune_0 = TRUE, ...) -aet04_1 +aet04 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -46,18 +32,10 @@ aet04_1 \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{lbl_aebodsys}{(\code{string}) text label for \code{AEBODSYS}.} - -\item{lbl_aedecod}{(\code{string}) text label for \code{AEDECOD}.} - \item{grade_groups}{(\code{list}) putting in correspondence toxicity grades and labels.} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{toxicity_grade}{(\code{character}) putting in correspondence toxicity levels.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -79,13 +57,11 @@ Grade is sorted by severity. } \section{Functions}{ \itemize{ -\item \code{aet04_1_main()}: Main TLG function - -\item \code{aet04_1_lyt()}: Layout +\item \code{aet04_main()}: Main TLG function -\item \code{aet04_1_pre()}: Preprocessing +\item \code{aet04_pre()}: Preprocessing -\item \code{aet04_1_post()}: Postprocessing +\item \code{aet04_post()}: Postprocessing }} \note{ @@ -105,6 +81,6 @@ grade_groups <- list( "Grade 3-5" = c("3", "4", "5") ) -run(aet04_1, syn_data, grade_groups = grade_groups) +run(aet04, syn_data, grade_groups = grade_groups) } \keyword{datasets} diff --git a/man/aet04_lyt.Rd b/man/aet04_lyt.Rd new file mode 100644 index 000000000..c9739614c --- /dev/null +++ b/man/aet04_lyt.Rd @@ -0,0 +1,32 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aet04.R +\name{aet04_lyt} +\alias{aet04_lyt} +\title{aet04 Layout} +\usage{ +aet04_lyt( + arm_var, + total_var, + lbl_overall, + lbl_aebodsys, + lbl_aedecod, + grade_groups +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{total_var}{(\code{string}) variable to create summary of all variables.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{lbl_aebodsys}{(\code{string}) text label for \code{AEBODSYS}.} + +\item{lbl_aedecod}{(\code{string}) text label for \code{AEDECOD}.} + +\item{grade_groups}{(\code{list}) putting in correspondence toxicity grades and labels.} +} +\description{ +aet04 Layout +} +\keyword{internal} diff --git a/man/aet10_1.Rd b/man/aet10.Rd similarity index 63% rename from man/aet10_1.Rd rename to man/aet10.Rd index cbd394d7d..d6616a9d2 100644 --- a/man/aet10_1.Rd +++ b/man/aet10.Rd @@ -1,36 +1,23 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/aet10.R \docType{data} -\name{aet10_1_main} -\alias{aet10_1_main} -\alias{aet10_1_lyt} -\alias{aet10_1_pre} -\alias{aet10_1_check} -\alias{aet10_1_post} -\alias{aet10_1} +\name{aet10_main} +\alias{aet10_main} +\alias{aet10_pre} +\alias{aet10_post} +\alias{aet10} \title{\code{AET10} Table 1 (Default) Most Common (xx\%) Adverse Events Preferred Terms Table 1} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -aet10_1_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_aedecod = "MedDRA Preferred Term", - deco = std_deco("AET10"), - ... -) +aet10_main(adam_db, arm_var = "ACTARM", lbl_overall = NULL, ...) -aet10_1_lyt(arm_var, lbl_overall, lbl_aedecod, deco) +aet10_pre(adam_db, ...) -aet10_1_pre(adam_db, arm_var = "ACTARM", ...) +aet10_post(tlg, atleast = 0.05, ...) -aet10_1_check(adam_db, req_tables = c("adsl", "adae"), arm_var = "ACTARM") - -aet10_1_post(tlg, atleast = 0.05, ...) - -aet10_1 +aet10 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -39,14 +26,8 @@ aet10_1 \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{lbl_aedecod}{(\code{character}) text label for \code{AEDECOD}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{req_tables}{(\code{character}) names of the required tables.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{atleast}{given cut-off in numeric format, default is \code{0.05}} @@ -68,15 +49,11 @@ Order the data by total column frequency from most to least frequently reported } \section{Functions}{ \itemize{ -\item \code{aet10_1_main()}: Main TLG function - -\item \code{aet10_1_lyt()}: Layout - -\item \code{aet10_1_pre()}: Preprocessing +\item \code{aet10_main()}: Main TLG function -\item \code{aet10_1_check()}: Checks +\item \code{aet10_pre()}: Preprocessing -\item \code{aet10_1_post()}: Postprocessing +\item \code{aet10_post()}: Postprocessing }} \note{ @@ -85,6 +62,6 @@ Order the data by total column frequency from most to least frequently reported } } \examples{ -run(aet10_1, syn_data) +run(aet10, syn_data) } \keyword{datasets} diff --git a/man/aet10_lyt.Rd b/man/aet10_lyt.Rd new file mode 100644 index 000000000..6db0e4e0d --- /dev/null +++ b/man/aet10_lyt.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aet10.R +\name{aet10_lyt} +\alias{aet10_lyt} +\title{aet10 Layout} +\usage{ +aet10_lyt(arm_var, lbl_overall, lbl_aedecod) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{lbl_aedecod}{(\code{character}) text label for \code{AEDECOD}.} +} +\description{ +aet10 Layout +} +\keyword{internal} diff --git a/man/assert_colnames.Rd b/man/assert_colnames.Rd index 6cb00e868..34850c78b 100644 --- a/man/assert_colnames.Rd +++ b/man/assert_colnames.Rd @@ -4,7 +4,7 @@ \alias{assert_colnames} \title{Check if strings are column names of a \code{data.frame}} \usage{ -assert_colnames(df, x, null_ok = TRUE) +assert_colnames(df, x, null_ok = TRUE, types = NULL) } \arguments{ \item{df}{(\code{data.frame}) input to check for the presence of column names.} @@ -12,6 +12,8 @@ assert_colnames(df, x, null_ok = TRUE) \item{x}{(\code{character}) the names of the columns to be checked.} \item{null_ok}{(\code{logical}) can \code{x} be NULL.} + +\item{types}{(\code{character}) type of the variables.} } \description{ Provides a clearer error message in the case of missing variable. diff --git a/man/assert_single_paramcd.Rd b/man/assert_single_paramcd.Rd deleted file mode 100644 index 14a37a9ea..000000000 --- a/man/assert_single_paramcd.Rd +++ /dev/null @@ -1,14 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/assertions.R -\name{assert_single_paramcd} -\alias{assert_single_paramcd} -\title{Check to have only one PARAMCD in the analysis dataset} -\usage{ -assert_single_paramcd(param_val) -} -\arguments{ -\item{param_val}{value of PARAMCD} -} -\description{ -Check to have only one PARAMCD in the analysis dataset -} diff --git a/man/assert_single_value.Rd b/man/assert_single_value.Rd new file mode 100644 index 000000000..c7f47c29b --- /dev/null +++ b/man/assert_single_value.Rd @@ -0,0 +1,16 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/assertions.R +\name{assert_single_value} +\alias{assert_single_value} +\title{Check variable only has one unique value.} +\usage{ +assert_single_value(x, label = deparse(substitute(x))) +} +\arguments{ +\item{x}{value vector.} + +\item{label}{(\code{string}) label of input.} +} +\description{ +Check variable only has one unique value. +} diff --git a/man/assert_valid_type.Rd b/man/assert_valid_type.Rd new file mode 100644 index 000000000..49b464161 --- /dev/null +++ b/man/assert_valid_type.Rd @@ -0,0 +1,18 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/assertions.R +\name{assert_valid_type} +\alias{assert_valid_type} +\title{Check variable is of correct type} +\usage{ +assert_valid_type(x, types, label = deparse(substitute(x))) +} +\arguments{ +\item{x}{Object to check the type.} + +\item{types}{(\code{character}) possible types to check.} + +\item{label}{(\code{string}) label.} +} +\description{ +Check variable is of correct type +} diff --git a/man/assert_valid_var.Rd b/man/assert_valid_var.Rd new file mode 100644 index 000000000..e4a053b37 --- /dev/null +++ b/man/assert_valid_var.Rd @@ -0,0 +1,77 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/assertions.R +\name{assert_valid_var} +\alias{assert_valid_var} +\alias{assert_valid_var.character} +\alias{assert_valid_var.factor} +\alias{assert_valid_var.logical} +\alias{assert_valid_var.numeric} +\alias{assert_valid_var.default} +\title{Check whether var is valid} +\usage{ +assert_valid_var(x, label, na_ok, empty_ok, ...) + +\method{assert_valid_var}{character}( + x, + label = deparse(substitute(x)), + na_ok = FALSE, + empty_ok = FALSE, + min_chars = 1L, + ... +) + +\method{assert_valid_var}{factor}( + x, + label = deparse(substitute(x)), + na_ok = FALSE, + empty_ok = FALSE, + min_chars = 1L, + ... +) + +\method{assert_valid_var}{logical}( + x, + label = deparse(substitute(x)), + na_ok = TRUE, + empty_ok = FALSE, + ... +) + +\method{assert_valid_var}{numeric}( + x, + label = deparse(substitute(x)), + na_ok = TRUE, + empty_ok = FALSE, + integerish = FALSE, + ... +) + +\method{assert_valid_var}{default}( + x, + label = deparse(substitute(x)), + na_ok = FALSE, + empty_ok = FALSE, + ... +) +} +\arguments{ +\item{x}{value of col_split variable} + +\item{label}{(\code{string}) hints.} + +\item{na_ok}{(\code{flag}) whether NA value is allowed} + +\item{empty_ok}{(\code{flag}) whether length 0 value is allowed.} + +\item{...}{Further arguments to methods.} + +\item{min_chars}{(\code{integer}) the minimum length of the characters.} + +\item{integerish}{(\code{flag}) whether the number should be treated as integerish.} +} +\description{ +Check whether var is valid +} +\details{ +This function checks the variable values are valid or not. +} diff --git a/man/assert_valid_var_pair.Rd b/man/assert_valid_var_pair.Rd new file mode 100644 index 000000000..e69fcd099 --- /dev/null +++ b/man/assert_valid_var_pair.Rd @@ -0,0 +1,28 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/assertions.R +\name{assert_valid_var_pair} +\alias{assert_valid_var_pair} +\title{Check variables are of same levels} +\usage{ +assert_valid_var_pair( + df1, + df2, + var, + lab1 = deparse(substitute(df1)), + lab2 = deparse(substitute(df2)) +) +} +\arguments{ +\item{df1}{(\code{data.frame}) input.} + +\item{df2}{(\code{data.frame}) input.} + +\item{var}{(\code{string}) variable to check.} + +\item{lab1}{(\code{string}) label hint for df1.} + +\item{lab2}{(\code{string}) label hint for df2.} +} +\description{ +Check variables are of same levels +} diff --git a/man/assert_valid_variable.Rd b/man/assert_valid_variable.Rd new file mode 100644 index 000000000..c13cd4063 --- /dev/null +++ b/man/assert_valid_variable.Rd @@ -0,0 +1,29 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/assertions.R +\name{assert_valid_variable} +\alias{assert_valid_variable} +\title{Check variables in a data frame are valid character or factor.} +\usage{ +assert_valid_variable( + df, + vars, + label = deparse(substitute(df)), + types = NULL, + ... +) +} +\arguments{ +\item{df}{(\code{data.frame}) input dataset.} + +\item{vars}{(\code{character}) variables to check.} + +\item{label}{(\code{string}) labels of the data frame.} + +\item{types}{Named (\code{list}) of type of the input.} + +\item{...}{further arguments for \code{assert_valid_var}. Please note that different methods have different arguments +so if provided make sure the variables to check is of the same class.} +} +\description{ +Check variables in a data frame are valid character or factor. +} diff --git a/man/cmt01a_1.Rd b/man/cmt01a.Rd similarity index 53% rename from man/cmt01a_1.Rd rename to man/cmt01a.Rd index fdc297096..5c4e4810d 100644 --- a/man/cmt01a_1.Rd +++ b/man/cmt01a.Rd @@ -1,78 +1,63 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/cmt01a.R \docType{data} -\name{cmt01a_1_main} -\alias{cmt01a_1_main} -\alias{cmt01a_1_lyt} -\alias{cmt01a_1_pre} -\alias{cmt01a_1_post} -\alias{cmt01a_1} -\title{\code{CMT01A} Table 1 (Default) Concomitant Medication by Medication Class and Preferred Name.} +\name{cmt01a_main} +\alias{cmt01a_main} +\alias{cmt01a_pre} +\alias{cmt01a_post} +\alias{cmt01a} +\title{\code{CMT01A} Concomitant Medication by Medication Class and Preferred Name.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -cmt01a_1_main( +cmt01a_main( adam_db, arm_var = "ARM", - medcat_var = "ATC2", - lbl_medcat_var = "ATC Class Level 2", + incl_n_treatment = TRUE, + row_split_var = "ATC2", medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", lbl_overall = NULL, - deco = std_deco("CMT01A"), ... ) -cmt01a_1_lyt( - arm_var, - lbl_overall, - medcat_var, - lbl_medcat_var, - medname_var, - lbl_medname_var, - deco -) - -cmt01a_1_pre(adam_db, medcat_var = "ATC2", medname_var = "CMDECOD", ...) +cmt01a_pre(adam_db, ...) -cmt01a_1_post( +cmt01a_post( tlg, prune_0 = TRUE, - medcat_var = "ATC2", + sort_by_freq = FALSE, + row_split_var = "ATC2", medname_var = "CMDECOD", ... ) -cmt01a_1 +cmt01a } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{medcat_var}{(\code{string}) the variable defining the medication category. By default \code{ATC2}.} - -\item{lbl_medcat_var}{(\code{string}) the label for the medication category.} +\item{incl_n_treatment}{(\code{flag}) include total number of treatments per medication.} -\item{medname_var}{(\code{string}) the variable defining the medication name. By default \code{CMDECOD}.} +\item{row_split_var}{(\code{character}) the variable defining the medication category. By default \code{ATC2}.} -\item{lbl_medname_var}{(\code{string}) the label for the medication name.} +\item{medname_var}{(\code{string}) variable name of medical treatment name.} \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} + +\item{sort_by_freq}{(\code{flag}) whether to sort medication class by frequency.} } \description{ A concomitant medication -table with the number of subjects and the total number of treatments by medication class sorted alphabetically and -medication name sorted by frequencies. +table with the number of subjects and the total number of treatments by medication class. } \details{ \itemize{ @@ -87,19 +72,17 @@ the specific medication. } \section{Functions}{ \itemize{ -\item \code{cmt01a_1_main()}: Main TLG function - -\item \code{cmt01a_1_lyt()}: Layout +\item \code{cmt01a_main()}: Main TLG function -\item \code{cmt01a_1_pre()}: Preprocessing +\item \code{cmt01a_pre()}: Preprocessing -\item \code{cmt01a_1_post()}: Postprocessing +\item \code{cmt01a_post()}: Postprocessing }} \note{ \itemize{ -\item \code{adam_db} object must contain an \code{adcm} table with the columns specified in \code{medcat_var} and \code{medname_var} as well -as \code{"CMSEQ"}. +\item \code{adam_db} object must contain an \code{adcm} table with the columns specified in \code{row_split_var} and \code{medname_var} +as well as \code{"CMSEQ"}. } } \examples{ @@ -109,6 +92,6 @@ proc_data <- syn_data proc_data$adcm <- proc_data$adcm \%>\% filter(ATIREL == "CONCOMITANT") -run(cmt01a_1, proc_data) +run(cmt01a, proc_data) } \keyword{datasets} diff --git a/man/cmt01a_2.Rd b/man/cmt01a_2.Rd deleted file mode 100644 index f21789a3e..000000000 --- a/man/cmt01a_2.Rd +++ /dev/null @@ -1,101 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cmt01a.R -\docType{data} -\name{cmt01a_2_main} -\alias{cmt01a_2_main} -\alias{cmt01a_2_pre} -\alias{cmt01a_2_post} -\alias{cmt01a_2} -\title{\code{CMT01A} Table 2 (Supplementary) Concomitant Medication by Medication Class and Preferred Name (Classes sorted by -frequency).} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -cmt01a_2_main( - adam_db, - arm_var = "ARM", - medcat_var = "ATC2", - lbl_medcat_var = "ATC Class Level 2", - medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", - lbl_overall = NULL, - deco = std_deco("CMT01A"), - ... -) - -cmt01a_2_pre(adam_db, medcat_var = "ATC2", medname_var = "CMDECOD", ...) - -cmt01a_2_post( - tlg, - prune_0 = TRUE, - medcat_var = "ATC2", - medname_var = "CMDECOD", - ... -) - -cmt01a_2 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{medcat_var}{(\code{string}) the variable defining the medication category. By default \code{ATC2}.} - -\item{lbl_medcat_var}{(\code{string}) label for the variable defining the medication category.} - -\item{medname_var}{(\code{string}) the variable defining the medication name. By default \code{CMDECOD}.} - -\item{lbl_medname_var}{(\code{string}) label for the variable defining the medication name.} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -A concomitant medication table with the number of subjects and the total number of treatments by -medication class and medication name sorted by frequencies. -} -\details{ -\itemize{ -\item Data should be filtered for concomitant medication. \code{(ATIREL == "CONCOMITANT")}. -\item Numbers represent absolute numbers of subjects and fraction of \code{N}, or absolute numbers when specified. -\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. -\item Split columns by arm. -\item Does not include a total column by default. -\item Sort by medication class frequency and within medication class by decreasing total number of patients with -the specific medication. -} -} -\section{Functions}{ -\itemize{ -\item \code{cmt01a_2_main()}: Main TLG function - -\item \code{cmt01a_2_pre()}: Preprocessing - -\item \code{cmt01a_2_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adcm} table with the columns specified in \code{medcat_var} and \code{medname_var} as well -as \code{"CMSEQ"}. -} -} -\examples{ -library(dplyr) - -proc_data <- syn_data -proc_data$adcm <- proc_data$adcm \%>\% - filter(ATIREL == "CONCOMITANT") - -run(cmt01a_2, proc_data) -} -\keyword{datasets} diff --git a/man/cmt01a_3.Rd b/man/cmt01a_3.Rd deleted file mode 100644 index dc9fd368d..000000000 --- a/man/cmt01a_3.Rd +++ /dev/null @@ -1,115 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cmt01a.R -\docType{data} -\name{cmt01a_3_main} -\alias{cmt01a_3_main} -\alias{cmt01a_3_lyt} -\alias{cmt01a_3_pre} -\alias{cmt01a_3_post} -\alias{cmt01a_3} -\title{\code{CMT01A} Table 3 (Supplementary) Concomitant Medication by Medication Class and Preferred Name (Total number of -treatments per medication class suppressed).} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -cmt01a_3_main( - adam_db, - arm_var = "ARM", - medcat_var = "ATC2", - lbl_medcat_var = "ATC Class Level 2", - medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", - lbl_overall = NULL, - deco = std_deco("CMT01A"), - ... -) - -cmt01a_3_lyt( - arm_var = "ARM", - lbl_overall = NULL, - medcat_var = "ATC2", - lbl_medcat_var = "ATC Class Level 2", - medname_var = "CMDECOD", - lbl_medname_var = "Other Treatment", - deco = std_deco("CMT01A") -) - -cmt01a_3_pre(adam_db, medcat_var = "ATC2", medname_var = "CMDECOD", ...) - -cmt01a_3_post( - tlg, - prune_0 = TRUE, - medcat_var = "ATC2", - medname_var = "CMDECOD", - ... -) - -cmt01a_3 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{medcat_var}{(\code{string}) the variable defining the medication category. By default \code{ATC2}.} - -\item{lbl_medcat_var}{(\code{string}) the label for the medication category.} - -\item{medname_var}{(\code{string}) the variable defining the medication name. By default \code{CMDECOD}.} - -\item{lbl_medname_var}{(\code{string}) the label for the medication name.} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -A concomitant medication table with the number of subjects and the total -number of treatments by medication class sorted alphabetically and medication name sorted by frequencies presented -without the total number of treatments per medication. -} -\details{ -\itemize{ -\item Data should be filtered for concomitant medication. \code{(ATIREL == "CONCOMITANT")}. -\item Numbers represent absolute numbers of subjects and fraction of \code{N}, or absolute numbers when specified. -\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. -\item Split columns by arm. -\item Does not include a total column by default. -\item Sort by medication class alphabetically and within medication class by decreasing total number of patients with -the specific medication. -} -} -\section{Functions}{ -\itemize{ -\item \code{cmt01a_3_main()}: Main TLG function - -\item \code{cmt01a_3_lyt()}: Layout - -\item \code{cmt01a_3_pre()}: Preprocessing - -\item \code{cmt01a_3_post()}: Preprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adcm} table with the columns specified in \code{medcat_var} and \code{medname_var} as well -as \code{"CMSEQ"}. -} -} -\examples{ -library(dplyr) - -proc_data <- syn_data -proc_data$adcm <- proc_data$adcm \%>\% - filter(ATIREL == "CONCOMITANT") - -run(cmt01a_3, proc_data) -} -\keyword{datasets} diff --git a/man/cmt01a_lyt.Rd b/man/cmt01a_lyt.Rd new file mode 100644 index 000000000..4752563bf --- /dev/null +++ b/man/cmt01a_lyt.Rd @@ -0,0 +1,33 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/cmt01a.R +\name{cmt01a_lyt} +\alias{cmt01a_lyt} +\title{cmt01a Layout} +\usage{ +cmt01a_lyt( + arm_var, + lbl_overall, + incl_n_treatment = TRUE, + row_split_var, + lbl_row_split, + medname_var, + lbl_medname_var +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{incl_n_treatment}{(\code{flag}) include total number of treatments per medication.} + +\item{row_split_var}{(\code{character}) the variable defining the medication category. By default \code{ATC2}.} + +\item{medname_var}{(\code{string}) variable name of medical treatment name.} + +\item{lbl_medname_var}{(\code{string}) label for the variable defining the medication name.} +} +\description{ +cmt01a Layout +} +\keyword{internal} diff --git a/man/cmt02_pt.Rd b/man/cmt02_pt.Rd new file mode 100644 index 000000000..50d9cdd71 --- /dev/null +++ b/man/cmt02_pt.Rd @@ -0,0 +1,94 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/cmt02_pt.R +\docType{data} +\name{cmt02_pt_main} +\alias{cmt02_pt_main} +\alias{cmt02_pt_pre} +\alias{cmt02_pt_post} +\alias{cmt02_pt} +\title{\code{CMT02_PT} Table 1 (Default) Concomitant Medications by Preferred Name.} +\format{ +An object of class \code{chevron_t} of length 1. +} +\source{ +cmt01a.R +} +\usage{ +cmt02_pt_main( + adam_db, + arm_var = "ARM", + incl_n_treatment = TRUE, + row_split_var = NULL, + medname_var = "CMDECOD", + lbl_overall = NULL, + ... +) + +cmt02_pt_pre(adam_db, ...) + +cmt02_pt_post( + tlg, + prune_0 = TRUE, + sort_by_freq = FALSE, + row_split_var = NULL, + medname_var = "CMDECOD", + ... +) + +cmt02_pt +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{incl_n_treatment}{(\code{flag}) include total number of treatments per medication.} + +\item{row_split_var}{(\code{character}) the variable defining the medication category. By default \code{ATC2}.} + +\item{medname_var}{(\code{string}) variable name of medical treatment name.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{...}{not used.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} + +\item{sort_by_freq}{(\code{flag}) whether to sort medication class by frequency.} +} +\description{ +A concomitant medication table with the +number of subjects and the total number of treatments by medication name sorted by frequencies. +} +\details{ +\itemize{ +\item Data should be filtered for concomitant medication. \code{(ATIREL == "CONCOMITANT")}. +\item Numbers represent absolute numbers of subjects and fraction of \code{N}, or absolute numbers when specified. +\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. +\item Split columns by arm. +\item Does not include a total column by default. +\item Sort by medication class alphabetically and within medication class by decreasing total number of patients with +the specific medication. +} +} +\section{Functions}{ +\itemize{ +\item \code{cmt02_pt_main()}: Main TLG function + +\item \code{cmt02_pt_pre()}: Preprocessing + +\item \code{cmt02_pt_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adcm} table with the columns specified in \code{row_split_var} and \code{medname_var} +as well as \code{"CMSEQ"}. +} +} +\examples{ +run(cmt02_pt, syn_data) +} +\keyword{datasets} diff --git a/man/cmt02_pt_1.Rd b/man/cmt02_pt_1.Rd deleted file mode 100644 index 562a90969..000000000 --- a/man/cmt02_pt_1.Rd +++ /dev/null @@ -1,76 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cmt02_pt.R -\docType{data} -\name{cmt02_pt_1_main} -\alias{cmt02_pt_1_main} -\alias{cmt02_pt_1_lyt} -\alias{cmt02_pt_1_pre} -\alias{cmt02_pt_1_post} -\alias{cmt02_pt_1} -\title{\code{CMT02_PT} Table 1 (Default) Concomitant Medications by Preferred Name.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -cmt02_pt_1_main( - adam_db, - arm_var = "ARM", - lbl_overall = NULL, - deco = std_deco("CMT02_PT"), - ... -) - -cmt02_pt_1_lyt(arm_var, lbl_overall, deco) - -cmt02_pt_1_pre(adam_db, ...) - -cmt02_pt_1_post(tlg, prune_0 = TRUE, ...) - -cmt02_pt_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -A concomitant medication table with the -number of subjects and the total number of treatments by medication name sorted by frequencies. -} -\details{ -\itemize{ -\item Data should be filtered for concomitant medication. \code{(ATIREL == "CONCOMITANT")}. -\item Order by decreasing total number of patients with the specific medication. -\item Does not include a total column by default. -} -} -\section{Functions}{ -\itemize{ -\item \code{cmt02_pt_1_main()}: Main TLG function - -\item \code{cmt02_pt_1_lyt()}: Layout - -\item \code{cmt02_pt_1_pre()}: Preprocessing - -\item \code{cmt02_pt_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adcm} table with the columns \code{"CMDECOD"} and \code{"CMSEQ"}. -} -} -\examples{ -run(cmt02_pt_1, syn_data) -} -\keyword{datasets} diff --git a/man/count_or_summarize.Rd b/man/count_or_summarize.Rd new file mode 100644 index 000000000..3c786eec8 --- /dev/null +++ b/man/count_or_summarize.Rd @@ -0,0 +1,21 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rtables_utils.R +\name{count_or_summarize} +\alias{count_or_summarize} +\title{Count or summarize by groups} +\usage{ +count_or_summarize(lyt, var, level, detail_vars, indent_mod = 0L, ...) +} +\arguments{ +\item{lyt}{(\code{PreDataTableLayouts}) rtable layout.} + +\item{var}{(\code{string}) of analysis variable.} + +\item{level}{(\code{string}) level to be displayed.} + +\item{detail_vars}{(\code{character}) of variables for detail information.} +} +\description{ +Count or summarize by groups +} +\keyword{internal} diff --git a/man/count_patients_recursive.Rd b/man/count_patients_recursive.Rd new file mode 100644 index 000000000..94d3c8297 --- /dev/null +++ b/man/count_patients_recursive.Rd @@ -0,0 +1,21 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rtables_utils.R +\name{count_patients_recursive} +\alias{count_patients_recursive} +\title{Count patients recursively} +\usage{ +count_patients_recursive(lyt, anl_vars, anl_lbls, lbl_vars) +} +\arguments{ +\item{lyt}{(\code{PreDataTableLayouts}) rtable layout.} + +\item{anl_vars}{Named (\code{list}) of analysis variables.} + +\item{anl_lbls}{(\code{character}) of labels.} + +\item{lbl_vars}{Named (\code{list}) of analysis labels.} +} +\description{ +Count patients recursively +} +\keyword{internal} diff --git a/man/coxt02_1.Rd b/man/coxt02.Rd similarity index 60% rename from man/coxt02_1.Rd rename to man/coxt02.Rd index af7f25fbd..f77c1e001 100644 --- a/man/coxt02_1.Rd +++ b/man/coxt02.Rd @@ -1,57 +1,32 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/coxt02.R \docType{data} -\name{coxt02_1_main} -\alias{coxt02_1_main} -\alias{coxt02_1_lyt} -\alias{coxt02_1_pre} -\alias{coxt02_1_check} -\alias{coxt02_1_post} -\alias{coxt02_1} +\name{coxt02_main} +\alias{coxt02_main} +\alias{coxt02_pre} +\alias{coxt02_post} +\alias{coxt02} \title{\code{COXT02} Table 1 (Default) Multi-Variable Cox Regression Model Table 1.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -coxt02_1_main( +coxt02_main( adam_db, arm_var = "ARM", time_var = "AVAL", - censor_var = "CNSR", + event_var = "EVENT", covariates = c("SEX", "RACE", "AAGE"), strata = NULL, lbl_vars = "Effect/Covariate Included in the Model", - conf_level = 0.95, - ties = "exact", - deco = std_deco("COXT02"), ... ) -coxt02_1_lyt(variables, lbl_vars, conf_level, ties, deco) +coxt02_pre(adam_db, ...) -coxt02_1_pre( - adam_db, - arm_var = "ARM", - time_var = "AVAL", - censor_var = "CNSR", - covariates = c("SEX", "RACE", "AAGE"), - strata = NULL, - ... -) - -coxt02_1_check( - adam_db, - arm_var, - time_var, - censor_var, - covariates, - strata, - req_tables = c("adsl", "adtte") -) - -coxt02_1_post(tlg, prune_0 = FALSE, ...) +coxt02_post(tlg, prune_0 = FALSE, ...) -coxt02_1 +coxt02 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -60,7 +35,7 @@ coxt02_1 \item{time_var}{(\code{string}) the time variable in a Cox proportional hazards regression model.} -\item{censor_var}{(\code{string}) the censor variable in a Cox proportional hazards regression model.} +\item{event_var}{(\code{string}) the event variable in a Cox proportional hazards regression model.} \item{covariates}{(\code{character}) will be fitted and the corresponding effect will be estimated.} @@ -68,18 +43,7 @@ coxt02_1 \item{lbl_vars}{(\code{string}) text label for the a Cox regression model variables.} -\item{conf_level}{(\code{string}) confidence level of the interval when fitting a Cox regression model -and estimating hazard ratio to describe the effect size in a survival analysis.} - -\item{ties}{(\code{string}) specifies the method for tie handling.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{variables}{(\code{list}) list of variables in a Cox proportional hazards regression model.} - -\item{req_tables}{(\code{character}) names of the required tables.} +\item{...}{Further arguments passed to \code{tern::control_coxreg()}.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} @@ -92,6 +56,8 @@ and produces the estimates for each of the covariates included in the model } \details{ \itemize{ +\item The reference arm will always the first level of \code{arm_var}. Please change the level if you want to +change the reference arms. \item The table allows confidence level to be adjusted, default is 2-sided 5\%. \item The stratified analysis is with DISCRETE tie handling (equivalent to \code{tern::control_coxreg(ties = "exact")} in R). \item Model includes treatment plus specified covariate(s) as factor(s) or numeric(s), @@ -104,15 +70,11 @@ with \code{"SEX"}, \code{"RACE"} and \code{"AAGE"} as default candidates. } \section{Functions}{ \itemize{ -\item \code{coxt02_1_main()}: Main TLG function - -\item \code{coxt02_1_lyt()}: Layout - -\item \code{coxt02_1_pre()}: Preprocessing +\item \code{coxt02_main()}: Main TLG function -\item \code{coxt02_1_check()}: Checks +\item \code{coxt02_pre()}: Preprocessing -\item \code{coxt02_1_post()}: Postprocessing +\item \code{coxt02_post()}: Postprocessing }} \note{ @@ -128,8 +90,8 @@ library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == "CRSD", "adtte") -run(coxt02_1, proc_data) +run(coxt02, proc_data) -run(coxt02_1, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90) +run(coxt02, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90) } \keyword{datasets} diff --git a/man/coxt02_lyt.Rd b/man/coxt02_lyt.Rd new file mode 100644 index 000000000..9ac97f294 --- /dev/null +++ b/man/coxt02_lyt.Rd @@ -0,0 +1,15 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/coxt02.R +\name{coxt02_lyt} +\alias{coxt02_lyt} +\title{coxt02 Layout} +\usage{ +coxt02_lyt(variables, lbl_vars, control) +} +\arguments{ +\item{variables}{(\code{list}) list of variables in a Cox proportional hazards regression model.} +} +\description{ +coxt02 Layout +} +\keyword{internal} diff --git a/man/dmt01_1.Rd b/man/dmt01.Rd similarity index 56% rename from man/dmt01_1.Rd rename to man/dmt01.Rd index 392d0f221..b7ba6ce6a 100644 --- a/man/dmt01_1.Rd +++ b/man/dmt01.Rd @@ -1,52 +1,42 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/dmt01.R \docType{data} -\name{dmt01_1_main} -\alias{dmt01_1_main} -\alias{dmt01_1_lyt} -\alias{dmt01_1_pre} -\alias{dmt01_1_post} -\alias{dmt01_1} +\name{dmt01_main} +\alias{dmt01_main} +\alias{dmt01_pre} +\alias{dmt01_post} +\alias{dmt01} \title{\code{DMT01} Table 1 (Default) Demographics and Baseline Characteristics Table 1.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -dmt01_1_main( +dmt01_main( adam_db, arm_var = "ARM", - summaryvars = list(`Age (yr)` = "AAGE", `Age group (yr)` = "AGEGR1", Sex = "SEX", - Ethnicity = "ETHNIC", Race = "RACE"), + summaryvars = c("AAGE", "AGEGR1", "SEX", "ETHNIC", "RACE"), lbl_overall = "All Patients", - deco = std_deco("DMT01"), ... ) -dmt01_1_lyt(arm_var, summaryvars, summaryvars_lbls, lbl_overall, deco) +dmt01_pre(adam_db, ...) -dmt01_1_pre(adam_db, ...) +dmt01_post(tlg, prune_0 = TRUE, ...) -dmt01_1_post(tlg, prune_0 = TRUE, ...) - -dmt01_1 +dmt01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{summaryvars}{(\code{list}) variables summarized in demographic table. Names are used as -subtitles. For values where no name is provided, the label attribute of the corresponding column in \code{adsl} table of -\code{adam_db} is used.} +\item{summaryvars}{(\code{character}) variables summarized in demographic table. The label attribute of the corresponding +column in \code{adsl} table of \code{adam_db} is used as label.} \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{summaryvars_lbls}{(\code{character}) labels corresponding to the analyzed variables.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -67,13 +57,11 @@ by default based on the number of patients in the corresponding \code{n} row. } \section{Functions}{ \itemize{ -\item \code{dmt01_1_main()}: Main TLG function - -\item \code{dmt01_1_lyt()}: Layout +\item \code{dmt01_main()}: Main TLG function -\item \code{dmt01_1_pre()}: Preprocessing +\item \code{dmt01_pre()}: Preprocessing -\item \code{dmt01_1_post()}: Postprocessing +\item \code{dmt01_post()}: Postprocessing }} \note{ @@ -85,11 +73,11 @@ by default based on the number of patients in the corresponding \code{n} row. library(magrittr) db <- syn_data \%>\% - dmt01_1_pre() + dmt01_pre() -dmt01_1_main(db, lbl_overall = NULL) -dmt01_1_main(db, summaryvars = c("Age" = "AGE", "Race" = "RACE", "Gender" = "SEX")) -dmt01_1_pre(syn_data) -run(dmt01_1, syn_data) +dmt01_main(db, lbl_overall = NULL) +dmt01_main(db, summaryvars = c("AGE", "RACE", "SEX")) +dmt01_pre(syn_data) +run(dmt01, syn_data) } \keyword{datasets} diff --git a/man/dmt01_lyt.Rd b/man/dmt01_lyt.Rd new file mode 100644 index 000000000..44281ac82 --- /dev/null +++ b/man/dmt01_lyt.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/dmt01.R +\name{dmt01_lyt} +\alias{dmt01_lyt} +\title{\code{dmt01} Layout} +\usage{ +dmt01_lyt(arm_var, summaryvars, summaryvars_lbls, lbl_overall) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{summaryvars_lbls}{(\code{character}) labels corresponding to the analyzed variables.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} +} +\description{ +\code{dmt01} Layout +} +\keyword{internal} diff --git a/man/dst01.Rd b/man/dst01.Rd new file mode 100644 index 000000000..5a5794ac9 --- /dev/null +++ b/man/dst01.Rd @@ -0,0 +1,94 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/dst01.R +\docType{data} +\name{dst01_main} +\alias{dst01_main} +\alias{dst01_pre} +\alias{dst01_post} +\alias{dst01} +\title{DST01 Table 1 (Default) Patient Disposition Table 1.} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +dst01_main( + adam_db, + arm_var = "ARM", + study_status_var = "EOSSTT", + detail_vars = list(Discontinued = c("DCSREAS")), + trt_status_var = NULL, + lbl_overall = "All Patients", + ... +) + +dst01_pre(adam_db, ...) + +dst01_post(tlg, prune_0 = TRUE, ...) + +dst01 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{string}) variable. Usually one of \code{ARM}, \code{ACTARM}, \code{TRT01A}, or \code{TRT01A}.} + +\item{study_status_var}{(\code{string}) variable used to define patient status. Default is \code{EOSSTT}, however can also be a +variable name with the pattern \code{EOPxxSTT} where \code{xx} must be substituted by 2 digits referring to the analysis +period.} + +\item{detail_vars}{Named (\code{list}) of grouped display of \code{study_status_var}. The names must be subset of unique levels +of \code{study_status_var}.} + +\item{trt_status_var}{(\code{string}) variable of treatment status.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{...}{not used.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} +} +\description{ +The DST01 Disposition Table provides an overview of patients +study completion. For patients who discontinued the study a reason is provided. +} +\details{ +\itemize{ +\item Default patient disposition table summarizing the reasons for patients withdrawal. +\item Numbers represent absolute numbers of patients and fraction of \code{N}. +\item Remove zero-count rows. +\item Split columns by arm. +\item Include a total column by default. +\item Sort withdrawal reasons by alphabetic order. +} +} +\section{Functions}{ +\itemize{ +\item \code{dst01_main()}: Main TLG function + +\item \code{dst01_pre()}: Preprocessing + +\item \code{dst01_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adsl} table with the columns specified by \code{status_var} and \code{disc_reason_var}. +} +} +\examples{ +run(dst01, syn_data) +run(dst01, syn_data, detail_vars = list(Discontinued = c("DCSREASGP", "DCSREAS"))) +dst01_pre(syn_data) +run(dst01, syn_data, detail_vars = list(Ongoing = "STDONS")) +run(dst01, syn_data, detail_vars = list(Discontinued = "DCSREAS", Ongoing = "STDONS")) +run( + dst01, syn_data, + detail_vars = list( + Discontinued = c("DCSREASGP", "DCSREAS"), + Ongoing = "STDONS" + ) +) +} +\keyword{datasets} diff --git a/man/dst01_1.Rd b/man/dst01_1.Rd deleted file mode 100644 index 8dde17cc2..000000000 --- a/man/dst01_1.Rd +++ /dev/null @@ -1,117 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/dst01.R -\docType{data} -\name{dst01_1_main} -\alias{dst01_1_main} -\alias{dst01_1_lyt} -\alias{dst01_1_pre} -\alias{dst01_1_post} -\alias{dst01_1} -\title{DST01 Table 1 (Default) Patient Disposition Table 1.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -dst01_1_main( - adam_db, - arm_var = "ARM", - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - lbl_overall = "All Patients", - deco = std_deco("DST01"), - ... -) - -dst01_1_lyt( - arm_var, - status_var, - disc_reason_var, - completed_lbl, - ongoing_lbl, - discontinued_lbl, - lbl_overall, - deco -) - -dst01_1_pre(adam_db, status_var = "EOSSTT", disc_reason_var = "DCSREAS", ...) - -dst01_1_post(tlg, prune_0 = TRUE, deco = std_deco("DST01"), ...) - -dst01_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable. Usually one of \code{ARM}, \code{ACTARM}, \code{TRT01A}, or \code{TRT01A}.} - -\item{status_var}{(\code{string}) variable used to define patient status. Default is \code{EOSSTT}, however can also be a -variable name with the pattern \code{EOPxxSTT} where \code{xx} must be substituted by 2 digits referring to the analysis -period.} - -\item{disc_reason_var}{(\code{string}) variable used to define reason for patient withdrawal. Default is \code{DCSREAS}, -however can also be a variable with the pattern \code{DCPxxRS} where \code{xx} must be substituted by 2 digits referring to -the analysis period.} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{completed_lbl}{(\code{string}) associated with completed study and found in the columns given by \code{status}. By -Default \code{COMPLETED}.} - -\item{ongoing_lbl}{(\code{string}) associated with ongoing treatment and found in the columns given by \code{status_treatment}. -By Default `ONGOING.} - -\item{discontinued_lbl}{(\code{string}) associated with discontinued study and found in the columns given by \code{status}. By -Default \code{DISCONTINUED}.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The DST01 Disposition Table provides an overview of patients -study completion. For patients who discontinued the study a reason is provided. -} -\details{ -\itemize{ -\item Default patient disposition table summarizing the reasons for patients withdrawal. -\item Numbers represent absolute numbers of patients and fraction of \code{N}. -\item Remove zero-count rows. -\item Split columns by arm. -\item Include a total column by default. -\item Sort withdrawal reasons by alphabetic order. -} - -Since the two parts of the tables are pruned differently, the layout function returns a list of layouts, -which allows the tables to be constructed and pruned separately before binding. -} -\section{Functions}{ -\itemize{ -\item \code{dst01_1_main()}: Main TLG function - -\item \code{dst01_1_lyt()}: Layout - -\item \code{dst01_1_pre()}: Preprocessing - -\item \code{dst01_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adsl} table with the columns specified by \code{status_var} and \code{disc_reason_var}. -} -} -\examples{ -library(magrittr) - -db <- syn_data \%>\% - dst01_1_pre() - -dst01_1_main(db) -dst01_1_pre(syn_data) -run(dst01_1, syn_data) -} -\keyword{datasets} diff --git a/man/dst01_2.Rd b/man/dst01_2.Rd deleted file mode 100644 index 0771e0c5b..000000000 --- a/man/dst01_2.Rd +++ /dev/null @@ -1,121 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/dst01.R -\docType{data} -\name{dst01_2_main} -\alias{dst01_2_main} -\alias{dst01_2_lyt} -\alias{dst01_2_pre} -\alias{dst01_2_post} -\alias{dst01_2} -\title{DST01 Table 2 (Supplementary) Patient Disposition Table 2.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -dst01_2_main( - adam_db, - arm_var = "ARM", - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - lbl_overall = "All Patients", - deco = std_deco("DST01"), - ... -) - -dst01_2_lyt( - arm_var, - status_var, - disc_reason_var, - completed_lbl, - ongoing_lbl, - discontinued_lbl, - lbl_overall, - deco = std_deco("DST01") -) - -dst01_2_pre(adam_db, status_var = "EOSSTT", disc_reason_var = "DCSREAS", ...) - -dst01_2_post(tlg, prune_0 = TRUE, deco = std_deco("DST01"), ...) - -dst01_2 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{status_var}{(\code{string}) variable used to define patient status. Default is \code{EOSSTT}, however can also be a -variable name with the pattern \code{EOPxxSTT} where \code{xx} must be substituted by 2 digits referring to the analysis -period.} - -\item{disc_reason_var}{(\code{string}) variable used to define reason for patient withdrawal. Default is \code{DCSREAS}, -however can also be a variable with the pattern \code{DCPxxRS} where \code{xx} must be substituted by 2 digits referring to -the analysis period.} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{completed_lbl}{(\code{string}) associated with completed study and found in the columns given by \code{status}. By -Default \code{COMPLETED}.} - -\item{ongoing_lbl}{(\code{string}) associated with ongoing treatment and found in the columns given by \code{status_treatment}. -By Default `ONGOING.} - -\item{discontinued_lbl}{(\code{string}) associated with discontinued study and found in the columns given by \code{status}. By -Default \code{DISCONTINUED}.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The DST01_2 Disposition Table provides an overview of -patients study completion. For patients who discontinued the study, the reason provided is categorized as "Safety" or -"Non-Safety" issue. -} -\details{ -\itemize{ -\item Non-standard disposition table summarizing the reasons for patient withdrawal. -\item Withdrawal reasons are grouped into Safety and Non-Safety issues. -\item Safety issues include Death and Adverse events. -\item Numbers represent absolute numbers of patients and fraction of \code{N}. -\item Remove zero-count rows. -\item Split columns by arm. -\item Include a total column by default. -\item Sort withdrawal reasons by alphabetic order. -} - -Since the two parts of the tables are pruned differently, the layout function returns a list of layouts, -which allows the tables to be constructed and pruned separately before binding. -} -\section{Functions}{ -\itemize{ -\item \code{dst01_2_main()}: Main TLG function - -\item \code{dst01_2_lyt()}: Layout - -\item \code{dst01_2_pre()}: Preprocessing - -\item \code{dst01_2_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adsl} table with the columns specified by \code{status_var} and \code{disc_reason_var}. -} -} -\examples{ -library(magrittr) - -db <- syn_data \%>\% - dst01_2_pre() - -dst01_2_main(db) -dst01_2_main(db, lbl_overall = NULL) -dst01_2_pre(syn_data) -run(dst01_2, syn_data) -} -\keyword{datasets} diff --git a/man/dst01_3.Rd b/man/dst01_3.Rd deleted file mode 100644 index 3b0491b5d..000000000 --- a/man/dst01_3.Rd +++ /dev/null @@ -1,127 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/dst01.R -\docType{data} -\name{dst01_3_main} -\alias{dst01_3_main} -\alias{dst01_3_lyt} -\alias{dst01_3_pre} -\alias{dst01_3_post} -\alias{dst01_3} -\title{DST01 Table 3 (Supplementary) Patient Disposition Table 3.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -dst01_3_main( - adam_db, - arm_var = "ARM", - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - status_treatment_var = "EOTSTT", - lbl_overall = "All Patients", - deco = std_deco("DST01"), - ... -) - -dst01_3_lyt( - arm_var, - status_treatment_var, - completed_trt_lbl, - discontinued_trt_lbl, - ongoing_trt_lbl, - lbl_overall, - deco -) - -dst01_3_pre( - adam_db, - status_var = "EOSSTT", - disc_reason_var = "DCSREAS", - status_treatment_var = "EOTSTT", - ... -) - -dst01_3_post(tlg, prune_0 = TRUE, deco = std_deco("DST01"), ...) - -dst01_3 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{status_var}{(\code{string}) variable used to define patient status. Default is \code{EOSSTT}, however can also be a -variable name with the pattern \code{EOPxxSTT} where \code{xx} must be substituted by 2 digits referring to the analysis -period.} - -\item{disc_reason_var}{(\code{string}) variable used to define reason for patient withdrawal. Default is \code{DCSREAS}, -however can also be a variable with the pattern \code{DCPxxRS} where \code{xx} must be substituted by 2 digits referring to -the analysis period.} - -\item{status_treatment_var}{(\code{string}) variable used to define the treatment status of the patients. Default is -\code{EOTSTT}, however can also be a variable with the pattern \code{EOTxxSTT} where \code{xx} must be substituted by 2 digits -referring to the analysis period.} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{completed_trt_lbl}{(\code{string}) associated with completed treatment and found in the columns given by -\code{status_treatment_var}. By Default \code{COMPLETED}.} - -\item{discontinued_trt_lbl}{(\code{string}) associated with discontinued treatment and found in the columns given by -\code{status_treatment_var}. By Default \code{DISCONTINUED}.} - -\item{ongoing_trt_lbl}{(\code{string}) associated with ongoing treatment and found in the columns given by -\code{status_treatment_var}. By Default `ONGOING.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The DST01_3 Disposition Table provides an overview of patients study treatment status. For patients who discontinued -the study, the reason provided is categorized as "Safety" or "Non-Safety" issue. -} -\details{ -\itemize{ -\item Non-standard disposition table summarizing the reasons for patient withdrawal and treatment status. -\item Withdrawal reasons are grouped into Safety and Non-Safety issues. -\item Safety issues include Death and Adverse Events. -\item Numbers represent absolute numbers of patients and fraction of \code{N}. -\item Remove zero-count rows. -\item Split columns by arm. -\item Include a total column by default. -\item Sort withdrawal reasons by alphabetic order. -} -} -\section{Functions}{ -\itemize{ -\item \code{dst01_3_main()}: Main TLG function - -\item \code{dst01_3_lyt()}: Layout - -\item \code{dst01_3_pre()}: Preprocessing - -\item \code{dst01_3_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adsl} table with the column specified in \code{status}, \code{status_treatment} and -\code{disc_reason_var}. -} -} -\examples{ -library(magrittr) - -db <- syn_data \%>\% - dst01_3_pre() - -dst01_3_main(db) -dst01_3_main(db, lbl_overall = NULL) -run(dst01_3, syn_data) -} -\keyword{datasets} diff --git a/man/dst01_lyt.Rd b/man/dst01_lyt.Rd new file mode 100644 index 000000000..323e7a67c --- /dev/null +++ b/man/dst01_lyt.Rd @@ -0,0 +1,25 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/dst01.R +\name{dst01_lyt} +\alias{dst01_lyt} +\title{dst01 Layout} +\usage{ +dst01_lyt(arm_var, study_status_var, detail_vars, trt_status_var, lbl_overall) +} +\arguments{ +\item{arm_var}{(\code{string}) variable. Usually one of \code{ARM}, \code{ACTARM}, \code{TRT01A}, or \code{TRT01A}.} + +\item{study_status_var}{(\code{string}) variable used to define patient status. Default is \code{EOSSTT}, however can also be a +variable name with the pattern \code{EOPxxSTT} where \code{xx} must be substituted by 2 digits referring to the analysis +period.} + +\item{detail_vars}{Named (\code{list}) of grouped display of \code{study_status_var}.} + +\item{trt_status_var}{(\code{string}) variable of treatment status.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} +} +\description{ +dst01 Layout +} +\keyword{internal} diff --git a/man/dtht01_1.Rd b/man/dtht01.Rd similarity index 65% rename from man/dtht01_1.Rd rename to man/dtht01.Rd index cc819abbe..172760d08 100644 --- a/man/dtht01_1.Rd +++ b/man/dtht01.Rd @@ -1,55 +1,44 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/dtht01.R \docType{data} -\name{dtht01_1_main} -\alias{dtht01_1_main} -\alias{dtht01_1_lyt} -\alias{dtht01_1_opt_lyt} -\alias{dtht01_1_pre} -\alias{dtht01_1_post} -\alias{dtht01_1} +\name{dtht01_main} +\alias{dtht01_main} +\alias{dtht01_pre} +\alias{dtht01_post} +\alias{dtht01} \title{\code{DTHT01} Table 1 (Default) Death Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -dtht01_1_main( +dtht01_main( adam_db, arm_var = "ACTARM", - time_since_last_dose = FALSE, other_category = FALSE, + time_since_last_dose = FALSE, lbl_overall = NULL, - deco = std_deco("DTHT01"), ... ) -dtht01_1_lyt(arm_var, lbl_overall, breakdown, deco) - -dtht01_1_opt_lyt(arm_var, lbl_overall, deco) +dtht01_pre(adam_db, ...) -dtht01_1_pre(adam_db, ...) +dtht01_post(tlg, prune_0 = TRUE, ...) -dtht01_1_post(tlg, prune_0 = TRUE, ...) - -dtht01_1 +dtht01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{time_since_last_dose}{(\code{flag}) should the time to event information be displayed.} - \item{other_category}{(\code{flag}) should the breakdown of the \code{OTHER} category be displayed.} -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} +\item{time_since_last_dose}{(\code{flag}) should the time to event information be displayed.} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} \item{...}{not used.} -\item{breakdown}{(\code{character}) the levels of \code{DTHCAT} to be split. If \code{NULL}, this section is omitted.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -67,15 +56,11 @@ A description of the causes of death optionally with the breakdown of the } \section{Functions}{ \itemize{ -\item \code{dtht01_1_main()}: Main TLG function - -\item \code{dtht01_1_lyt()}: Layout - -\item \code{dtht01_1_opt_lyt()}: Optional Layout +\item \code{dtht01_main()}: Main TLG function -\item \code{dtht01_1_pre()}: Preprocessing +\item \code{dtht01_pre()}: Preprocessing -\item \code{dtht01_1_post()}: Postprocessing +\item \code{dtht01_post()}: Postprocessing }} \note{ @@ -88,7 +73,7 @@ A description of the causes of death optionally with the breakdown of the db <- syn_data -run(dtht01_1, db) -run(dtht01_1, db, other_category = TRUE, time_since_last_dose = TRUE) +run(dtht01, db) +run(dtht01, db, other_category = TRUE, time_since_last_dose = TRUE) } \keyword{datasets} diff --git a/man/dtht01_lyt.Rd b/man/dtht01_lyt.Rd new file mode 100644 index 000000000..77743e36d --- /dev/null +++ b/man/dtht01_lyt.Rd @@ -0,0 +1,35 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/dtht01.R +\name{dtht01_lyt} +\alias{dtht01_lyt} +\title{dtht01 Layout} +\usage{ +dtht01_lyt( + arm_var, + lbl_overall, + death_flag, + death_var, + other_level, + other_var, + dose_death_var +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{other_level}{(\code{string}) "Other" level in death catagory.} + +\item{other_var}{(\code{string}) variable name of death cause under "Other".} + +\item{dose_death_var}{(\code{string}) variable name of the days from last dose.} + +\item{death_falg}{(\code{string}) variable name of death flag.} + +\item{detah_var}{(\code{string}) variable name of death catagory.} +} +\description{ +dtht01 Layout +} +\keyword{internal} diff --git a/man/egt01_1.Rd b/man/egt01.Rd similarity index 57% rename from man/egt01_1.Rd rename to man/egt01.Rd index 0294ad34e..b507e1649 100644 --- a/man/egt01_1.Rd +++ b/man/egt01.Rd @@ -1,68 +1,57 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/egt01.R \docType{data} -\name{egt01_1_main} -\alias{egt01_1_main} -\alias{egt01_1_lyt} -\alias{egt01_1_pre} -\alias{egt01_1_post} -\alias{egt01_1} -\title{\code{EGT01} Table 1 (Default) ECG Assessments and Change from Baseline by Visit Table 1.} +\name{egt01_main} +\alias{egt01_main} +\alias{egt01_pre} +\alias{egt01_post} +\alias{egt01} +\title{\code{EGT01} ECG Assessments and Change from Baseline by Visit Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -egt01_1_main( +egt01_main( adam_db, arm_var = "ACTARM", - summaryvars = list(`Value at Visit` = "AVAL", `Change from \\nBaseline` = "CHG"), + summaryvars = c("AVAL", "CHG"), visitvar = "AVISIT", - deco = std_deco("EGT01"), + precision = list(), + default_precision = 2, ... ) -egt01_1_lyt( - arm_var, - summaryvars, - summaryvars_lbls, - visitvar, - lbl_avisit, - lbl_param, - deco -) - -egt01_1_pre(adam_db, ...) +egt01_pre(adam_db, ...) -egt01_1_post(tlg, prune_0 = TRUE, ...) +egt01_post(tlg, prune_0 = TRUE, ...) -egt01_1 +egt01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{summaryvars}{(\code{character}) the variables to be analyzed. For this table, \code{AVAL} and \code{CHG} by default.} +\item{summaryvars}{(\code{character}) variables to be analyzed. The label attribute of the corresponding column in \code{adeg} +table of \code{adam_db} is used as label.} -\item{visitvar}{(\code{string}) typically one of \code{"AVISIT"} (Default) or \code{"ATPTN"} depending on the type of time point -to be displayed.} +\item{visitvar}{(\code{string}) typically one of \code{"AVISIT"} (Default) or \code{"ATPTN"} depending on the type of time point to +be displayed} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} +\item{precision}{(named \code{list} of \code{integer}) where names are values found in the \code{PARAMCD} column and the the values +indicate the number of digits that should be represented for \code{min}, \code{max} and \code{median}. \code{Mean} and \code{sd} are +represented with one more decimal of precision.} -\item{summaryvars_lbls}{(\code{character}) the label of the variables to be analyzed.} +\item{default_precision}{(\code{integer}) the default number of digits.} -\item{lbl_avisit}{(\code{string}) label of the \code{visitvar} variable.} - -\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} +\item{...}{not used.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} } \description{ -The \code{EGT01} table 1 summarizes +The \code{EGT01} table summarizes several electrocardiogram parameters and their evolution throughout the study. } \details{ @@ -80,13 +69,11 @@ by \code{AVISIT}. Re-level to customize order. } \section{Functions}{ \itemize{ -\item \code{egt01_1_main()}: Main TLG function - -\item \code{egt01_1_lyt()}: Layout +\item \code{egt01_main()}: Main TLG function -\item \code{egt01_1_pre()}: Preprocessing +\item \code{egt01_pre()}: Preprocessing -\item \code{egt01_1_post()}: Postprocessing +\item \code{egt01_post()}: Postprocessing }} \note{ @@ -96,8 +83,10 @@ by \code{AVISIT}. Re-level to customize order. } } \examples{ -db <- syn_data -run(egt01_1, db) -run(egt01_1, db, summaryvars = list("AVAL", "Change" = "CHG")) +run(egt01, syn_data, precision = list( + "HR" = 1, + "QT" = 1, + "RR" = 0 +)) } \keyword{datasets} diff --git a/man/egt01_lyt.Rd b/man/egt01_lyt.Rd new file mode 100644 index 000000000..3a0602138 --- /dev/null +++ b/man/egt01_lyt.Rd @@ -0,0 +1,35 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/egt01.R +\name{egt01_lyt} +\alias{egt01_lyt} +\title{\code{egt01} Layout} +\usage{ +egt01_lyt( + arm_var, + summaryvars, + summaryvars_lbls, + visitvar, + lbl_avisit, + lbl_param, + precision, + default_precision +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{summaryvars}{(\code{character}) the variables to be analyzed. For this table, \code{AVAL} and \code{CHG} by default.} + +\item{summaryvars_lbls}{(\code{character}) the label of the variables to be analyzed.} + +\item{visitvar}{(\code{string}) typically one of \code{"AVISIT"} (Default) or \code{"ATPTN"} depending on the type of time point +to be displayed.} + +\item{lbl_avisit}{(\code{string}) label of the \code{visitvar} variable.} + +\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} +} +\description{ +\code{egt01} Layout +} +\keyword{internal} diff --git a/man/egt02_1.Rd b/man/egt02_1.Rd index 2486e4f48..099e410ee 100644 --- a/man/egt02_1.Rd +++ b/man/egt02_1.Rd @@ -3,11 +3,10 @@ \docType{data} \name{egt02_1_main} \alias{egt02_1_main} -\alias{egt02_1_lyt} -\alias{egt02_1_pre} -\alias{egt02_1_post} +\alias{egt02_pre} +\alias{egt02_post} \alias{egt02_1} -\title{\code{EGT02} Table 1 (Default) ECG Abnormalities Table 1.} +\title{\code{EGT02} ECG Abnormalities Table.} \format{ An object of class \code{chevron_t} of length 1. } @@ -15,24 +14,14 @@ An object of class \code{chevron_t} of length 1. egt02_1_main( adam_db, arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", lbl_overall = NULL, - deco = std_deco("EGT02"), + exclude_base_abn = FALSE, ... ) -egt02_1_lyt( - arm_var = "ACTARM", - lbl_vs_assessment, - lbl_vs_abnormality, - lbl_overall, - deco -) - -egt02_1_pre(adam_db, ...) +egt02_pre(adam_db, ...) -egt02_1_post(tlg, ...) +egt02_post(tlg, ...) egt02_1 } @@ -41,21 +30,16 @@ egt02_1 \item{arm_var}{(\code{string}) variable used for column splitting} -\item{lbl_vs_assessment}{(\code{string}) the label of the assessment variable.} - -\item{lbl_vs_abnormality}{(\code{string}) the label of the abnormality variable.} - \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{exclude_base_abn}{(\code{flag}) whether baseline abnormality should be excluded.} \item{...}{not used.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} } \description{ -Assessments Outside Normal Limits Regardless of Abnormality at -Baseline Table. +ECG Parameters outside Normal Limits Regardless of Abnormality at Baseline Table. } \details{ \itemize{ @@ -69,11 +53,9 @@ Baseline Table. \itemize{ \item \code{egt02_1_main()}: Main TLG function -\item \code{egt02_1_lyt()}: Layout - -\item \code{egt02_1_pre()}: Preprocessing +\item \code{egt02_pre()}: Preprocessing -\item \code{egt02_1_post()}: Postprocessing +\item \code{egt02_post()}: Postprocessing }} \note{ diff --git a/man/egt02_2.Rd b/man/egt02_2.Rd index b9cdef2dd..f16d99a46 100644 --- a/man/egt02_2.Rd +++ b/man/egt02_2.Rd @@ -3,11 +3,8 @@ \docType{data} \name{egt02_2_main} \alias{egt02_2_main} -\alias{egt02_2_lyt} -\alias{egt02_2_pre} -\alias{egt02_2_post} \alias{egt02_2} -\title{\code{EGT02} Table 2 (Supplementary) ECG Abnormalities Table 2.} +\title{\code{EGT02_2} ECG Abnormalities Table.} \format{ An object of class \code{chevron_t} of length 1. } @@ -15,25 +12,11 @@ An object of class \code{chevron_t} of length 1. egt02_2_main( adam_db, arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", lbl_overall = NULL, - deco = std_deco("EGT02_2"), + exclude_base_abn = TRUE, ... ) -egt02_2_lyt( - arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", - lbl_overall = NULL, - deco = std_deco("EGT02_2") -) - -egt02_2_pre(adam_db, ...) - -egt02_2_post(tlg, ...) - egt02_2 } \arguments{ @@ -41,21 +24,14 @@ egt02_2 \item{arm_var}{(\code{string}) variable used for column splitting} -\item{lbl_vs_assessment}{(\code{string}) the label of the assessment variable.} - -\item{lbl_vs_abnormality}{(\code{string}) the label of the abnormality variable.} - \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{exclude_base_abn}{(\code{flag}) whether baseline abnormality should be excluded.} \item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} } \description{ -Assessments Outside Normal Limits Among Subject Without -Abnormality at Baseline. +ECG Parameters outside Normal Limits Among Patients without Abnormality at Baseline Table. } \details{ \itemize{ @@ -69,12 +45,6 @@ Abnormality at Baseline. \itemize{ \item \code{egt02_2_main()}: Main TLG function -\item \code{egt02_2_lyt()}: Layout - -\item \code{egt02_2_pre()}: Preprocessing - -\item \code{egt02_2_post()}: Postprocessing - }} \note{ \itemize{ diff --git a/man/egt02_lyt.Rd b/man/egt02_lyt.Rd new file mode 100644 index 000000000..8e5f8f6b4 --- /dev/null +++ b/man/egt02_lyt.Rd @@ -0,0 +1,30 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/egt02.R +\name{egt02_lyt} +\alias{egt02_lyt} +\title{\code{egt02} Layout} +\usage{ +egt02_lyt( + arm_var = "ACTARM", + lbl_vs_assessment = "Assessment", + lbl_vs_abnormality = "Abnormality", + lbl_overall, + exclude_base_abn +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_vs_assessment}{(\code{string}) the label of the assessment variable.} + +\item{lbl_vs_abnormality}{(\code{string}) the label of the abnormality variable.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{exclude_base_abn}{(\code{flag}) whether to exclude subjects with baseline abnormality from numerator and +denominator.} +} +\description{ +\code{egt02} Layout +} +\keyword{internal} diff --git a/man/egt03.Rd b/man/egt03.Rd new file mode 100644 index 000000000..4fd55f4aa --- /dev/null +++ b/man/egt03.Rd @@ -0,0 +1,81 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/egt03.R +\docType{data} +\name{egt03_main} +\alias{egt03_main} +\alias{egt03_pre} +\alias{egt03_post} +\alias{egt03} +\title{\code{EGT03} Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +egt03_main( + adam_db, + arm_var = "ARMCD", + summaryvar = "BNRIND", + splitvar = "ANRIND", + visit_var = "AVISIT", + ... +) + +egt03_pre(adam_db, ...) + +egt03_post(tlg, prune_0 = FALSE, ...) + +egt03 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{character}) the arm variables used for row split, typically \code{"ARMCD"}.} + +\item{summaryvar}{(\code{character}) variables to be analyzed, typically \code{"BNRIND"}. Labels of the corresponding columns +are used as subtitles.} + +\item{splitvar}{(\code{character}) variables to be analyzed, typically \code{"ANRIND"}. Labels of the corresponding columns are +used as subtitles.} + +\item{visit_var}{Analysis Visit variable.} + +\item{...}{not used.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} +} +\description{ +The \code{EGT03} Table entries provide the number of patients by baseline assessment and minimum or maximum post-baseline +assessment. Percentages are based on the total number of patients in a treatment group. Baseline is the patient's +last observation prior to initiation of study drug. +} +\details{ +\itemize{ +\item ADEG data are subsetted to contain only "POST-BASELINE MINIMUM" visit +\item the number of patients by baseline assessment and minimum post-baseline assessment. +\item Percentages are based on the total number of patients in a treatment group. +\item Split columns by Analysis Reference Range Indicator, typically \code{ANRIND}. +\item Does not include a total column by default. +\item Sorted based on factor level. +} +} +\section{Functions}{ +\itemize{ +\item \code{egt03_main()}: Main TLG function + +\item \code{egt03_pre()}: Preprocessing + +\item \code{egt03_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adeg} table with a \code{"ARMCD"} column as well as columns specified in +\code{summaryvar} and \code{splitvar}. +} +} +\examples{ +run(egt03, syn_data) +} +\keyword{datasets} diff --git a/man/egt03_1.Rd b/man/egt03_1.Rd deleted file mode 100755 index bce88015e..000000000 --- a/man/egt03_1.Rd +++ /dev/null @@ -1,116 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/egt03.R -\docType{data} -\name{egt03_1_main} -\alias{egt03_1_main} -\alias{egt03_1_lyt} -\alias{egt03_1_check} -\alias{egt03_1_pre} -\alias{egt03_1_post} -\alias{egt03_1} -\title{\code{EGT03} Table 1 (Default) Shift Table of ECG Interval Data - Baseline versus Minimum Post-Baseline} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -egt03_1_main( - adam_db, - arm_var = "ARMCD", - summaryvar = list(`Baseline Reference Range Indicator` = "BNRIND"), - splitvar = list(`Analysis Reference Range Indicator` = "ANRIND"), - deco = std_deco("EGT03"), - ... -) - -egt03_1_lyt( - arm_var, - splitvar, - summaryvar, - lbl_armvar, - lbl_splitvar, - lbl_summaryvars, - deco -) - -egt03_1_check(adam_db, req_tables, visit_var, paramcd_value, visit_value) - -egt03_1_pre(adam_db, visit_var = "AVISIT", paramcd_value = "HR", ...) - -egt03_1_post(tlg, prune_0 = FALSE, ...) - -egt03_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{character}) the arm variables used for row split, typically \code{"ARMCD"}.} - -\item{summaryvar}{(\code{list}) variables to be analyzed, typically \code{"BNRIND"}. Names are used as -subtitles. For values -where no name is provided, the label attribute of the corresponding column in \code{adeg} table of \code{adam_db} is used.} - -\item{splitvar}{(\code{list}) variables to be analyzed, typically \code{"BNRIND"}. Names are used as -subtitles. For values -where no name is provided, the label attribute of the corresponding column in \code{adeg} table of \code{adam_db} is used.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{lbl_armvar}{(\code{string}) label of the \code{arm_var} variable.} - -\item{lbl_splitvar}{(\code{string}) label of the \code{splitvar} variable.} - -\item{lbl_summaryvars}{(\code{string}) label of the \code{summaryvar} variable.} - -\item{req_tables}{(\code{character}) names of the required tables.} - -\item{visit_var}{Analysis Visit variable.} - -\item{paramcd_value}{Value of PARAMCD variable.} - -\item{visit_value}{Value of visit variable.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The \code{EGT03} Table entries provide the number of patients by baseline assessment and minimum post-baseline -assessment. Percentages are based on the total number of patients in a treatment group. Baseline is the -patient's last observation prior to initiation of study drug. -} -\details{ -\itemize{ -\item ADEG data are subsetted to contain only "POST-BASELINE MINIMUM" visit -\item the number of patients by baseline assessment and minimum post-baseline assessment. -\item Percentages are based on the total number of patients in a treatment group. -\item Split columns by Analysis Reference Range Indicator, typically \code{ANRIND}. -\item Does not include a total column by default. -\item Sorted based on factor level. -} -} -\section{Functions}{ -\itemize{ -\item \code{egt03_1_main()}: Main TLG function - -\item \code{egt03_1_lyt()}: Layout - -\item \code{egt03_1_check()}: Checks - -\item \code{egt03_1_pre()}: Preprocessing - -\item \code{egt03_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adeg} table with a \code{"ARMCD"} column as well as columns specified in -\code{summaryvar} and \code{splitvar}. -} -} -\examples{ -db <- syn_data -run(egt03_1, db) -} -\keyword{datasets} diff --git a/man/egt03_2.Rd b/man/egt03_2.Rd deleted file mode 100755 index b418a5780..000000000 --- a/man/egt03_2.Rd +++ /dev/null @@ -1,107 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/egt03.R -\docType{data} -\name{egt03_2_main} -\alias{egt03_2_main} -\alias{egt03_2_lyt} -\alias{egt03_2_pre} -\alias{egt03_2_post} -\alias{egt03_2} -\title{\code{EGT03} Table 2 Shift Table of ECG Interval Data - Baseline versus Maximum Post-Baseline} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -egt03_2_main( - adam_db, - arm_var = "ARMCD", - summaryvar = list(`Baseline Reference Range Indicator` = "BNRIND"), - splitvar = list(`Analysis Reference Range Indicator` = "ANRIND"), - deco = std_deco("EGT03"), - ... -) - -egt03_2_lyt( - arm_var, - splitvar, - summaryvar, - lbl_armvar, - lbl_splitvar, - lbl_summaryvars, - deco -) - -egt03_2_pre(adam_db, visit_var = "AVISIT", paramcd_value = "HR", ...) - -egt03_2_post(tlg, prune_0 = FALSE, ...) - -egt03_2 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) the arm variables used for row split, typically \code{"ARMCD"}.} - -\item{summaryvar}{(\code{list}) variables to be analyzed, typically \code{"BNRIND"}. Names are used as -subtitles. For values -where no name is provided, the label attribute of the corresponding column in \code{adeg} table of \code{adam_db} is used.} - -\item{splitvar}{(\code{list}) variables to be analyzed, typically \code{"BNRIND"}. Names are used as -subtitles. For values -where no name is provided, the label attribute of the corresponding column in \code{adeg} table of \code{adam_db} is used.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{lbl_armvar}{(\code{string}) label of the \code{arm_var} variable.} - -\item{lbl_splitvar}{(\code{string}) label of the \code{splitvar} variable.} - -\item{lbl_summaryvars}{(\code{string}) label of the \code{summaryvar} variable.} - -\item{visit_var}{Analysis Visit variable.} - -\item{paramcd_value}{Value of PARAMCD variable.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The \code{EGT03} Table entries provide the number of patients by baseline assessment and maximum post-baseline -assessment. Percentages are based on the total number of patients in a treatment group. Baseline is the -patient's last observation prior to initiation of study drug. -} -\details{ -\itemize{ -\item ADEG data are subsetted to contain only "POST-BASELINE MAXIMUM" visit -\item the number of patients by baseline assessment and maximum post-baseline assessment. -\item Percentages are based on the total number of patients in a treatment group. -\item Split columns by Analysis Reference Range Indicator, typically \code{ANRIND}. -\item Does not include a total column by default. -\item Sorted based on factor level. -} -} -\section{Functions}{ -\itemize{ -\item \code{egt03_2_main()}: Main TLG function - -\item \code{egt03_2_lyt()}: Layout - -\item \code{egt03_2_pre()}: Preprocessing - -\item \code{egt03_2_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adeg} table with a \code{"ARMCD"} column as well as columns specified in -\code{summaryvar} and \code{splitvar}. -} -} -\examples{ -db <- syn_data -run(egt03_2, db) -} -\keyword{datasets} diff --git a/man/egt03_lyt.Rd b/man/egt03_lyt.Rd new file mode 100644 index 000000000..c074747a5 --- /dev/null +++ b/man/egt03_lyt.Rd @@ -0,0 +1,25 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/egt03.R +\name{egt03_lyt} +\alias{egt03_lyt} +\title{\code{egt03} Layout} +\usage{ +egt03_lyt(arm_var, splitvar, summaryvar, lbl_armvar, lbl_summaryvars) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{splitvar}{(\code{character}) variables to be analyzed, typically \code{"ANRIND"}. Labels of the corresponding columns are +used as subtitles.} + +\item{summaryvar}{(\code{character}) variables to be analyzed, typically \code{"BNRIND"}. Labels of the corresponding columns +are used as subtitles.} + +\item{lbl_armvar}{(\code{string}) label of the \code{arm_var} variable.} + +\item{lbl_summaryvars}{(\code{string}) label of the \code{summaryvar} variable.} +} +\description{ +\code{egt03} Layout +} +\keyword{internal} diff --git a/man/egt05_qtcat.Rd b/man/egt05_qtcat.Rd new file mode 100644 index 000000000..06577e308 --- /dev/null +++ b/man/egt05_qtcat.Rd @@ -0,0 +1,81 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/egt05_qtcat.R +\docType{data} +\name{egt05_qtcat_main} +\alias{egt05_qtcat_main} +\alias{egt05_qtcat_pre} +\alias{egt05_qtcat_post} +\alias{egt05_qtcat} +\title{\code{EGT05_QTCAT} ECG Actual Values and Changes from Baseline by Visit Table.} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +egt05_qtcat_main( + adam_db, + arm_var = "ACTARM", + summaryvars = c("AVALCAT1", "CHGCAT1"), + lbl_overall = NULL, + visitvar = "AVISIT", + ... +) + +egt05_qtcat_pre(adam_db, ...) + +egt05_qtcat_post(tlg, prune_0 = TRUE, ...) + +egt05_qtcat +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{summaryvars}{(\code{character}) variables to be analyzed. The label attribute of the corresponding column in \code{adeg} +table of \code{adam_db} is used as name.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{visitvar}{(\code{string}) typically \code{"AVISIT"} (Default) or \code{"ATPTN"}.} + +\item{...}{not used.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} +} +\description{ +The \code{EGT05_QTCAT} table summarizes several electrocardiogram parameters and their evolution +throughout the study. +} +\details{ +\itemize{ +\item The \verb{Value at Visit} column, displays the categories of the specific \code{"PARAMCD"} value for patients. +\item The \verb{Change from Baseline} column, displays the categories of the specific \code{"PARAMCD"} value +change from baseline for patients. +\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. +\item Split columns by arm, typically \code{"ACTARM"}. +\item Does not include a total column by default. +\item Sorted based on factor level; by chronological time point given by one of \code{"AVISIT"} (Default) or \code{"ATPTN"}. +Re-level to customize order. +} +} +\section{Functions}{ +\itemize{ +\item \code{egt05_qtcat_main()}: Main TLG function + +\item \code{egt05_qtcat_pre()}: Preprocessing + +\item \code{egt05_qtcat_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adeg} table with column specified in \code{visitvar}. +For \code{summaryvars}, please make sure \code{AVALCAT1} and \code{CHGCAT1} columns existed in input data sets. +} +} +\examples{ +run(egt05_qtcat, syn_data) +} +\keyword{datasets} diff --git a/man/egt05_qtcat_1.Rd b/man/egt05_qtcat_1.Rd deleted file mode 100644 index 979faf5e7..000000000 --- a/man/egt05_qtcat_1.Rd +++ /dev/null @@ -1,120 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/egt05_qtcat.R -\docType{data} -\name{egt05_qtcat_1_main} -\alias{egt05_qtcat_1_main} -\alias{egt05_qtcat_1_lyt} -\alias{egt05_qtcat_1_pre} -\alias{egt05_qtcat_1_post} -\alias{egt05_qtcat_1} -\title{\code{EGT05_QTCAT} Table 1 (Default) ECG Actual Values and Changes from Baseline by Visit Table 1.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -egt05_qtcat_1_main( - adam_db, - arm_var = "ACTARM", - summaryvars = list(`Value at Visit` = "AVALCAT1", `Change from Baseline` = "CHGCAT1"), - summaryvars_lbls = get_labels(adam_db$adeg, summaryvars), - lbl_overall = NULL, - visitvar = "AVISIT", - lbl_avisit = var_labels_for(adam_db$adeg, visitvar), - paramvar = "QT", - lbl_param = var_labels_for(adam_db$adeg, "PARAM"), - deco = std_deco("EGT05_QTCAT"), - lbl_cat = "Category", - lbl_headvisit = "Analysis Visit", - ... -) - -egt05_qtcat_1_lyt( - arm_var, - summaryvars, - summaryvars_lbls, - lbl_overall, - visitvar, - lbl_avisit, - lbl_param, - deco, - lbl_cat, - lbl_headvisit -) - -egt05_qtcat_1_pre(adam_db, ...) - -egt05_qtcat_1_post(tlg, prune_0 = TRUE, ...) - -egt05_qtcat_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{summaryvars}{(\code{character}) the variables to be analyzed. \code{AVALCAT1} and \code{CHGCAT1} by default.} - -\item{summaryvars_lbls}{(\code{character}) the label of the variables to be analyzed.} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{visitvar}{(\code{string}) typically one of \code{"AVISIT"} (Default) or \code{"ATPTN"} depending on the type of time point -to be displayed.} - -\item{lbl_avisit}{(\code{string}) label of the \code{visitvar} variable.} - -\item{paramvar}{(\code{string}) typically \code{"QT"} (Default). It should come from \code{"PARAMCD"}.} - -\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{lbl_cat}{(\code{string}) label of the Category of \code{summaryvars} variable. Default as \code{Category}.} - -\item{lbl_headvisit}{(\code{string}) label of Visits in the header. Default as \verb{Analysis Visit}.} - -\item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The \code{EGT05_QTCAT} table 1 summarizes several electrocardiogram parameters and their evolution -throughout the study. -} -\details{ -\itemize{ -\item The \verb{Value at Visit} column, displays the categories of the specific \code{"PARAMCD"} value for patients. -\item The \verb{Change from Baseline} column, displays the categories of the specific \code{"PARAMCD"} value -change from baseline for patients. -\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. -\item Split columns by arm, typically \code{"ACTARM"}. -\item Does not include a total column by default. -\item Sorted based on factor level; by chronological time point given by one of \code{"AVISIT"} (Default) or \code{"ATPTN"}. -Re-level to customize order. -} -} -\section{Functions}{ -\itemize{ -\item \code{egt05_qtcat_1_main()}: Main TLG function - -\item \code{egt05_qtcat_1_lyt()}: Layout - -\item \code{egt05_qtcat_1_pre()}: Preprocessing - -\item \code{egt05_qtcat_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adeg} table with column specified in \code{visitvar}. -For \code{summaryvars}, please make sure \code{AVALCAT1} and \code{CHGCAT1} columns existed in input data sets. -} -} -\examples{ -db <- syn_data -run(egt05_qtcat_1, db) -run(egt05_qtcat_1, db, summaryvars = list("AVALCAT1", "Change" = "CHGCAT1")) -} -\keyword{datasets} diff --git a/man/egt05_qtcat_lyt.Rd b/man/egt05_qtcat_lyt.Rd new file mode 100644 index 000000000..064a7e7cb --- /dev/null +++ b/man/egt05_qtcat_lyt.Rd @@ -0,0 +1,42 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/egt05_qtcat.R +\name{egt05_qtcat_lyt} +\alias{egt05_qtcat_lyt} +\title{\code{egt05_qtcat} Layout} +\usage{ +egt05_qtcat_lyt( + arm_var, + summaryvars, + summaryvars_lbls, + lbl_overall, + visitvar, + lbl_avisit, + lbl_param, + lbl_cat, + lbl_headvisit +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{summaryvars}{(\code{character}) the variables to be analyzed. \code{AVALCAT1} and \code{CHGCAT1} by default.} + +\item{summaryvars_lbls}{(\code{character}) the label of the variables to be analyzed.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{visitvar}{(\code{string}) typically one of \code{"AVISIT"} (Default) or \code{"ATPTN"} depending on the type of time point +to be displayed.} + +\item{lbl_avisit}{(\code{string}) label of the \code{visitvar} variable.} + +\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} + +\item{lbl_cat}{(\code{string}) label of the Category of \code{summaryvars} variable. Default as \code{Category}.} + +\item{lbl_headvisit}{(\code{string}) label of Visits in the header. Default as \verb{Analysis Visit}.} +} +\description{ +\code{egt05_qtcat} Layout +} +\keyword{internal} diff --git a/man/execute_with_args.Rd b/man/execute_with_args.Rd new file mode 100644 index 000000000..2c205d226 --- /dev/null +++ b/man/execute_with_args.Rd @@ -0,0 +1,16 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utils.R +\name{execute_with_args} +\alias{execute_with_args} +\title{Execute function with given arguments} +\usage{ +execute_with_args(fun, ...) +} +\description{ +Execute function with given arguments +} +\details{ +If the function has \code{...}, this function will not pass other arguments to \code{...}. +Only named arguments are passed. +} +\keyword{internal} diff --git a/man/ext01_1.Rd b/man/ext01.Rd similarity index 62% rename from man/ext01_1.Rd rename to man/ext01.Rd index a57d09be9..d1766d3e2 100644 --- a/man/ext01_1.Rd +++ b/man/ext01.Rd @@ -1,55 +1,56 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/ext01.R \docType{data} -\name{ext01_1_main} -\alias{ext01_1_main} -\alias{ext01_1_lyt} -\alias{ext01_1_pre} -\alias{ext01_1_post} -\alias{ext01_1} -\title{EXT01 Table 1 (Default) Exposure Summary Table.} +\name{ext01_main} +\alias{ext01_main} +\alias{ext01_pre} +\alias{ext01_post} +\alias{ext01} +\title{EXT01 Exposure Summary Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -ext01_1_main( +ext01_main( adam_db, arm_var = "ACTARM", summaryvars = "AVAL", lbl_overall = NULL, - deco = std_deco("EXT01"), ... ) -ext01_1_lyt(arm_var, summaryvars, summaryvars_lbls, lbl_overall, deco) - -ext01_1_pre( +ext01_pre( adam_db, - paramcd_order = list("TNDOSE", "DOSE", "NDOSE", "TDOSE"), + paramcd_order = c("TNDOSE", "DOSE", "NDOSE", "TDOSE"), + show_stats = "ALL", + show_bins = "ALL", ... ) -ext01_1_post(tlg, prune_0 = TRUE, ...) +ext01_post(tlg, prune_0 = TRUE, ...) -ext01_1 +ext01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{summaryvars}{\code{(string)} the name of the variable to be analyzed. By default \code{"AVAL"}.} +\item{summaryvars}{(\code{character}) variables to be analyzed. The label attribute of the corresponding column in \code{adex} +table of \code{adam_db} is used as label.} \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{summaryvars_lbls}{\code{(string)} the label associated with the analyzed variable.} - \item{paramcd_order}{(\code{character}) providing the \code{PARAMCD} values in the desired order.} +\item{show_stats}{(\code{character}) providing the name of the parameters whose statistical summary should be +presented. To analyze all, provide \code{show_stats = "ALL"} (Default), to analyze none, provide \code{show_stats = ""}.} + +\item{show_bins}{(\code{character}) providing the name of the parameters whose categorical summary should be +presented. To analyze all, provide \code{show_bins = "ALL"} (Default), to analyze none, provide \code{show_bins = ""}.} + \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -72,13 +73,11 @@ patients in the corresponding analysis population given by \code{N}. } \section{Functions}{ \itemize{ -\item \code{ext01_1_main()}: Main TLG function - -\item \code{ext01_1_lyt()}: Layout +\item \code{ext01_main()}: Main TLG function -\item \code{ext01_1_pre()}: Preprocessing +\item \code{ext01_pre()}: Preprocessing -\item \code{ext01_1_post()}: Postprocessing +\item \code{ext01_post()}: Postprocessing }} \note{ @@ -87,6 +86,7 @@ patients in the corresponding analysis population given by \code{N}. } } \examples{ -run(ext01_1, syn_data) +run(ext01, syn_data) +run(ext01, syn_data, summaryvars = c("AVAL", "AVALCAT1")) } \keyword{datasets} diff --git a/man/ext01_2.Rd b/man/ext01_2.Rd deleted file mode 100644 index fd385ca50..000000000 --- a/man/ext01_2.Rd +++ /dev/null @@ -1,97 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/ext01.R -\docType{data} -\name{ext01_2_main} -\alias{ext01_2_main} -\alias{ext01_2_lyt} -\alias{ext01_2_pre} -\alias{ext01_2_post} -\alias{ext01_2} -\title{EXT01 Table 2 (Supplementary) Exposure Summary Table with grouping options} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -ext01_2_main( - adam_db, - summaryvars = list("AVAL", "AVALCAT1"), - arm_var = "ACTARM", - lbl_overall = NULL, - deco = std_deco("EXT01"), - ... -) - -ext01_2_lyt( - arm_var, - summaryvars, - summaryvars_lbls, - lbl_overall, - deco = std_deco("EXT01") -) - -ext01_2_pre(adam_db, show_stats = c("ALL"), show_bins = c("ALL"), ...) - -ext01_2_post(tlg, prune_0 = TRUE, ...) - -ext01_2 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{summaryvars}{(\code{string}) the name of the variable to be analyzed. By default \code{"AVAL"}.} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{summaryvars_lbls}{(\code{string}) the label associated with the analyzed variable.} - -\item{show_stats}{(\code{character}) providing the name of the parameters whose statistical summary should be -presented. To analyze all, provide \code{show_stats = "ALL"} (Default), to analyze none, provide \code{show_stats = ""}.} - -\item{show_bins}{(\code{character}) providing the name of the parameters whose categorical summary should be -presented. To analyze all, provide \code{show_bins = "ALL"} (Default), to analyze none, provide \code{show_bins = ""}.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -EXT01 Table 2 (Supplementary) Exposure Summary Table with grouping options -} -\details{ -\itemize{ -\item Supplementary Exposure table with binning of desired analysis values. -\item The \code{n} row provides the number of non-missing values. The percentages for categorical variables is based on \code{n}. -The percentages for \verb{Total number of patients with at least one dose modification} are based on the number of -patients in the corresponding analysis population given by \code{N}. -\item Split columns by arm, typically \code{ACTARM}. -\item Does not include a total column by default. -\item Sorted by alphabetic order of the \code{PARAM} value. Transform to factor and re-level for custom order. -\item \code{ANL01FL} is not relevant subset -} -} -\section{Functions}{ -\itemize{ -\item \code{ext01_2_main()}: Main TLG function - -\item \code{ext01_2_lyt()}: Layout - -\item \code{ext01_2_pre()}: Preprocessing - -\item \code{ext01_2_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adex} table with columns specified in \code{summaryvars}. -} -} -\examples{ -run(ext01_2, syn_data) -} -\keyword{datasets} diff --git a/man/ext01_lyt.Rd b/man/ext01_lyt.Rd new file mode 100644 index 000000000..3fa5346d3 --- /dev/null +++ b/man/ext01_lyt.Rd @@ -0,0 +1,21 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/ext01.R +\name{ext01_lyt} +\alias{ext01_lyt} +\title{ext01 Layout} +\usage{ +ext01_lyt(arm_var, summaryvars, summaryvars_lbls, lbl_overall) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{summaryvars}{(\code{character}) the name of the variable to be analyzed. By default \code{"AVAL"}.} + +\item{summaryvars_lbls}{(\code{character}) the label associated with the analyzed variable.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} +} +\description{ +ext01 Layout +} +\keyword{internal} diff --git a/man/gen_args.Rd b/man/gen_args.Rd index 1892f5ca8..aa5adabde 100644 --- a/man/gen_args.Rd +++ b/man/gen_args.Rd @@ -24,6 +24,7 @@ gen_args( paramcd_value, key_cols, disp_cols, + split_var, ... ) } @@ -70,6 +71,8 @@ Key columns allow you to group repeat occurrences.} \item{disp_cols}{(\code{character}) names of non-key columns which should be displayed when the listing is rendered.} +\item{split_var}{(\code{character}) recursive split row variable.} + \item{...}{not used.} } \description{ diff --git a/man/get_db_data.Rd b/man/get_db_data.Rd deleted file mode 100644 index f92ade4fb..000000000 --- a/man/get_db_data.Rd +++ /dev/null @@ -1,26 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utils.R -\name{get_db_data} -\alias{get_db_data} -\title{Get Data from a DB} -\usage{ -get_db_data(db, ...) -} -\arguments{ -\item{db}{(named \code{list}) to extract elements form.} - -\item{...}{not used.} -} -\value{ -named list of data sets. -} -\description{ -Get Data from a DB -} -\examples{ -\dontrun{ -get_db_data(list(iris = iris, mtcars = mtcars, CO2 = CO2)) -get_db_data(list(iris = iris, mtcars = mtcars, CO2 = CO2), "iris") -get_db_data(list(iris = iris, mtcars = mtcars, CO2 = CO2), "iris", "CO2") -} -} diff --git a/man/get_labels.Rd b/man/get_labels.Rd deleted file mode 100644 index 20e008b74..000000000 --- a/man/get_labels.Rd +++ /dev/null @@ -1,21 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utils.R -\name{get_labels} -\alias{get_labels} -\title{Get Labels} -\usage{ -get_labels(df, x) -} -\arguments{ -\item{df}{(\code{data.frame}).} - -\item{x}{(\code{character}) the names of column in the \code{df} data frame.} -} -\value{ -the name of each element in the \code{x} vector where missing names are replaced with the value of the label -attribute for the corresponding column in the \code{df} data frame. -} -\description{ -Get Labels -} -\keyword{internal} diff --git a/man/ifneeded_split_row.Rd b/man/ifneeded_split_row.Rd index 9ba63539d..9fe5f1605 100644 --- a/man/ifneeded_split_row.Rd +++ b/man/ifneeded_split_row.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utils.R +% Please edit documentation in R/rtables_utils.R \name{ifneeded_split_row} \alias{ifneeded_split_row} \title{Helper function to add a row split if specified} diff --git a/man/kmg01.Rd b/man/kmg01.Rd new file mode 100644 index 000000000..728f4d811 --- /dev/null +++ b/man/kmg01.Rd @@ -0,0 +1,77 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/kmg01.R +\docType{data} +\name{kmg01_main} +\alias{kmg01_main} +\alias{kmg01_pre} +\alias{kmg01_post} +\alias{kmg01} +\title{\code{KMG01} Kaplan-Meier Plot 1.} +\format{ +An object of class \code{chevron_g} of length 1. +} +\usage{ +kmg01_main(adam_db, dataset = "adtte", arm_var = "ARM", ...) + +kmg01_pre(adam_db, dataset = "adtte", ...) + +kmg01_post(tlg, ...) + +kmg01 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{dataset}{(\code{string}) the name of a table in the \code{adam_db} object.} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{...}{Further arguments passed to \code{g_km} and \code{control_coxph}. For details, see +the documentation in \code{tern}. +Commonly used arguments include \code{col}, \code{pval_method}, \code{ties}, \code{conf_level}, \code{conf_type}, +\code{annot_coxph}, \code{annot_stats}, etc.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} +} +\value{ +a list of \code{ggplot} objects. +} +\description{ +\code{KMG01} Kaplan-Meier Plot 1. +} +\details{ +\itemize{ +\item No overall value. +} +} +\section{Functions}{ +\itemize{ +\item \code{kmg01_main()}: Main TLG Function + +\item \code{kmg01_pre()}: Preprocessing + +\item \code{kmg01_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain the table specified by \code{dataset} with the columns specified by \code{arm_var}. +} +} +\examples{ +library(dplyr) +library(dunlin) + +col <- c( + "A: Drug X" = "black", + "B: Placebo" = "blue", + "C: Combination" = "gray" +) + +syn_data2 <- log_filter(syn_data, PARAMCD == "OS", "adtte") +run(kmg01, syn_data2, dataset = "adtte", line_col = col) + +syn_data3 <- log_filter(syn_data, PARAMCD == "AEREPTTE", "adaette") +run(kmg01, syn_data3, dataset = "adaette") +} +\keyword{datasets} diff --git a/man/kmg01_1.Rd b/man/kmg01_1.Rd deleted file mode 100644 index 442983d1b..000000000 --- a/man/kmg01_1.Rd +++ /dev/null @@ -1,111 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/kmg01.R -\docType{data} -\name{kmg01_1_main} -\alias{kmg01_1_main} -\alias{kmg01_1_pre} -\alias{kmg01_1_post} -\alias{kmg01_1} -\title{\code{KMG01} Kaplan-Meier Plot 1.} -\format{ -An object of class \code{chevron_g} of length 1. -} -\usage{ -kmg01_1_main( - adam_db, - dataset = "adtte", - arm_var = "ARM", - x_name = "Time (Days)", - y_name = "Survival Probability", - show_statis = TRUE, - show_censor = TRUE, - pval_method = "wald", - ties = "exact", - conf_level = 0.95, - position_coxph = c(0, 0.05), - position_surv_med = c(0.9, 0.9), - line_col = as.list(nestcolor::color_palette()), - ... -) - -kmg01_1_pre(adam_db, dataset = "adtte", ...) - -kmg01_1_post(tlg, ...) - -kmg01_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{dataset}{(\code{string}) the name of a table in the \code{adam_db} object.} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{x_name}{(\code{string}) the name of the x-axis.} - -\item{y_name}{(\code{string}) the name of the x-axis.} - -\item{show_statis}{(\code{flag}) should the summary statistic table be displayed.} - -\item{show_censor}{(\code{flag}) should the censor flag be displayed.} - -\item{pval_method}{(\code{string}) should the censor flag be displayed.} - -\item{ties}{(\code{string}) should the censor flag be displayed.} - -\item{conf_level}{(\code{numeric}) the level of confidence interval, default is 0.95.} - -\item{position_coxph}{(\code{numeric}) x and y positions for plotting survival::coxph() model.} - -\item{position_surv_med}{(\code{numeric}) x and y positions for plotting annotation table estimating -median survival time per group.} - -\item{line_col}{(\code{list}) describing the colors to use for the lines or a named \code{list} -associating values of \code{arm_var} with color names.} - -\item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} -} -\value{ -a list of \code{ggplot} objects. -} -\description{ -\code{KMG01} Kaplan-Meier Plot 1. -} -\details{ -\itemize{ -\item No overall value. -} -} -\section{Functions}{ -\itemize{ -\item \code{kmg01_1_main()}: Main TLG Function - -\item \code{kmg01_1_pre()}: Preprocessing - -\item \code{kmg01_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain the table specified by \code{dataset} with the columns specified by \code{arm_var}. -} -} -\examples{ -library(dplyr) -library(dunlin) - -col <- list( - "A: Drug X" = "black", - "B: Placebo" = "blue", - "C: Combination" = "gray" -) - -syn_data2 <- log_filter(syn_data, PARAMCD == "OS", "adtte") -run(kmg01_1, syn_data2, dataset = "adtte", line_col = col) - -syn_data3 <- log_filter(syn_data, PARAMCD == "AEREPTTE", "adaette") -run(kmg01_1, syn_data3, dataset = "adaette") -} -\keyword{datasets} diff --git a/man/lbt01_1.Rd b/man/lbt01.Rd old mode 100755 new mode 100644 similarity index 78% rename from man/lbt01_1.Rd rename to man/lbt01.Rd index 8337d7d80..b724439ea --- a/man/lbt01_1.Rd +++ b/man/lbt01.Rd @@ -1,45 +1,43 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/lbt01.R \docType{data} -\name{lbt01_1_main} -\alias{lbt01_1_main} -\alias{lbt01_1_lyt} -\alias{lbt01_1_pre} -\alias{lbt01_1_post} -\alias{lbt01_1} -\title{\code{LBT01} Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit.} +\name{lbt01_main} +\alias{lbt01_main} +\alias{lbt01_lyt} +\alias{lbt01_pre} +\alias{lbt01_post} +\alias{lbt01} +\title{\code{LBT01} Laboratory Test Results and Change from Baseline by Visit Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -lbt01_1_main( +lbt01_main( adam_db, arm_var = "ACTARM", - summaryvars = list(`Value at Visit` = "AVAL", `Change from \\nBaseline` = "CHG"), + summaryvars = c("AVAL", "CHG"), visitvar = "AVISIT", precision = list(), default_precision = 2, - deco = std_deco("LBT01"), ... ) -lbt01_1_lyt( +lbt01_lyt( arm_var, summaryvars, summaryvars_lbls, visitvar, lbl_avisit, lbl_param, - deco, precision, default_precision ) -lbt01_1_pre(adam_db, ...) +lbt01_pre(adam_db, ...) -lbt01_1_post(tlg, prune_0 = TRUE, ...) +lbt01_post(tlg, prune_0 = TRUE, ...) -lbt01_1 +lbt01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -57,8 +55,6 @@ represented with one more decimal of precision.} \item{default_precision}{(\code{integer}) the default number of digits.} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} \item{summaryvars_lbls}{(\code{character}) the label of the variables to be analyzed.} @@ -90,13 +86,13 @@ by \code{AVISIT}. Re-level to customize order. } \section{Functions}{ \itemize{ -\item \code{lbt01_1_main()}: Main TLG function +\item \code{lbt01_main()}: Main TLG function -\item \code{lbt01_1_lyt()}: Layout +\item \code{lbt01_lyt()}: Layout -\item \code{lbt01_1_pre()}: Preprocessing +\item \code{lbt01_pre()}: Preprocessing -\item \code{lbt01_1_post()}: Postprocessing +\item \code{lbt01_post()}: Postprocessing }} \note{ @@ -105,9 +101,10 @@ by \code{AVISIT}. Re-level to customize order. } } \examples{ -run(lbt01_1, syn_data, precision = list( +run(lbt01, syn_data, precision = list( "ALT" = 0, "CRP" = 1 )) } \keyword{datasets} +\keyword{internal} diff --git a/man/lbt04.Rd b/man/lbt04.Rd new file mode 100644 index 000000000..27e2876b8 --- /dev/null +++ b/man/lbt04.Rd @@ -0,0 +1,61 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/lbt04.R +\docType{data} +\name{lbt04_main} +\alias{lbt04_main} +\alias{lbt04_pre} +\alias{lbt04_post} +\alias{lbt04} +\title{\code{LBT04} Laboratory Abnormalities Not Present at Baseline Table.} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +lbt04_main(adam_db, arm_var = "ACTARM", ...) + +lbt04_pre(adam_db, ...) + +lbt04_post(tlg, ...) + +lbt04 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{...}{not used.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} +} +\description{ +The \code{LBT04} table provides an +overview of laboratory abnormalities not present at baseline. +} +\details{ +\itemize{ +\item Only count LOW or HIGH values. +\item Lab test results with missing \code{ANRIND} values are excluded. +\item Split columns by arm, typically \code{ACTARM}. +\item Does not include a total column by default. +} +} +\section{Functions}{ +\itemize{ +\item \code{lbt04_main()}: Main TLG function + +\item \code{lbt04_pre()}: Preprocessing + +\item \code{lbt04_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adlb} table with columns \code{"PARCAT1"}, \code{"PARCAT2"}, \code{"PARAM"}, \code{"ANRIND"}, +and column specified by \code{arm_var}. +} +} +\examples{ +run(lbt04, syn_data) +} +\keyword{datasets} diff --git a/man/lbt04_1.Rd b/man/lbt04_1.Rd deleted file mode 100644 index edec15f4a..000000000 --- a/man/lbt04_1.Rd +++ /dev/null @@ -1,86 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/lbt04.R -\docType{data} -\name{lbt04_1_main} -\alias{lbt04_1_main} -\alias{lbt04_1_lyt} -\alias{lbt04_1_pre} -\alias{lbt04_1_check} -\alias{lbt04_1_post} -\alias{lbt04_1} -\title{\code{LBT04} Table 1 (Default) Laboratory Abnormalities Not Present at Baseline.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -lbt04_1_main( - adam_db, - arm_var = "ACTARM", - lbl_param = "Laboratory Test", - lbl_anrind = "Direction of Abnormality", - deco = std_deco("LBT04"), - ... -) - -lbt04_1_lyt(arm_var, lbl_param, lbl_anrind, deco) - -lbt04_1_pre(adam_db, req_tables = c("adsl", "adlb"), arm_var = "ACTARM", ...) - -lbt04_1_check(adam_db, req_tables = c("adsl", "adlb"), arm_var = "ACTARM") - -lbt04_1_post(tlg, ...) - -lbt04_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} - -\item{lbl_anrind}{(\code{string}) label of the \code{ANRIND} variable.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{req_tables}{(\code{character}) names of the required tables.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} -} -\description{ -The \code{LBT04} table provides an -overview of laboratory abnormalities not present at baseline. -} -\details{ -\itemize{ -\item Only count LOW or HIGH values. -\item Lab test results with missing \code{ANRIND} values are excluded. -\item Split columns by arm, typically \code{ACTARM}. -\item Does not include a total column by default. -} -} -\section{Functions}{ -\itemize{ -\item \code{lbt04_1_main()}: Main TLG function - -\item \code{lbt04_1_lyt()}: Layout - -\item \code{lbt04_1_pre()}: Preprocessing - -\item \code{lbt04_1_check()}: Checks - -\item \code{lbt04_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adlb} table with columns \code{"PARCAT1"}, \code{"PARCAT2"}, \code{"PARAM"}, \code{"ANRIND"}, -and column specified by \code{arm_var}. -} -} -\examples{ -run(lbt04_1, syn_data) -} -\keyword{datasets} diff --git a/man/lbt04_lyt.Rd b/man/lbt04_lyt.Rd new file mode 100644 index 000000000..03c2518a3 --- /dev/null +++ b/man/lbt04_lyt.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/lbt04.R +\name{lbt04_lyt} +\alias{lbt04_lyt} +\title{\code{lbt04} Layout} +\usage{ +lbt04_lyt(arm_var, var_parcat, var_param, lbl_param, var_anrind, lbl_anrind) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} + +\item{lbl_anrind}{(\code{string}) label of the \code{ANRIND} variable.} +} +\description{ +\code{lbt04} Layout +} +\keyword{internal} diff --git a/man/lbt05_1.Rd b/man/lbt05.Rd old mode 100755 new mode 100644 similarity index 53% rename from man/lbt05_1.Rd rename to man/lbt05.Rd index 4b374ae26..73b6bbb4e --- a/man/lbt05_1.Rd +++ b/man/lbt05.Rd @@ -1,37 +1,23 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/lbt05.R \docType{data} -\name{lbt05_1_main} -\alias{lbt05_1_main} -\alias{lbt05_1_lyt} -\alias{lbt05_1_pre} -\alias{lbt05_1_check} -\alias{lbt05_1_post} -\alias{lbt05_1} +\name{lbt05_main} +\alias{lbt05_main} +\alias{lbt05_pre} +\alias{lbt05_post} +\alias{lbt05} \title{\code{LBT05} Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -lbt05_1_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - lbl_param = "Laboratory Test", - lbl_anrind = "Direction of Abnormality", - deco = std_deco("LBT05"), - ... -) +lbt05_main(adam_db, arm_var = "ACTARM", lbl_overall = NULL, ...) -lbt05_1_lyt(arm_var, lbl_overall, lbl_param, lbl_anrind, map, deco) +lbt05_pre(adam_db, ...) -lbt05_1_pre(adam_db, arm_var = "ACTARM", ...) +lbt05_post(tlg, prune_0 = FALSE, ...) -lbt05_1_check(adam_db, req_tables, arm_var) - -lbt05_1_post(tlg, prune_0 = FALSE, ...) - -lbt05_1 +lbt05 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -40,18 +26,8 @@ lbt05_1 \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} - -\item{lbl_anrind}{(\code{string}) label of the \code{ANRIND} variable.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{map}{(\code{data.frame}) mapping of \code{PARAM}s to directions of abnormality.} - -\item{req_tables}{(\code{character}) names of the required tables.} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -68,15 +44,11 @@ lbt05_1 } \section{Functions}{ \itemize{ -\item \code{lbt05_1_main()}: Main TLG function - -\item \code{lbt05_1_lyt()}: Layout - -\item \code{lbt05_1_pre()}: Preprocessing +\item \code{lbt05_main()}: Main TLG function -\item \code{lbt05_1_check()}: Checks +\item \code{lbt05_pre()}: Preprocessing -\item \code{lbt05_1_post()}: Postprocessing +\item \code{lbt05_post()}: Postprocessing }} \note{ @@ -86,6 +58,6 @@ lbt05_1 } } \examples{ -run(lbt05_1, syn_data) +run(lbt05, syn_data) } \keyword{datasets} diff --git a/man/lbt05_lyt.Rd b/man/lbt05_lyt.Rd new file mode 100644 index 000000000..5203193f1 --- /dev/null +++ b/man/lbt05_lyt.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/lbt05.R +\name{lbt05_lyt} +\alias{lbt05_lyt} +\title{\code{lbt05} Layout} +\usage{ +lbt05_lyt(arm_var, lbl_overall, lbl_param, lbl_anrind, map) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} + +\item{lbl_anrind}{(\code{string}) label of the \code{ANRIND} variable.} + +\item{map}{(\code{data.frame}) mapping of \code{PARAM}s to directions of abnormality.} +} +\description{ +\code{lbt05} Layout +} +\keyword{internal} diff --git a/man/lbt07.Rd b/man/lbt07.Rd new file mode 100644 index 000000000..62737f588 --- /dev/null +++ b/man/lbt07.Rd @@ -0,0 +1,99 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/lbt07.R +\docType{data} +\name{lbt07_main} +\alias{lbt07_main} +\alias{lbt07_lyt} +\alias{lbt07_pre} +\alias{lbt07_post} +\alias{lbt07} +\title{\code{LBT07} Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit.} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +lbt07_main( + adam_db, + arm_var = "ACTARM", + lbl_overall = NULL, + param_var = "PARAM", + grad_dir_var = "GRADE_DIR", + grad_anl_var = "GRADE_ANL", + ... +) + +lbt07_lyt( + arm_var, + param_var, + grad_dir_var, + grad_anl_var, + lbl_param_var, + lbl_grad_dir_var, + lbl_overall, + map +) + +lbt07_pre(adam_db, ...) + +lbt07_post(tlg, prune_0 = TRUE, ...) + +lbt07 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} + +\item{param_var}{(\code{string}) the name of the column storing the parameters name.} + +\item{grad_dir_var}{(\code{string}) the name of the column storing the grade direction variable which is required in +order to obtain the correct denominators when building the layout as it is used to define row splitting.} + +\item{grad_anl_var}{(\code{string}) the name of the column storing toxicity grade variable where all negative values from +\code{ATOXGR} are replaced by their absolute values.} + +\item{...}{not used.} + +\item{lbl_param_var}{(\code{string}) label of the \code{param_var} variable.} + +\item{lbl_grad_dir_var}{(\code{string}) label for the \code{grad_dir_var} variable.} + +\item{map}{(\code{data.frame}) mapping of \code{PARAM}s to directions of abnormality.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} +} +\description{ +The \code{LBT07} table provides an +overview of the analysis values and its change from baseline of each respective arm over the course of the trial. +} +\details{ +\itemize{ +\item Split columns by arm, typically \code{ACTARM}. +} +} +\section{Functions}{ +\itemize{ +\item \code{lbt07_main()}: Main TLG function + +\item \code{lbt07_lyt()}: Layout + +\item \code{lbt07_pre()}: Preprocessing + +\item \code{lbt07_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adlb} table with columns \code{"USUBJID"}, \code{"ATOXGR"}, +\code{"ONTRTFL"} and column specified by \code{arm_var}. +} +} +\examples{ +run(lbt07, syn_data) +} +\keyword{datasets} +\keyword{internal} diff --git a/man/lbt07_1.Rd b/man/lbt07_1.Rd deleted file mode 100755 index 6cc2ae328..000000000 --- a/man/lbt07_1.Rd +++ /dev/null @@ -1,111 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/lbt07.R -\docType{data} -\name{lbt07_1_main} -\alias{lbt07_1_main} -\alias{lbt07_1_lyt} -\alias{lbt07_1_pre} -\alias{lbt07_1_check} -\alias{lbt07_1_post} -\alias{lbt07_1} -\title{\code{LBT07} Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -lbt07_1_main( - adam_db, - arm_var = "ACTARM", - lbl_overall = NULL, - grade_var = list("PARAM", "GRADE_DIR", "GRADE_ANL"), - deco = std_deco("LBT07"), - lbl_grade_var = list("Parameter", "Direction of Abnormality", "Toxicity Grade"), - req_tables = c("adsl", "adlb"), - ... -) - -lbt07_1_lyt( - arm_var, - lbl_overall, - lbl_gradedir, - lbl_param, - grade_var, - lbl_grade_var, - deco, - map -) - -lbt07_1_pre(adam_db, ...) - -lbt07_1_check(adam_db, req_tables = c("adsl", "adlb"), arm_var = "ACTARM") - -lbt07_1_post(tlg, prune_0 = TRUE, ...) - -lbt07_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} - -\item{grade_var}{(\code{list}) \code{PARAM} and variables derived from the standard lab grade variable \code{ATOXGR}: -\itemize{ -\item A grade direction variable (\code{GRADE_DIR}) is required in order to obtain -the correct denominators when building the layout as it is used to define row splitting. -\item A toxicity grade variable (e.g. \code{GRADE_ANL}) where all negative values from -\code{ATOXGR} are replaced by their absolute values. -}} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{lbl_grade_var}{(\code{list}) label of the variables in \code{grade_var}. If \code{NULL}, uses the label -attribute of the columns selected in \code{grade_var}.} - -\item{req_tables}{(\code{character}) names of the required tables.} - -\item{...}{not used.} - -\item{lbl_gradedir}{(\code{string}) label of the \code{GRADE_DIR} variable.} - -\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} - -\item{map}{(\code{data.frame}) mapping of \code{PARAM}s to directions of abnormality.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The \code{LBT07} table provides an -overview of the analysis values and its change from baseline of each respective arm over the course of the trial. -} -\details{ -\itemize{ -\item Split columns by arm, typically \code{ACTARM}. -} -} -\section{Functions}{ -\itemize{ -\item \code{lbt07_1_main()}: Main TLG function - -\item \code{lbt07_1_lyt()}: Layout - -\item \code{lbt07_1_pre()}: Preprocessing - -\item \code{lbt07_1_check()}: Checks - -\item \code{lbt07_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adlb} table with columns \code{"USUBJID"}, \code{"ATOXGR"}, -\code{"ONTRTFL"} and column specified by \code{arm_var}. -} -} -\examples{ -run(lbt07_1, syn_data) -} -\keyword{datasets} diff --git a/man/lbt14.Rd b/man/lbt14.Rd new file mode 100644 index 000000000..1926f3ff4 --- /dev/null +++ b/man/lbt14.Rd @@ -0,0 +1,78 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/lbt14.R +\docType{data} +\name{lbt14_main} +\alias{lbt14_main} +\alias{lbt14_lyt} +\alias{lbt14_pre} +\alias{lbt14_post} +\alias{lbt14} +\title{\code{LBT14} Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by +Baseline Grade (Low or High Direction).} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +lbt14_main(adam_db, arm_var = "ACTARM", gr_missing = "incl", ...) + +lbt14_lyt(arm_var, gr_missing) + +lbt14_pre(adam_db, gr_missing = "incl", direction = "low", ...) + +lbt14_post(tlg, prune_0 = TRUE, gr_missing = "incl", direction = "low", ...) + +lbt14 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{gr_missing}{(\code{string}) how missing baseline grades should be handled. Defaults to \code{"incl"} to include the +\code{"Missing"} +level. Other options are \code{"excl"} to exclude patients with missing baseline grades and \code{"gr_0"} to convert missing +baseline grades to grade 0.} + +\item{...}{not used.} + +\item{direction}{(\code{string}) one of \code{"high"} or \code{"low"} indicating which shift direction should be detailed.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} +} +\description{ +\code{LBT14} Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by +Baseline Grade (Low or High Direction). +} +\details{ +\itemize{ +\item Only the worst grade recorded for each patient is included in the table. +\item If no missing baseline lab results, the "Missing" level of \code{BTOXGR} is excluded. +\item Grades 0, 1, 2, 3, and 4 are counted as \code{"Not Low"} when \code{direction = "low"}. Conversely, when \code{direction = "high"}, Grades 0, -1, -2, -3, and -4 are counted as `"Not High". +\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. +\item Split columns by arm, typically \code{ACTARM}. +} +} +\section{Functions}{ +\itemize{ +\item \code{lbt14_main()}: Main TLG function + +\item \code{lbt14_lyt()}: Layout + +\item \code{lbt14_pre()}: Preprocessing + +\item \code{lbt14_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adlb} table with columns \code{"USUBJID"}, \code{"PARAM"}, \code{"BTOXGR"}, \code{"ATOXGR"}, +and the column specified by \code{arm_var}. +} +} +\examples{ +run(lbt14, syn_data) +} +\keyword{datasets} +\keyword{internal} diff --git a/man/lbt14_1.Rd b/man/lbt14_1.Rd deleted file mode 100755 index 38957a681..000000000 --- a/man/lbt14_1.Rd +++ /dev/null @@ -1,98 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/lbt14.R -\docType{data} -\name{lbt14_1_main} -\alias{lbt14_1_main} -\alias{lbt14_1_lyt} -\alias{lbt14_1_pre} -\alias{lbt14_1_check} -\alias{lbt14_1_post} -\alias{lbt14_1} -\title{\code{LBT14} Table 1 (Low Direction) Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by -Baseline Grade.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -lbt14_1_main( - adam_db, - arm_var = "ACTARM", - gr_missing = "incl", - title = "LBT14 - Low Direction", - deco = std_deco("LBT14"), - ... -) - -lbt14_1_lyt(arm_var, gr_missing, title, deco) - -lbt14_1_pre( - adam_db, - gr_missing = "incl", - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM", - ... -) - -lbt14_1_check(adam_db, req_tables = c("adsl", "adlb"), arm_var = "ACTARM") - -lbt14_1_post(tlg, prune_0 = TRUE, ...) - -lbt14_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{gr_missing}{how missing baseline grades should be handled. Defaults to \code{"incl"} to include the \code{"Missing"} -level. Other options are \code{"excl"} to exclude patients with missing baseline grades and \code{"gr_0"} to convert missing -baseline grades to grade 0.} - -\item{title}{table title to display. Defaults to \code{"LBT14 - Low Direction"}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{req_tables}{(\code{character}) names of the required tables.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -\code{LBT14} Table 1 (Low Direction) Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by -Baseline Grade. -} -\details{ -\itemize{ -\item Only the worst grade recorded for each patient is included in the table. -\item If no missing baseline lab results, the "Missing" level of \code{BTOXGR} is excluded. -\item Grades 0, 1, 2, 3, and 4 are counted as \code{"Not Low"}. -\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. -\item Split columns by arm, typically \code{ACTARM}. -} -} -\section{Functions}{ -\itemize{ -\item \code{lbt14_1_main()}: Main TLG function - -\item \code{lbt14_1_lyt()}: Layout - -\item \code{lbt14_1_pre()}: Preprocessing - -\item \code{lbt14_1_check()}: Checks - -\item \code{lbt14_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adlb} table with columns \code{"USUBJID"}, \code{"PARAM"}, \code{"BTOXGR"}, \code{"ATOXGR"}, -and the column specified by \code{arm_var}. -} -} -\examples{ -run(lbt14_1, syn_data) -} -\keyword{datasets} diff --git a/man/lbt14_2.Rd b/man/lbt14_2.Rd deleted file mode 100755 index 85b65eaed..000000000 --- a/man/lbt14_2.Rd +++ /dev/null @@ -1,98 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/lbt14.R -\docType{data} -\name{lbt14_2_main} -\alias{lbt14_2_main} -\alias{lbt14_2_lyt} -\alias{lbt14_2_pre} -\alias{lbt14_2_check} -\alias{lbt14_2_post} -\alias{lbt14_2} -\title{\code{LBT14} Table 2 (High Direction) Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by -Baseline Grade.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -lbt14_2_main( - adam_db, - arm_var = "ACTARM", - gr_missing = "incl", - title = "LBT14 - High Direction", - deco = std_deco("LBT14"), - ... -) - -lbt14_2_lyt(arm_var, gr_missing, title, deco) - -lbt14_2_pre( - adam_db, - gr_missing = "incl", - req_tables = c("adsl", "adlb"), - arm_var = "ACTARM", - ... -) - -lbt14_2_check(adam_db, req_tables = c("adsl", "adlb"), arm_var = "ACTARM") - -lbt14_2_post(tlg, prune_0 = TRUE, ...) - -lbt14_2 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{arm_var}{(\code{string}) variable used for column splitting} - -\item{gr_missing}{how missing baseline grades should be handled. Defaults to \code{"incl"} to include the \code{"Missing"} -level. Other options are \code{"excl"} to exclude patients with missing baseline grades and \code{"gr_0"} to convert missing -baseline grades to grade 0.} - -\item{title}{table title to display. Defaults to \code{"LBT14 - High Direction"}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{req_tables}{(\code{character}) names of the required tables.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -\code{LBT14} Table 2 (High Direction) Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by -Baseline Grade. -} -\details{ -\itemize{ -\item Only the worst grade recorded for each patient is included in the table. -\item If no missing baseline lab results, the "Missing" level of \code{BTOXGR} is excluded. -\item Grades 0, -1, -2, -3, and -4 are counted as \code{"Not High"}. -\item Remove zero-count rows unless overridden with \code{prune_0 = FALSE}. -\item Split columns by arm, typically \code{ACTARM}. -} -} -\section{Functions}{ -\itemize{ -\item \code{lbt14_2_main()}: Main TLG function - -\item \code{lbt14_2_lyt()}: Layout - -\item \code{lbt14_2_pre()}: Preprocessing - -\item \code{lbt14_2_check()}: Checks - -\item \code{lbt14_2_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adlb} table with columns \code{"USUBJID"}, \code{"PARAM"}, \code{"BTOXGR"}, \code{"ATOXGR"}, -and the column specified by \code{arm_var}. -} -} -\examples{ -run(lbt14_2, syn_data) -} -\keyword{datasets} diff --git a/man/lvls.Rd b/man/lvls.Rd index 639461333..8fb6a7655 100644 --- a/man/lvls.Rd +++ b/man/lvls.Rd @@ -2,13 +2,16 @@ % Please edit documentation in R/utils.R \name{lvls} \alias{lvls} -\title{\code{lvls} objective to get unique level of variables} +\title{Obtain levels from vector} \usage{ lvls(x) } \arguments{ -\item{x}{(\code{character}) or (\code{factor}) variable to get level.} +\item{x}{(\code{character}) or (\code{factor}) object to obtain levels.} } \description{ -\code{lvls} objective to get unique level of variables +Obtain levels from vector +} +\details{ +For factors, the levels will be returned. For characters, the sorted unique values will be returned. } diff --git a/man/mht01_1.Rd b/man/mht01.Rd similarity index 54% rename from man/mht01_1.Rd rename to man/mht01.Rd index 666fc73d0..7bfa489d6 100644 --- a/man/mht01_1.Rd +++ b/man/mht01.Rd @@ -1,34 +1,26 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/mht01.R \docType{data} -\name{mht01_1_main} -\alias{mht01_1_main} -\alias{mht01_1_lyt} -\alias{mht01_1_pre} -\alias{mht01_1_post} -\alias{mht01_1} -\title{\code{MHT01} Table 1 (Default) Medical History Table 1.} +\name{mht01_main} +\alias{mht01_main} +\alias{mht01_lyt} +\alias{mht01_pre} +\alias{mht01_post} +\alias{mht01} +\title{\code{MHT01} Medical History Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -mht01_1_main( - adam_db, - arm_var = "ARM", - lbl_overall = NULL, - lbl_mhbodsys = "MedDRA System Organ Class", - lbl_mhdecod = "MedDRA Preferred Term", - deco = std_deco("MHT01"), - ... -) +mht01_main(adam_db, arm_var = "ARM", lbl_overall = NULL, ...) -mht01_1_lyt(arm_var, lbl_overall, lbl_mhbodsys, lbl_mhdecod, deco) +mht01_lyt(arm_var, lbl_overall, lbl_mhbodsys, lbl_mhdecod) -mht01_1_pre(adam_db, ...) +mht01_pre(adam_db, ...) -mht01_1_post(tlg, prune_0 = TRUE, ...) +mht01_post(tlg, prune_0 = TRUE, ...) -mht01_1 +mht01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -37,15 +29,11 @@ mht01_1 \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{lbl_mhbodsys}{(\code{string}) text label for \code{MHBODSYS}. If \code{NULL}, the value of the argument defaults to the label -of the corresponding column in the \code{admh} table.} - -\item{lbl_mhdecod}{(\code{string}) text label for \code{MHDECOD}. If \code{NULL}, the value of the argument defaults to the label of -the corresponding column in the \code{admh} table.} +\item{...}{not used.} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{lbl_mhbodsys}{(\code{string}) label associated with \code{"MHBODSYS"}.} -\item{...}{not used.} +\item{lbl_mhdecod}{(\code{string}) label associated with \code{"MHDECOD"}.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} @@ -67,13 +55,13 @@ patients with the specific condition. } \section{Functions}{ \itemize{ -\item \code{mht01_1_main()}: Main TLG function +\item \code{mht01_main()}: Main TLG function -\item \code{mht01_1_lyt()}: Layout +\item \code{mht01_lyt()}: Layout -\item \code{mht01_1_pre()}: Preprocessing +\item \code{mht01_pre()}: Preprocessing -\item \code{mht01_1_post()}: Postprocessing +\item \code{mht01_post()}: Postprocessing }} \note{ @@ -82,6 +70,7 @@ patients with the specific condition. } } \examples{ -run(mht01_1, syn_data) +run(mht01, syn_data) } \keyword{datasets} +\keyword{internal} diff --git a/man/missing_rule.Rd b/man/missing_rule.Rd new file mode 100644 index 000000000..11ca16fb2 --- /dev/null +++ b/man/missing_rule.Rd @@ -0,0 +1,16 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/standard_rules.R +\docType{data} +\name{missing_rule} +\alias{missing_rule} +\title{Missing rule} +\format{ +An object of class \code{rule} (inherits from \code{character}) of length 2. +} +\usage{ +missing_rule +} +\description{ +Missing rule +} +\keyword{datasets} diff --git a/man/mng01_1.Rd b/man/mng01.Rd old mode 100755 new mode 100644 similarity index 76% rename from man/mng01_1.Rd rename to man/mng01.Rd index a0fe6a3f4..1efd89a05 --- a/man/mng01_1.Rd +++ b/man/mng01.Rd @@ -1,23 +1,23 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/mng01.R \docType{data} -\name{mng01_1_main} -\alias{mng01_1_main} -\alias{mng01_1_pre} -\alias{mng01_1_post} -\alias{mng01_1} -\title{\code{MNG01} Graph 1 (Default) Mean Plot 1.} +\name{mng01_main} +\alias{mng01_main} +\alias{mng01_pre} +\alias{mng01_post} +\alias{mng01} +\title{\code{MNG01} Mean Plot Graph.} \format{ An object of class \code{chevron_g} of length 1. } \usage{ -mng01_1_main( +mng01_main( adam_db, dataset = "adlb", x_var = "AVISIT", y_var = "AVAL", y_name = "PARAM", - y_unit = NA, + y_unit = NULL, arm_var = "ACTARM", center_fun = "mean", interval_fun = "mean_ci", @@ -27,15 +27,15 @@ mng01_1_main( show_h_grid = TRUE, show_v_grid = FALSE, legend_pos = "top", - line_col = as.list(nestcolor::color_palette()), + line_col = nestcolor::color_palette(), ... ) -mng01_1_pre(adam_db, dataset, x_var = "AVISIT", ...) +mng01_pre(adam_db, dataset, x_var = "AVISIT", ...) -mng01_1_post(tlg, ...) +mng01_post(tlg, ...) -mng01_1 +mng01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -48,7 +48,7 @@ mng01_1 \item{y_name}{(\code{string}) the variable name for \code{y}. Used for plot's subtitle.} -\item{y_unit}{(\code{string}) the name of the variable with the units of \code{y}. Used for plot's subtitle. if \code{NA}, only +\item{y_unit}{(\code{string}) the name of the variable with the units of \code{y}. Used for plot's subtitle. if \code{NULL}, only \code{y_name} is displayed as subtitle.} \item{arm_var}{(\code{string}) variable used for column splitting} @@ -69,8 +69,8 @@ mng01_1 \item{legend_pos}{(\code{string}) the position of the legend.} -\item{line_col}{(\code{list}) describing the colors to use for the lines or a named \code{list} associating values of \code{arm_var} -with color names.} +\item{line_col}{(\code{character}) describing the colors to use for the lines or a named \code{character} associating values of +\code{arm_var} with color names.} \item{...}{not used.} @@ -90,11 +90,11 @@ Overview of a summary statistics across time and arm for a selected data set. } \section{Functions}{ \itemize{ -\item \code{mng01_1_main()}: Main TLG Function +\item \code{mng01_main()}: Main TLG Function -\item \code{mng01_1_pre()}: Preprocessing +\item \code{mng01_pre()}: Preprocessing -\item \code{mng01_1_post()}: Postprocessing +\item \code{mng01_post()}: Postprocessing }} \note{ @@ -110,6 +110,6 @@ col <- c( "C: Combination" = "gray" ) -run(mng01_1, syn_data, dataset = "adlb", x_var = c("AVISIT", "AVISITN"), line_col = col) +run(mng01, syn_data, dataset = "adlb", x_var = c("AVISIT", "AVISITN"), line_col = col) } \keyword{datasets} diff --git a/man/nocoding.Rd b/man/nocoding.Rd new file mode 100644 index 000000000..952800b24 --- /dev/null +++ b/man/nocoding.Rd @@ -0,0 +1,16 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/standard_rules.R +\docType{data} +\name{nocoding} +\alias{nocoding} +\title{No Coding Available rule} +\format{ +An object of class \code{rule} (inherits from \code{character}) of length 2. +} +\usage{ +nocoding +} +\description{ +No Coding Available rule +} +\keyword{datasets} diff --git a/man/pdt01_1.Rd b/man/pdt01.Rd similarity index 76% rename from man/pdt01_1.Rd rename to man/pdt01.Rd index 9cf123cfb..da7532160 100644 --- a/man/pdt01_1.Rd +++ b/man/pdt01.Rd @@ -1,42 +1,38 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/pdt01.R \docType{data} -\name{pdt01_1_main} -\alias{pdt01_1_main} -\alias{pdt01_1_lyt} -\alias{pdt01_1_pre} -\alias{pdt01_1_post} -\alias{pdt01_1} -\title{\code{pdt01_1} Table 1 (Default) Major Protocol Deviations.} +\name{pdt01_main} +\alias{pdt01_main} +\alias{pdt01_lyt} +\alias{pdt01_pre} +\alias{pdt01_post} +\alias{pdt01} +\title{\code{pdt01} Major Protocol Deviations Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -pdt01_1_main( +pdt01_main( adam_db, arm_var = "ARM", dvcode_var = "DVDECOD", - lbl_dvcode_var = "Protocol Deviation Coded Term", dvterm_var = "DVTERM", - lbl_dvterm_var = "Category", lbl_overall = NULL, - deco = std_deco("pdt01_1"), ... ) -pdt01_1_lyt( +pdt01_lyt( arm_var, lbl_overall, dvcode_var, lbl_dvcode_var, dvterm_var, - lbl_dvterm_var, - deco + lbl_dvterm_var ) -pdt01_1_pre(adam_db, dvcode_var = "DVDECOD", dvterm_var = "DVTERM", ...) +pdt01_pre(adam_db, ...) -pdt01_1_post( +pdt01_post( tlg, prune_0 = TRUE, dvcode_var = "DVDECOD", @@ -44,7 +40,7 @@ pdt01_1_post( ... ) -pdt01_1 +pdt01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -53,18 +49,16 @@ pdt01_1 \item{dvcode_var}{(\code{string}) the variable defining the protocol deviation coded term. By default \code{DVDECOD}.} -\item{lbl_dvcode_var}{(\code{string}) label for the variable defining the protocol deviation coded term.} - \item{dvterm_var}{(\code{string}) the variable defining the protocol deviation term. By default \code{DVTERM}.} -\item{lbl_dvterm_var}{(\code{string}) label for the variable defining the protocol deviation term.} - \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} +\item{lbl_dvcode_var}{(\code{string}) label for the variable defining the protocol deviation coded term.} + +\item{lbl_dvterm_var}{(\code{string}) label for the variable defining the protocol deviation term.} + \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -87,13 +81,13 @@ the specific medication. } \section{Functions}{ \itemize{ -\item \code{pdt01_1_main()}: Main TLG function +\item \code{pdt01_main()}: Main TLG function -\item \code{pdt01_1_lyt()}: Layout +\item \code{pdt01_lyt()}: Layout -\item \code{pdt01_1_pre()}: Preprocessing +\item \code{pdt01_pre()}: Preprocessing -\item \code{pdt01_1_post()}: Postprocessing +\item \code{pdt01_post()}: Postprocessing }} \note{ @@ -109,6 +103,7 @@ proc_data <- syn_data proc_data$addv <- proc_data$addv \%>\% filter(DVCAT == "MAJOR") -run(pdt01_1, proc_data) +run(pdt01, proc_data) } \keyword{datasets} +\keyword{internal} diff --git a/man/pdt02_1.Rd b/man/pdt02.Rd old mode 100755 new mode 100644 similarity index 74% rename from man/pdt02_1.Rd rename to man/pdt02.Rd index e3731a50c..e7d79b724 --- a/man/pdt02_1.Rd +++ b/man/pdt02.Rd @@ -1,42 +1,38 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/pdt02.R \docType{data} -\name{pdt02_1_main} -\alias{pdt02_1_main} -\alias{pdt02_1_lyt} -\alias{pdt02_1_pre} -\alias{pdt02_1_post} -\alias{pdt02_1} -\title{\code{pdt02_1} Table 1 (Default) Major Protocol Deviations Related to Epidemic/Pandemic.} +\name{pdt02_main} +\alias{pdt02_main} +\alias{pdt02_lyt} +\alias{pdt02_pre} +\alias{pdt02_post} +\alias{pdt02} +\title{\code{pdt02} Major Protocol Deviations Related to Epidemic/Pandemic Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -pdt02_1_main( +pdt02_main( adam_db, arm_var = "ARM", dvreas_var = "DVREAS", - lbl_dvreas_var = "Primary Reason", dvterm_var = "DVTERM", - lbl_dvterm_var = "Description", lbl_overall = NULL, - deco = std_deco("pdt02_1"), ... ) -pdt02_1_lyt( +pdt02_lyt( arm_var, lbl_overall, dvreas_var, lbl_dvreas_var, dvterm_var, - lbl_dvterm_var, - deco + lbl_dvterm_var ) -pdt02_1_pre(adam_db, dvreas_var = "DVREAS", dvterm_var = "DVTERM", ...) +pdt02_pre(adam_db, ...) -pdt02_1_post( +pdt02_post( tlg, prune_0 = TRUE, dvreas_var = "DVREAS", @@ -44,7 +40,7 @@ pdt02_1_post( ... ) -pdt02_1 +pdt02 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -53,18 +49,16 @@ pdt02_1 \item{dvreas_var}{(\code{string}) the variable defining the reason for deviation. By default \code{DVREAS}.} -\item{lbl_dvreas_var}{(\code{string}) label for the variable defining the reason for deviation.} - \item{dvterm_var}{(\code{string}) the variable defining the protocol deviation term. By default \code{DVTERM}.} -\item{lbl_dvterm_var}{(\code{string}) label for the variable defining the protocol deviation term.} - \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} +\item{lbl_dvreas_var}{(\code{string}) label for the variable defining the reason for deviation.} + +\item{lbl_dvterm_var}{(\code{string}) label for the variable defining the protocol deviation term.} + \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} @@ -88,22 +82,22 @@ the specific deviation term. } \section{Functions}{ \itemize{ -\item \code{pdt02_1_main()}: Main TLG function +\item \code{pdt02_main()}: Main TLG function -\item \code{pdt02_1_lyt()}: Layout +\item \code{pdt02_lyt()}: Layout -\item \code{pdt02_1_pre()}: Preprocessing +\item \code{pdt02_pre()}: Preprocessing -\item \code{pdt02_1_post()}: Postprocessing +\item \code{pdt02_post()}: Postprocessing }} \note{ \itemize{ -\item \code{adam_db} object must contain an \code{addv} table with the columns specified in \code{dvreas_var} and \code{dvterm_var} as well -as \code{"DVSEQ"}. +\item \code{adam_db} object must contain an \code{addv} table with the columns specified in \code{dvreas_var} and \code{dvterm_var}. } } \examples{ -run(pdt02_1, syn_data) +run(pdt02, syn_data) } \keyword{datasets} +\keyword{internal} diff --git a/man/proportion_lyt.Rd b/man/proportion_lyt.Rd new file mode 100644 index 000000000..c0fd92bdc --- /dev/null +++ b/man/proportion_lyt.Rd @@ -0,0 +1,44 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rtables_utils.R +\name{proportion_lyt} +\alias{proportion_lyt} +\title{Proportion layout} +\usage{ +proportion_lyt( + lyt, + arm_var, + methods, + strata, + conf_level, + odds_ratio = TRUE, + rsp_var = "IS_RSP" +) +} +\arguments{ +\item{lyt}{layout created by \code{rtables}} + +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{methods}{(\code{list}) a named list, use a named list to control, for example: +methods = list(prop_conf_method = "wald", +diff_conf_method = "wald", +strat_diff_conf_method = "ha", +diff_pval_method = "fisher", +strat_diff_pval_method = "schouten") +\code{prop_conf_method} controls the methods of calculating proportion confidence interval, +\code{diff_conf_method} controls the methods of calculating unstratified difference confidence interval, +\code{strat_diff_conf_method} controls the methods of calculating stratified difference confidence interval, +\code{diff_pval_method} controls the methods of calculating unstratified p-value for odds ratio, +\code{strat_diff_pval_method} controls the methods of calculating stratified p-value for odds ratio, +see more details in \code{tern}} + +\item{strata}{(\code{string}) stratification factors, e.g. strata = c("STRATA1", "STRATA2"), by default as NULL} + +\item{conf_level}{(\code{numeric}) the level of confidence interval, default is 0.95.} + +\item{odds_ratio}{(\code{flag}) should the odds ratio be calculated, default is TRUE} +} +\description{ +Proportion layout +} +\keyword{internal} diff --git a/man/reexports.Rd b/man/reexports.Rd new file mode 100644 index 000000000..020f6b3dd --- /dev/null +++ b/man/reexports.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/reexports.R +\docType{import} +\name{reexports} +\alias{reexports} +\alias{with_label} +\alias{reformat} +\title{Objects exported from other packages} +\keyword{internal} +\description{ +These objects are imported from other packages. Follow the links +below to see their documentation. + +\describe{ + \item{dunlin}{\code{\link[dunlin]{reformat}}} + + \item{formatters}{\code{\link[formatters]{with_label}}} +}} + diff --git a/man/report_null.Rd b/man/report_null.Rd index bcfbc6ea1..96ece9dbb 100644 --- a/man/report_null.Rd +++ b/man/report_null.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utils.R +% Please edit documentation in R/rtables_utils.R \docType{data} \name{report_null} \alias{report_null} @@ -7,7 +7,7 @@ \alias{null_listing} \title{Create a Null Report} \format{ -An object of class \code{TableTree} with 1 rows and 1 columns. +An object of class \code{ElementaryTable} with 1 rows and 1 columns. An object of class \code{listing_df} (inherits from \code{tbl_df}, \code{tbl}, \code{data.frame}) with 1 rows and 1 columns. } diff --git a/man/rmpt01.Rd b/man/rmpt01.Rd new file mode 100644 index 000000000..19fc15732 --- /dev/null +++ b/man/rmpt01.Rd @@ -0,0 +1,67 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rmpt01.R +\docType{data} +\name{rmpt01_main} +\alias{rmpt01_main} +\alias{rmpt01_pre} +\alias{rmpt01_post} +\alias{rmpt01} +\title{\code{RMPT01}Duration of Exposure for Risk Management Plan Table.} +\format{ +An object of class \code{chevron_t} of length 1. +} +\usage{ +rmpt01_main(adam_db, summaryvars = c("AVALCAT1", "AVAL"), parcat = NULL, ...) + +rmpt01_pre(adam_db, parcat = NULL, ...) + +rmpt01_post(tlg, prune_0 = FALSE, ...) + +rmpt01 +} +\arguments{ +\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} + +\item{summaryvars}{(\code{character}) variables to be analyzed. The label attribute of the corresponding columns in \code{adex} +table of \code{adam_db} is used as label.} + +\item{parcat}{(\code{string}) the name of the variable initiating a new row split.} + +\item{...}{not used.} + +\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} +} +\description{ +The \code{RMPT01} table provides an overview of duration of exposure. +} +\details{ +\itemize{ +\item Person time is the sum of exposure across all patients. +\item Summary statistics are by default based on the number of patients in the corresponding \code{N} row +(number of non-missing values). +\item Does not remove zero-count rows unless overridden with \code{prune_0 = TRUE}. +} +} +\section{Functions}{ +\itemize{ +\item \code{rmpt01_main()}: Main TLG function + +\item \code{rmpt01_pre()}: Preprocessing + +\item \code{rmpt01_post()}: Postprocessing + +}} +\note{ +\itemize{ +\item \code{adam_db} object must contain an \code{adex} table with \code{"PARAMCD"} and the columns specified by \code{anl_vars} which +is denoted as \code{c("AVALCAT1", "AVAL")} by default. +} +} +\examples{ +run(rmpt01, syn_data) + +run(rmpt01, syn_data, parcat = "PARCAT2") +} +\keyword{datasets} diff --git a/man/rmpt01_1.Rd b/man/rmpt01_1.Rd deleted file mode 100644 index 94872870e..000000000 --- a/man/rmpt01_1.Rd +++ /dev/null @@ -1,92 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/rmpt01.R -\docType{data} -\name{rmpt01_1_main} -\alias{rmpt01_1_main} -\alias{rmpt01_1_lyt} -\alias{rmpt01_1_pre} -\alias{rmpt01_1_check} -\alias{rmpt01_1_post} -\alias{rmpt01_1} -\title{\code{RMPT01} Table 1 (Default) Duration of Exposure for Risk Management Plan Table 1.} -\format{ -An object of class \code{chevron_t} of length 1. -} -\usage{ -rmpt01_1_main( - adam_db, - anl_vars = c("AVALCAT1", "AVAL"), - lbl_vars = c("Patients", "Person time*"), - parcat = NULL, - lbl_parcat = "Parameter Category", - deco = std_deco("RMPT01"), - ... -) - -rmpt01_1_lyt(anl_vars, lbl_vars, parcat, lbl_parcat, deco) - -rmpt01_1_pre(adam_db, anl_vars = c("AVALCAT1", "AVAL"), parcat = NULL, ...) - -rmpt01_1_check(adam_db, anl_vars, parcat, req_tables = c("adsl", "adex")) - -rmpt01_1_post(tlg, prune_0 = FALSE, ...) - -rmpt01_1 -} -\arguments{ -\item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} - -\item{anl_vars}{(\code{character}) the names of variables to be analyzed.} - -\item{lbl_vars}{(\code{character}) the labels of the patient toll and time variables.} - -\item{parcat}{(\code{string}) the name of the variable initiating a new row split.} - -\item{lbl_parcat}{(\code{string}) the label of the variable \code{parcat}.} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} - -\item{req_tables}{(\code{character}) names of the required tables.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} -} -\description{ -The \code{RMPT01} table provides an overview of duration of exposure. -} -\details{ -\itemize{ -\item Person time is the sum of exposure across all patients. -\item Summary statistics are by default based on the number of patients in the corresponding \code{N} row -(number of non-missing values). -\item Does not remove zero-count rows unless overridden with \code{prune_0 = TRUE}. -} -} -\section{Functions}{ -\itemize{ -\item \code{rmpt01_1_main()}: Main TLG function - -\item \code{rmpt01_1_lyt()}: Layout - -\item \code{rmpt01_1_pre()}: Preprocessing - -\item \code{rmpt01_1_check()}: Checks - -\item \code{rmpt01_1_post()}: Postprocessing - -}} -\note{ -\itemize{ -\item \code{adam_db} object must contain an \code{adex} table with \code{"PARAMCD"} and the columns specified by \code{anl_vars} which -is denoted as \code{c("AVALCAT1", "AVAL")} by default. -} -} -\examples{ -run(rmpt01_1, syn_data) - -run(rmpt01_1, syn_data, parcat = "PARCAT2") -} -\keyword{datasets} diff --git a/man/rmpt01_lyt.Rd b/man/rmpt01_lyt.Rd new file mode 100644 index 000000000..c88b3e158 --- /dev/null +++ b/man/rmpt01_lyt.Rd @@ -0,0 +1,22 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rmpt01.R +\name{rmpt01_lyt} +\alias{rmpt01_lyt} +\title{\code{rmpt01} Layout} +\usage{ +rmpt01_lyt(summaryvars, lbl_summaryvars, parcat, lbl_parcat) +} +\arguments{ +\item{summaryvars}{(\code{character}) variables to be analyzed. The label attribute of the corresponding columns in \code{adex} +table of \code{adam_db} is used as label.} + +\item{lbl_summaryvars}{(\code{character}) label associated with the analyzed variables.} + +\item{parcat}{(\code{string}) the name of the variable initiating a new row split.} + +\item{lbl_parcat}{(\code{string}) the label associated with the variable initiating a new row split.} +} +\description{ +\code{rmpt01} Layout +} +\keyword{internal} diff --git a/man/rspt01_1.Rd b/man/rspt01.Rd similarity index 75% rename from man/rspt01_1.Rd rename to man/rspt01.Rd index 2b18afb8b..f23fc1d97 100644 --- a/man/rspt01_1.Rd +++ b/man/rspt01.Rd @@ -1,19 +1,18 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/rspt01.R \docType{data} -\name{rspt01_1_main} -\alias{rspt01_1_main} -\alias{rspt01_1_lyt} -\alias{rspt01_1_pre} -\alias{rspt01_1_post} -\alias{rspt01_1} -\alias{proportion_lyt} +\name{rspt01_main} +\alias{rspt01_main} +\alias{rspt01_lyt} +\alias{rspt01_pre} +\alias{rspt01_post} +\alias{rspt01} \title{\code{RSPT01} Binary Outcomes Summary} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -rspt01_1_main( +rspt01_main( adam_db, dataset = "adrs", arm_var = "ARM", @@ -23,11 +22,10 @@ rspt01_1_main( strata = NULL, conf_level = 0.95, methods = list(), - deco = std_deco("RSPT01"), ... ) -rspt01_1_lyt( +rspt01_lyt( arm_var, ref_group, odds_ratio, @@ -35,22 +33,14 @@ rspt01_1_lyt( strata, conf_level, methods, - deco + rsp_var ) -rspt01_1_pre( - adam_db, - arm_var = "ARM", - dataset = "adrs", - responder = c("CR", "PR"), - ... -) +rspt01_pre(adam_db, ...) -rspt01_1_post(tlg, prune_0 = TRUE, ...) +rspt01_post(tlg, prune_0 = TRUE, ...) -rspt01_1 - -proportion_lyt(lyt, arm_var, methods, strata, conf_level, odds_ratio = TRUE) +rspt01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} @@ -85,17 +75,11 @@ strat_diff_pval_method = "schouten") \code{strat_diff_pval_method} controls the methods of calculating stratified p-value for odds ratio, see more details in \code{tern}} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - \item{...}{not used.} -\item{responder}{(\code{string}) responder defined in the table, by default use c("CR", "PR").} - \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} \item{prune_0}{(\code{flag}) remove 0 count rows} - -\item{lyt}{layout created by \code{rtables}} } \description{ RSPT01 template may be used to summarize any binary outcome or response variable at @@ -108,27 +92,26 @@ a single time point. Typical application for oncology } \section{Functions}{ \itemize{ -\item \code{rspt01_1_main()}: Main TLG function - -\item \code{rspt01_1_lyt()}: Layout +\item \code{rspt01_main()}: Main TLG function -\item \code{rspt01_1_pre()}: Preprocessing +\item \code{rspt01_lyt()}: Layout -\item \code{rspt01_1_post()}: Postprocessing +\item \code{rspt01_pre()}: Preprocessing -\item \code{proportion_lyt()}: get proportion layout +\item \code{rspt01_post()}: Postprocessing }} \examples{ -rspt01_1_pre(syn_data) +rspt01_pre(syn_data) library(dplyr) library(dunlin) syn_data2 <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") -run(rspt01_1, syn_data2) -run(rspt01_1, syn_data2, +run(rspt01, syn_data2) +run(rspt01, syn_data2, odds_ratio = FALSE, perform_analysis = c("unstrat", "strat"), strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher") ) } \keyword{datasets} +\keyword{internal} diff --git a/man/run.Rd b/man/run.Rd index 3cfb6ed6d..d75739e53 100644 --- a/man/run.Rd +++ b/man/run.Rd @@ -5,9 +5,9 @@ \alias{run,chevron_tlg-method} \title{Run the pipeline} \usage{ -run(object, adam_db, auto_pre = TRUE, ..., check_arg = TRUE) +run(object, adam_db, auto_pre = TRUE, ...) -\S4method{run}{chevron_tlg}(object, adam_db, auto_pre = TRUE, ..., check_arg = TRUE) +\S4method{run}{chevron_tlg}(object, adam_db, auto_pre = TRUE, ...) } \arguments{ \item{object}{(\code{chevron_tlg}) input.} @@ -17,12 +17,10 @@ run(object, adam_db, auto_pre = TRUE, ..., check_arg = TRUE) \item{auto_pre}{(\code{flag}) whether to perform the default pre processing step.} \item{...}{extra arguments to pass to the pre-processing, main and post-processing functions.} - -\item{check_arg}{(\code{flag}) whether to check if all arguments are used.} } \description{ Run the pipeline } \examples{ -run(mng01_1, syn_data, auto_pre = TRUE, dataset = "adlb") +run(mng01, syn_data, auto_pre = TRUE, dataset = "adlb") } diff --git a/man/s_summary_na.Rd b/man/s_summary_na.Rd new file mode 100644 index 000000000..0b9d3f3cc --- /dev/null +++ b/man/s_summary_na.Rd @@ -0,0 +1,30 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rtables_utils.R +\name{s_summary_na} +\alias{s_summary_na} +\title{Summary factor allowing NA} +\usage{ +s_summary_na( + x, + labelstr, + denom = c("n", "N_row", "N_col"), + .N_row, + .N_col, + ... +) +} +\arguments{ +\item{x}{(\code{factor}) input.} + +\item{denom}{(\code{string}) denominator choice.} + +\item{.N_row}{(\code{integer}) number of rows in row-splitted dataset.} + +\item{.N_col}{(\code{integer}) number of rows in column-splitted dataset.} + +\item{...}{Not used} +} +\description{ +Summary factor allowing NA +} +\keyword{internal} diff --git a/man/script.Rd b/man/script.Rd index a839e62c5..f5d61e819 100644 --- a/man/script.Rd +++ b/man/script.Rd @@ -34,7 +34,7 @@ Create Script for Parameters Assignment Create Script for \code{TLG} Generation } \examples{ -script_args(aet04_1) +script_args(aet04) -script_funs(aet04_1, adam_db = "syn_data", args = "args") +script_funs(aet04, adam_db = "syn_data", args = "args") } diff --git a/man/set_decoration.Rd b/man/set_decoration.Rd deleted file mode 100644 index a12e45768..000000000 --- a/man/set_decoration.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utils.R -\name{set_decoration} -\alias{set_decoration} -\title{Temporary function to add decorator to a table} -\usage{ -set_decoration(x, deco) -} -\arguments{ -\item{x}{(\code{rtables}) object.} - -\item{deco}{(\code{list}) typically generated with \code{std_deco()}.} -} -\value{ -\code{rtables} with set title, subtitle and footnotes. If one of this attribute is NULL, the slot is empty. -} -\description{ -Temporary function to add decorator to a table -} -\keyword{internal} diff --git a/man/split_rows_by_recurive.Rd b/man/split_rows_by_recurive.Rd new file mode 100644 index 000000000..4834beb4c --- /dev/null +++ b/man/split_rows_by_recurive.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rtables_utils.R +\name{split_rows_by_recurive} +\alias{split_rows_by_recurive} +\title{Count or summarize by groups} +\usage{ +split_rows_by_recurive(lyt, split_var, ...) +} +\arguments{ +\item{lyt}{(\code{PreDataTableLayouts}) rtable layout.} + +\item{split_var}{(\code{character}) variable to split rows by.} + +\item{...}{Further arguments for \code{split_rows_by}} +} +\description{ +Count or summarize by groups +} +\keyword{internal} diff --git a/man/std_deco.Rd b/man/std_deco.Rd deleted file mode 100644 index 85cc3a1cf..000000000 --- a/man/std_deco.Rd +++ /dev/null @@ -1,16 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utils.R -\name{std_deco} -\alias{std_deco} -\title{Standard documentation lookup} -\usage{ -std_deco(id, ...) -} -\arguments{ -\item{id}{standard id of output} - -\item{...}{not used at the moment} -} -\description{ -Standard documentation lookup -} diff --git a/man/summarize_vars_allow_na.Rd b/man/summarize_vars_allow_na.Rd new file mode 100644 index 000000000..e9dc2c9b9 --- /dev/null +++ b/man/summarize_vars_allow_na.Rd @@ -0,0 +1,26 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rtables_utils.R +\name{summarize_vars_allow_na} +\alias{summarize_vars_allow_na} +\title{Summarize variables allow na} +\usage{ +summarize_vars_allow_na( + lyt, + vars, + var_labels = vars, + nested = TRUE, + ..., + show_labels = "default", + table_names = vars, + section_div = NA_character_, + .stats = c("n", "count_fraction"), + .formats = list(count_fraction = format_count_fraction_fixed_dp), + .labels = NULL, + .indent_mods = NULL, + inclNAs = TRUE +) +} +\description{ +Summarize variables allow na +} +\keyword{internal} diff --git a/man/vst01_1.Rd b/man/vst01.Rd similarity index 60% rename from man/vst01_1.Rd rename to man/vst01.Rd index 3f60d8bb8..53ead7b0a 100644 --- a/man/vst01_1.Rd +++ b/man/vst01.Rd @@ -1,61 +1,50 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/vst01.R \docType{data} -\name{vst01_1_main} -\alias{vst01_1_main} -\alias{vst01_1_lyt} -\alias{vst01_1_pre} -\alias{vst01_1_post} -\alias{vst01_1} -\title{\code{VST01} Table 1 (Default) Vital Sign Results and change from Baseline By Visit Table 1.} +\name{vst01_main} +\alias{vst01_main} +\alias{vst01_pre} +\alias{vst01_post} +\alias{vst01} +\title{\code{VST01} Vital Sign Results and change from Baseline By Visit Table.} \format{ An object of class \code{chevron_t} of length 1. } \usage{ -vst01_1_main( +vst01_main( adam_db, arm_var = "ACTARM", - summaryvars = list(`Value at Visit` = "AVAL", `Change from \\nBaseline` = "CHG"), + summaryvars = c("AVAL", "CHG"), visitvar = "AVISIT", - deco = std_deco("VST01"), + precision = list(), + default_precision = 2, ... ) -vst01_1_lyt( - arm_var, - summaryvars, - summaryvars_lbls, - visitvar, - lbl_avisit, - lbl_param, - deco -) - -vst01_1_pre(adam_db, ...) +vst01_pre(adam_db, ...) -vst01_1_post(tlg, prune_0 = TRUE, ...) +vst01_post(tlg, prune_0 = TRUE, ...) -vst01_1 +vst01 } \arguments{ \item{adam_db}{(\code{list} of \code{data.frames}) object containing the \code{ADaM} datasets} \item{arm_var}{(\code{string}) variable used for column splitting} -\item{summaryvars}{(\code{character}) the variables to be analyzed. For this table, \code{AVAL} and \code{CHG} by default.} +\item{summaryvars}{(\code{character}) variables to be analyzed. The label attribute of the corresponding column in \code{advs} +table of \code{adam_db} is used as label.} \item{visitvar}{(\code{string}) typically one of \code{"AVISIT"} (Default) or \code{"ATPTN"} depending on the type of time point -to be displayed.} +to be displayed} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} - -\item{...}{not used.} +\item{precision}{(named \code{list} of \code{integer}) where names are values found in the \code{PARAMCD} column and the the values +indicate the number of digits that should be represented for \code{min}, \code{max} and \code{median}. \code{Mean} and \code{sd} are +represented with one more decimal of precision.} -\item{summaryvars_lbls}{(\code{character}) the label of the variables to be analyzed.} +\item{default_precision}{(\code{integer}) the default number of digits.} -\item{lbl_avisit}{(\code{string}) label of the \code{visitvar} variable.} - -\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} +\item{...}{not used.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} @@ -81,13 +70,11 @@ by \code{AVISIT}. Re-level to customize order } \section{Functions}{ \itemize{ -\item \code{vst01_1_main()}: Main TLG function - -\item \code{vst01_1_lyt()}: Layout +\item \code{vst01_main()}: Main TLG function -\item \code{vst01_1_pre()}: Preprocessing +\item \code{vst01_pre()}: Preprocessing -\item \code{vst01_1_post()}: Postprocessing +\item \code{vst01_post()}: Postprocessing }} \note{ @@ -96,6 +83,6 @@ by \code{AVISIT}. Re-level to customize order } } \examples{ -run(vst01_1, syn_data) +run(vst01, syn_data) } \keyword{datasets} diff --git a/man/vst01_lyt.Rd b/man/vst01_lyt.Rd new file mode 100644 index 000000000..946dfdeea --- /dev/null +++ b/man/vst01_lyt.Rd @@ -0,0 +1,41 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/vst01.R +\name{vst01_lyt} +\alias{vst01_lyt} +\title{\code{vst01} Layout} +\usage{ +vst01_lyt( + arm_var, + summaryvars, + summaryvars_lbls, + visitvar, + lbl_avisit, + lbl_param, + precision, + default_precision +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{summaryvars}{(\code{character}) the variables to be analyzed. For this table, \code{AVAL} and \code{CHG} by default.} + +\item{summaryvars_lbls}{(\code{character}) the label of the variables to be analyzed.} + +\item{visitvar}{(\code{string}) typically one of \code{"AVISIT"} (Default) or \code{"ATPTN"} depending on the type of time point +to be displayed.} + +\item{lbl_avisit}{(\code{string}) label of the \code{visitvar} variable.} + +\item{lbl_param}{(\code{string}) label of the \code{PARAM} variable.} + +\item{precision}{(named \code{list} of \code{integer}) where names are values found in the \code{PARAMCD} column and the the values +indicate the number of digits that should be represented for \code{min}, \code{max} and \code{median}. \code{Mean} and \code{sd} are +represented with one more decimal of precision.} + +\item{default_precision}{(\code{integer}) the default number of digits.} +} +\description{ +\code{vst01} Layout +} +\keyword{internal} diff --git a/man/vst02_1.Rd b/man/vst02_1.Rd index 4d91ef707..022fd2c19 100644 --- a/man/vst02_1.Rd +++ b/man/vst02_1.Rd @@ -3,11 +3,10 @@ \docType{data} \name{vst02_1_main} \alias{vst02_1_main} -\alias{vst02_1_lyt} -\alias{vst02_1_pre} -\alias{vst02_1_post} +\alias{vst02_pre} +\alias{vst02_post} \alias{vst02_1} -\title{\code{VST02} Table 1 (Default) Vital Sign Abnormalities Table 1.} +\title{\code{VST02} Vital Sign Abnormalities Table.} \format{ An object of class \code{chevron_t} of length 1. } @@ -15,19 +14,14 @@ An object of class \code{chevron_t} of length 1. vst02_1_main( adam_db, arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", lbl_overall = NULL, - prune_0 = FALSE, - deco = std_deco("VST02"), + exclude_base_abn = FALSE, ... ) -vst02_1_lyt(arm_var, lbl_vs_assessment, lbl_vs_abnormality, lbl_overall, deco) +vst02_pre(adam_db, ...) -vst02_1_pre(adam_db, ...) - -vst02_1_post(tlg, prune_0 = FALSE, ...) +vst02_post(tlg, prune_0 = FALSE, ...) vst02_1 } @@ -36,23 +30,18 @@ vst02_1 \item{arm_var}{(\code{string}) variable used for column splitting} -\item{lbl_vs_assessment}{(\code{string}) the label of the assessment variable.} - -\item{lbl_vs_abnormality}{(\code{string}) the label of the abnormality variable.} - \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{prune_0}{(\code{flag}) remove 0 count rows} - -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{exclude_base_abn}{(\code{flag}) whether baseline abnormality should be excluded.} \item{...}{not used.} \item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} + +\item{prune_0}{(\code{flag}) remove 0 count rows} } \description{ -Assessments Outside Normal Limits Regardless of -Abnormality at Baseline Table. +Vital Sign Parameters outside Normal Limits Regardless of Abnormality at Baseline. } \details{ \itemize{ @@ -66,11 +55,9 @@ Abnormality at Baseline Table. \itemize{ \item \code{vst02_1_main()}: Main TLG function -\item \code{vst02_1_lyt()}: Layout - -\item \code{vst02_1_pre()}: Preprocessing +\item \code{vst02_pre()}: Preprocessing -\item \code{vst02_1_post()}: Postprocessing +\item \code{vst02_post()}: Postprocessing }} \note{ diff --git a/man/vst02_2.Rd b/man/vst02_2.Rd index 998cb0193..8f9ea6385 100644 --- a/man/vst02_2.Rd +++ b/man/vst02_2.Rd @@ -3,11 +3,8 @@ \docType{data} \name{vst02_2_main} \alias{vst02_2_main} -\alias{vst02_2_lyt} -\alias{vst02_2_pre} -\alias{vst02_2_post} \alias{vst02_2} -\title{\code{VST02} Table 2 (Supplementary) Vital Sign Abnormalities Table 2.} +\title{\code{VST02} Vital Sign Abnormalities Table.} \format{ An object of class \code{chevron_t} of length 1. } @@ -15,19 +12,11 @@ An object of class \code{chevron_t} of length 1. vst02_2_main( adam_db, arm_var = "ACTARM", - lbl_vs_assessment = "Assessment", - lbl_vs_abnormality = "Abnormality", lbl_overall = NULL, - deco = std_deco("VST02_2"), + exclude_base_abn = TRUE, ... ) -vst02_2_lyt(arm_var, lbl_vs_assessment, lbl_vs_abnormality, lbl_overall, deco) - -vst02_2_pre(adam_db, ...) - -vst02_2_post(tlg, prune_0 = FALSE, ...) - vst02_2 } \arguments{ @@ -35,23 +24,14 @@ vst02_2 \item{arm_var}{(\code{string}) variable used for column splitting} -\item{lbl_vs_assessment}{(\code{character}) the label of the assessment variable.} - -\item{lbl_vs_abnormality}{(\code{character}) the label of the abnormality variable.} - \item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} -\item{deco}{(\code{character}) decoration with \code{title}, \code{subtitles} and \code{main_footer} content} +\item{exclude_base_abn}{(\code{flag}) whether baseline abnormality should be excluded.} \item{...}{not used.} - -\item{tlg}{(\code{TableTree}, \code{Listing} or \code{ggplot}) object typically produced by a \code{main} function.} - -\item{prune_0}{(\code{flag}) remove 0 count rows} } \description{ -Assessments Outside Normal Limits Among Subject -Without Abnormality at Baseline. +Vital Sign Parameters outside Normal Limits Among Patients without Abnormality at Baseline. } \details{ \itemize{ @@ -65,12 +45,6 @@ Without Abnormality at Baseline. \itemize{ \item \code{vst02_2_main()}: Main TLG function -\item \code{vst02_2_lyt()}: Layout - -\item \code{vst02_2_pre()}: Preprocessing - -\item \code{vst02_2_post()}: Postprocessing - }} \note{ \itemize{ diff --git a/man/vst02_lyt.Rd b/man/vst02_lyt.Rd new file mode 100644 index 000000000..0993b2c26 --- /dev/null +++ b/man/vst02_lyt.Rd @@ -0,0 +1,30 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/vst02.R +\name{vst02_lyt} +\alias{vst02_lyt} +\title{\code{vst02_1} Layout} +\usage{ +vst02_lyt( + arm_var, + exclude_base_abn, + lbl_vs_assessment, + lbl_vs_abnormality, + lbl_overall +) +} +\arguments{ +\item{arm_var}{(\code{string}) variable used for column splitting} + +\item{exclude_base_abn}{(\code{flag}) whether to exclude subjects with baseline abnormality from numerator and +denominator.} + +\item{lbl_vs_assessment}{(\code{string}) the label of the assessment variable.} + +\item{lbl_vs_abnormality}{(\code{string}) the label of the abnormality variable.} + +\item{lbl_overall}{(\code{string}) label used for overall column, if set to \code{NULL} the overall column is omitted} +} +\description{ +\code{vst02_1} Layout +} +\keyword{internal} diff --git a/tests/testthat/_snaps/ael01_nollt.md b/tests/testthat/_snaps/ael01_nollt.md index 14c97f07f..18bc1c18e 100644 --- a/tests/testthat/_snaps/ael01_nollt.md +++ b/tests/testthat/_snaps/ael01_nollt.md @@ -1,7 +1,7 @@ # ael01_nollt works with admh dataset Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Medical History ————————————————————————————————————————————————————————————————————————————————————————— @@ -19,26 +19,25 @@ # ael01_nollt works with non-default label Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - Investigator-Specified - MedDRA System Organ Class MedDRA Preferred Term Adverse Event Term - —————————————————————————————————————————————————————————————————————————— - cl A.1 dcd A.1.1.1.1 trm A.1.1.1.1 - dcd A.1.1.1.2 trm A.1.1.1.2 - cl B.1 dcd B.1.1.1.1 trm B.1.1.1.1 - cl B.2 dcd B.2.1.2.1 trm B.2.1.2.1 - dcd B.2.2.3.1 trm B.2.2.3.1 - cl C.1 dcd C.1.1.1.3 trm C.1.1.1.3 - cl C.2 dcd C.2.1.2.1 trm C.2.1.2.1 - cl D.1 dcd D.1.1.1.1 trm D.1.1.1.1 - dcd D.1.1.4.2 trm D.1.1.4.2 - cl D.2 dcd D.2.1.5.3 trm D.2.1.5.3 + MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event + ——————————————————————————————————————————————————————————————————————————————————————— + cl A.1 dcd A.1.1.1.1 trm A.1.1.1.1 + dcd A.1.1.1.2 trm A.1.1.1.2 + cl B.1 dcd B.1.1.1.1 trm B.1.1.1.1 + cl B.2 dcd B.2.1.2.1 trm B.2.1.2.1 + dcd B.2.2.3.1 trm B.2.2.3.1 + cl C.1 dcd C.1.1.1.3 trm C.1.1.1.3 + cl C.2 dcd C.2.1.2.1 trm C.2.1.2.1 + cl D.1 dcd D.1.1.1.1 trm D.1.1.1.1 + dcd D.1.1.4.2 trm D.1.1.4.2 + cl D.2 dcd D.2.1.5.3 trm D.2.1.5.3 # ael01_nollt can handle all missing values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event ——————————————————————————————————————————————————————————————————————————————————————— @@ -47,7 +46,7 @@ # ael01_nollt can handle some missing values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event ——————————————————————————————————————————————————————————————————————————————————————— diff --git a/tests/testthat/_snaps/aet01.md b/tests/testthat/_snaps/aet01.md index b9d47f039..26c6b2613 100644 --- a/tests/testthat/_snaps/aet01.md +++ b/tests/testthat/_snaps/aet01.md @@ -1,7 +1,7 @@ # aet01 can handle all NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -26,11 +26,13 @@ --- Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) ——————————————————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one AE 122 (91.0%) 123 (91.8%) 120 (90.9%) + Total number of AEs 609 622 703 Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) Total number of patients withdrawn from study due to an AE 3 (2.2%) 6 (4.5%) 5 (3.8%) Total number of patients with at least one @@ -44,7 +46,7 @@ # aet01 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -66,10 +68,10 @@ Related AE leading to dose modification/interruption 29 (21.6%) 38 (28.4%) 38 (28.8%) Severe AE (at greatest intensity) 91 (67.9%) 90 (67.2%) 93 (70.5%) -# aet01 can use custom lbl_safety_var +# aet01 can use custom anl_vars Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -79,12 +81,12 @@ Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) Total number of patients withdrawn from study due to an AE 3 (2.2%) 6 (4.5%) 5 (3.8%) Total number of patients with at least one - Fatal AE 76 (56.7%) 70 (52.2%) 75 (56.8%) + AE with fatal outcome 76 (56.7%) 70 (52.2%) 75 (56.8%) -# aet01_2 can use custom medconcept_var +# aet01 can use custom medconcept_var Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) diff --git a/tests/testthat/_snaps/aet01_aesi.md b/tests/testthat/_snaps/aet01_aesi.md index ce15a3096..d06c3a612 100644 --- a/tests/testthat/_snaps/aet01_aesi.md +++ b/tests/testthat/_snaps/aet01_aesi.md @@ -1,7 +1,7 @@ # aet01_aesi can handle all NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100, cpp = 200)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -25,7 +25,7 @@ --- Code - res + cat(formatters::export_as_txt(res, lpp = 100, cpp = 200)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -45,7 +45,7 @@ # aet01_aesi can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100, cpp = 200)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -69,7 +69,7 @@ # aet01_aesi works with `ALL` argument Code - res + cat(formatters::export_as_txt(res, lpp = 100, cpp = 200)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) diff --git a/tests/testthat/_snaps/aet02.md b/tests/testthat/_snaps/aet02.md new file mode 100644 index 000000000..9af76f370 --- /dev/null +++ b/tests/testthat/_snaps/aet02.md @@ -0,0 +1,161 @@ +# aet02 can have different levels of row_split + + Code + cat(formatters::export_as_txt(res1, lpp = 100)) + Output + MedDRA Preferred Term A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one adverse event 122 (91.0%) 123 (91.8%) 120 (90.9%) + Overall total number of events 609 622 703 + dcd D.2.1.5.3 47 (35.1%) 58 (43.3%) 57 (43.2%) + dcd A.1.1.1.1 50 (37.3%) 45 (33.6%) 63 (47.7%) + dcd B.2.2.3.1 48 (35.8%) 54 (40.3%) 51 (38.6%) + dcd A.1.1.1.2 48 (35.8%) 48 (35.8%) 50 (37.9%) + dcd B.2.1.2.1 49 (36.6%) 44 (32.8%) 52 (39.4%) + dcd D.1.1.1.1 50 (37.3%) 42 (31.3%) 51 (38.6%) + dcd D.1.1.4.2 48 (35.8%) 42 (31.3%) 50 (37.9%) + dcd B.1.1.1.1 47 (35.1%) 49 (36.6%) 43 (32.6%) + dcd C.2.1.2.1 35 (26.1%) 48 (35.8%) 55 (41.7%) + dcd C.1.1.1.3 43 (32.1%) 46 (34.3%) 43 (32.6%) + +--- + + Code + cat(formatters::export_as_txt(res2, lpp = 100)) + Output + MedDRA System Organ Class + MedDRA Preferred Term A: Drug X B: Placebo + MedDRA Preferred Term (N=134) (N=134) + —————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one adverse event 122 (91.0%) 123 (91.8%) + Overall total number of events 609 622 + cl A.1 + Total number of patients with at least one adverse event 78 (58.2%) 75 (56.0%) + Total number of events 132 130 + dcd A.1.1.1.1 + Total number of patients with at least one adverse event 50 (37.3%) 45 (33.6%) + Total number of events 64 62 + dcd A.1.1.1.1 50 (37.3%) 45 (33.6%) + dcd A.1.1.1.2 + Total number of patients with at least one adverse event 48 (35.8%) 48 (35.8%) + Total number of events 68 68 + dcd A.1.1.1.2 48 (35.8%) 48 (35.8%) + cl B.2 + Total number of patients with at least one adverse event 79 (59.0%) 74 (55.2%) + Total number of events 129 138 + dcd B.2.2.3.1 + Total number of patients with at least one adverse event 48 (35.8%) 54 (40.3%) + Total number of events 64 76 + dcd B.2.2.3.1 48 (35.8%) 54 (40.3%) + dcd B.2.1.2.1 + Total number of patients with at least one adverse event 49 (36.6%) 44 (32.8%) + Total number of events 65 62 + dcd B.2.1.2.1 49 (36.6%) 44 (32.8%) + cl D.1 + Total number of patients with at least one adverse event 79 (59.0%) 67 (50.0%) + Total number of events 127 106 + dcd D.1.1.1.1 + Total number of patients with at least one adverse event 50 (37.3%) 42 (31.3%) + Total number of events 61 51 + dcd D.1.1.1.1 50 (37.3%) 42 (31.3%) + dcd D.1.1.4.2 + Total number of patients with at least one adverse event 48 (35.8%) 42 (31.3%) + Total number of events 66 55 + dcd D.1.1.4.2 48 (35.8%) 42 (31.3%) + cl D.2 + Total number of patients with at least one adverse event 47 (35.1%) 58 (43.3%) + Total number of events 62 72 + dcd D.2.1.5.3 + Total number of patients with at least one adverse event 47 (35.1%) 58 (43.3%) + Total number of events 62 72 + dcd D.2.1.5.3 47 (35.1%) 58 (43.3%) + cl B.1 + Total number of patients with at least one adverse event 47 (35.1%) 49 (36.6%) + Total number of events 56 60 + dcd B.1.1.1.1 + Total number of patients with at least one adverse event 47 (35.1%) 49 (36.6%) + Total number of events 56 60 + dcd B.1.1.1.1 47 (35.1%) 49 (36.6%) + cl C.2 + Total number of patients with at least one adverse event 35 (26.1%) 48 (35.8%) + Total number of events 48 53 + dcd C.2.1.2.1 + Total number of patients with at least one adverse event 35 (26.1%) 48 (35.8%) + Total number of events 48 53 + dcd C.2.1.2.1 35 (26.1%) 48 (35.8%) + cl C.1 + Total number of patients with at least one adverse event 43 (32.1%) 46 (34.3%) + Total number of events 55 63 + dcd C.1.1.1.3 + Total number of patients with at least one adverse event 43 (32.1%) 46 (34.3%) + Total number of events 55 63 + dcd C.1.1.1.3 43 (32.1%) 46 (34.3%) + \s\n MedDRA System Organ Class + MedDRA Preferred Term C: Combination + MedDRA Preferred Term (N=132) + ——————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one adverse event 120 (90.9%) + Overall total number of events 703 + cl A.1 + Total number of patients with at least one adverse event 89 (67.4%) + Total number of events 160 + dcd A.1.1.1.1 + Total number of patients with at least one adverse event 63 (47.7%) + Total number of events 88 + dcd A.1.1.1.1 63 (47.7%) + dcd A.1.1.1.2 + Total number of patients with at least one adverse event 50 (37.9%) + Total number of events 72 + dcd A.1.1.1.2 50 (37.9%) + cl B.2 + Total number of patients with at least one adverse event 85 (64.4%) + Total number of events 143 + dcd B.2.2.3.1 + Total number of patients with at least one adverse event 51 (38.6%) + Total number of events 77 + dcd B.2.2.3.1 51 (38.6%) + dcd B.2.1.2.1 + Total number of patients with at least one adverse event 52 (39.4%) + Total number of events 66 + dcd B.2.1.2.1 52 (39.4%) + cl D.1 + Total number of patients with at least one adverse event 80 (60.6%) + Total number of events 135 + dcd D.1.1.1.1 + Total number of patients with at least one adverse event 51 (38.6%) + Total number of events 71 + dcd D.1.1.1.1 51 (38.6%) + dcd D.1.1.4.2 + Total number of patients with at least one adverse event 50 (37.9%) + Total number of events 64 + dcd D.1.1.4.2 50 (37.9%) + cl D.2 + Total number of patients with at least one adverse event 57 (43.2%) + Total number of events 74 + dcd D.2.1.5.3 + Total number of patients with at least one adverse event 57 (43.2%) + Total number of events 74 + dcd D.2.1.5.3 57 (43.2%) + cl B.1 + Total number of patients with at least one adverse event 43 (32.6%) + Total number of events 62 + dcd B.1.1.1.1 + Total number of patients with at least one adverse event 43 (32.6%) + Total number of events 62 + dcd B.1.1.1.1 43 (32.6%) + cl C.2 + Total number of patients with at least one adverse event 55 (41.7%) + Total number of events 65 + dcd C.2.1.2.1 + Total number of patients with at least one adverse event 55 (41.7%) + Total number of events 65 + dcd C.2.1.2.1 55 (41.7%) + cl C.1 + Total number of patients with at least one adverse event 43 (32.6%) + Total number of events 64 + dcd C.1.1.1.3 + Total number of patients with at least one adverse event 43 (32.6%) + Total number of events 64 + dcd C.1.1.1.3 43 (32.6%) + diff --git a/tests/testthat/_snaps/aet03.md b/tests/testthat/_snaps/aet03.md index 543bacf79..74dc70369 100644 --- a/tests/testthat/_snaps/aet03.md +++ b/tests/testthat/_snaps/aet03.md @@ -1,7 +1,7 @@ # aet03 can handle NA values Code - res1 + cat(formatters::export_as_txt(res1, lpp = 100)) Output MedDRA System Organ Class A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) @@ -10,12 +10,12 @@ MILD 7 (5.2%) 9 (6.7%) 4 (3.0%) MODERATE 24 (17.9%) 24 (17.9%) 23 (17.4%) SEVERE 91 (67.9%) 90 (67.2%) 93 (70.5%) - No Coding available + No Coding Available - Any Intensity - 122 (91.0%) 123 (91.8%) 120 (90.9%) MILD 7 (5.2%) 9 (6.7%) 4 (3.0%) MODERATE 24 (17.9%) 24 (17.9%) 23 (17.4%) SEVERE 91 (67.9%) 90 (67.2%) 93 (70.5%) - No Coding available + No Coding Available - Any Intensity - 122 (91.0%) 123 (91.8%) 120 (90.9%) MILD 7 (5.2%) 9 (6.7%) 4 (3.0%) MODERATE 24 (17.9%) 24 (17.9%) 23 (17.4%) @@ -24,7 +24,7 @@ # aet03 can handle some NA values Code - res1 + cat(formatters::export_as_txt(res1, lpp = 100)) Output MedDRA System Organ Class A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) diff --git a/tests/testthat/_snaps/aet04.md b/tests/testthat/_snaps/aet04.md index bd0b624ec..5d3d57093 100644 --- a/tests/testthat/_snaps/aet04.md +++ b/tests/testthat/_snaps/aet04.md @@ -1,7 +1,7 @@ # aet04 can handle NA values Code - res1 + cat(formatters::export_as_txt(res1, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term A: Drug X B: Placebo C: Combination @@ -39,7 +39,7 @@ --- Code - res3 + cat(formatters::export_as_txt(res3, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term A: Drug X B: Placebo C: Combination @@ -77,7 +77,7 @@ # aet04 can handle some NA values Code - res1 + cat(formatters::export_as_txt(res1, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term A: Drug X B: Placebo C: Combination @@ -85,11 +85,11 @@ —————————————————————————————————————————————————————————————————————————————————————— - Any adverse events - - Any Grade - 122 (91.0%) 123 (91.8%) 120 (90.9%) - Grade 1-2 14 (10.4%) 19 (14.2%) 11 (8.3%) + Grade 1-2 13 (9.7%) 19 (14.2%) 11 (8.3%) 1 7 (5.2%) 9 (6.7%) 4 (3.0%) - 2 7 (5.2%) 10 (7.5%) 7 (5.3%) - Grade 3-4 32 (23.9%) 34 (25.4%) 34 (25.8%) - 3 17 (12.7%) 14 (10.4%) 16 (12.1%) + 2 6 (4.5%) 10 (7.5%) 7 (5.3%) + Grade 3-4 33 (24.6%) 34 (25.4%) 34 (25.8%) + 3 18 (13.4%) 14 (10.4%) 16 (12.1%) 4 15 (11.2%) 20 (14.9%) 18 (13.6%) Grade 5 76 (56.7%) 70 (52.2%) 75 (56.8%) cl A.1 @@ -168,11 +168,20 @@ - Any Grade - 43 (32.1%) 46 (34.3%) 43 (32.6%) Grade 3-4 43 (32.1%) 46 (34.3%) 43 (32.6%) 4 43 (32.1%) 46 (34.3%) 43 (32.6%) + No Coding Available + - Overall - + - Any Grade - 1 (0.7%) 0 0 + Grade 3-4 1 (0.7%) 0 0 + 3 1 (0.7%) 0 0 + No Coding Available + - Any Grade - 1 (0.7%) 0 0 + Grade 3-4 1 (0.7%) 0 0 + 3 1 (0.7%) 0 0 --- Code - res3 + cat(formatters::export_as_txt(res3, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term A: Drug X B: Placebo C: Combination @@ -180,11 +189,11 @@ —————————————————————————————————————————————————————————————————————————————————————— - Any adverse events - - Any Grade - 122 (91.0%) 123 (91.8%) 120 (90.9%) - Grade 1-2 14 (10.4%) 19 (14.2%) 11 (8.3%) + Grade 1-2 13 (9.7%) 19 (14.2%) 11 (8.3%) 1 7 (5.2%) 9 (6.7%) 4 (3.0%) - 2 7 (5.2%) 10 (7.5%) 7 (5.3%) - Grade 3-5 108 (80.6%) 104 (77.6%) 109 (82.6%) - 3 17 (12.7%) 14 (10.4%) 16 (12.1%) + 2 6 (4.5%) 10 (7.5%) 7 (5.3%) + Grade 3-5 109 (81.3%) 104 (77.6%) 109 (82.6%) + 3 18 (13.4%) 14 (10.4%) 16 (12.1%) 4 15 (11.2%) 20 (14.9%) 18 (13.6%) 5 76 (56.7%) 70 (52.2%) 75 (56.8%) cl A.1 @@ -266,4 +275,18 @@ - Any Grade - 43 (32.1%) 46 (34.3%) 43 (32.6%) Grade 3-5 43 (32.1%) 46 (34.3%) 43 (32.6%) 4 43 (32.1%) 46 (34.3%) 43 (32.6%) + No Coding Available + - Overall - + - Any Grade - 1 (0.7%) 0 0 + Grade 3-5 1 (0.7%) 0 0 + 3 1 (0.7%) 0 0 + \s\n MedDRA System Organ Class + MedDRA Preferred Term A: Drug X B: Placebo C: Combination + Grade (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————— + No Coding Available + No Coding Available + - Any Grade - 1 (0.7%) 0 0 + Grade 3-5 1 (0.7%) 0 0 + 3 1 (0.7%) 0 0 diff --git a/tests/testthat/_snaps/aet10.md b/tests/testthat/_snaps/aet10.md index a32ca8cce..205bfa680 100644 --- a/tests/testthat/_snaps/aet10.md +++ b/tests/testthat/_snaps/aet10.md @@ -1,17 +1,17 @@ -# aet10_1 can handle NA values +# aet10 can handle NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) —————————————————————————————————————————————————————————————————— No Coding Available 122 (91.0%) 123 (91.8%) 120 (90.9%) -# aet10_1 can handle some NA values +# aet10 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) diff --git a/tests/testthat/_snaps/chevron_tlg-methods.md b/tests/testthat/_snaps/chevron_tlg-methods.md index b4114673d..2f30f1a44 100644 --- a/tests/testthat/_snaps/chevron_tlg-methods.md +++ b/tests/testthat/_snaps/chevron_tlg-methods.md @@ -1,7 +1,7 @@ # run works as expected for chevron_t object Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term A: Drug X B: Placebo C: Combination @@ -96,7 +96,7 @@ # run works as expected for chevron_t object when auto_pre = FALSE Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) @@ -106,7 +106,7 @@ Mean (SD) 33.8 (6.6) 35.4 (7.9) 35.4 (7.7) 34.9 (7.4) Median 33.0 35.0 35.0 34.0 Min - Max 21.0 - 50.0 21.0 - 62.0 20.0 - 69.0 20.0 - 69.0 - Age group (yr) + Age Group n 134 134 132 400 <65 134 (100%) 134 (100%) 131 (99.2%) 399 (99.8%) >=65 0 0 1 (0.8%) 1 (0.2%) @@ -120,7 +120,7 @@ HISPANIC OR LATINO 15 (11.2%) 18 (13.4%) 15 (11.4%) 48 (12.0%) NOT HISPANIC OR LATINO 104 (77.6%) 103 (76.9%) 101 (76.5%) 308 (77.0%) UNKNOWN 9 (6.7%) 3 (2.2%) 5 (3.8%) 17 (4.2%) - Race + RACE n 134 134 132 400 AMERICAN INDIAN OR ALASKA NATIVE 8 (6.0%) 11 (8.2%) 6 (4.5%) 25 (6.2%) ASIAN 68 (50.7%) 68 (50.7%) 73 (55.3%) 209 (52.2%) @@ -132,30 +132,19 @@ Code res Output - [1] "# Edit Preprocessing Function." - [2] "pre_fun <- function(adam_db, ...) {" - [3] " assert_all_tablenames(adam_db, c(\"adsl\", \"adae\"))" - [4] "" - [5] " new_format <- list(" - [6] " adae = list(" - [7] " AEBODSYS = rule(\"No Coding Available\" = c(\"\", NA, \"\"))," - [8] " AEDECOD = rule(\"No Coding Available\" = c(\"\", NA, \"\"))," - [9] " ATOXGR = rule(\"No Grading Available\" = c(\"\", NA, \"\"))" - [10] " )" - [11] " )" - [12] "" - [13] " adam_db <- dunlin::reformat(adam_db, new_format, na_last = TRUE)" - [14] "" - [15] " adam_db$adae <- adam_db$adae %>%" - [16] " filter(.data$ANL01FL == \"Y\") %>%" - [17] " filter(.data$ATOXGR != \"No Grading Available\") %>%" - [18] " mutate(ATOXGR = factor(.data$ATOXGR," - [19] " levels = setdiff(levels(.data$ATOXGR), \"No Grading Available\")" - [20] " ))" - [21] "" - [22] " adam_db" - [23] "}" - [24] "" - [25] "# Create TLG" - [26] "tlg_output <- rlang::exec(.fn = pre_fun, adam_db = data, !!!args_ls) %>% \nrlang::exec(.fn = run, object = aet04_1, !!!args_ls, auto_pre = FALSE, check_arg = FALSE)" + [1] "# Edit Preprocessing Function." + [2] "pre_fun <- function(adam_db, ...) {" + [3] " atoxgr_lvls <- c(\"1\", \"2\", \"3\", \"4\", \"5\")" + [4] " adam_db$adae <- adam_db$adae %>%" + [5] " filter(.data$ANL01FL == \"Y\") %>%" + [6] " mutate(" + [7] " AEBODSYS = reformat(.data$AEBODSYS, nocoding)," + [8] " AEDECOD = reformat(.data$AEDECOD, nocoding)," + [9] " ATOXGR = factor(.data$ATOXGR, levels = atoxgr_lvls)" + [10] " )" + [11] " adam_db" + [12] "}" + [13] "" + [14] "# Create TLG" + [15] "tlg_output <- rlang::exec(.fn = pre_fun, adam_db = data, !!!args_ls) %>% \nrlang::exec(.fn = run, object = aet04, !!!args_ls, auto_pre = FALSE)" diff --git a/tests/testthat/_snaps/cmt01a.md b/tests/testthat/_snaps/cmt01a.md index fe0f625dd..b3dc022d3 100644 --- a/tests/testthat/_snaps/cmt01a.md +++ b/tests/testthat/_snaps/cmt01a.md @@ -1,24 +1,24 @@ # cmt01a can handle all NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination + ATC Level 2 Text A: Drug X B: Placebo C: Combination Other Treatment (N=134) (N=134) (N=132) ——————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) Total number of treatments 609 622 703 - No Coding available + No Coding Available Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) Total number of treatments 609 622 703 - No Coding available 122 (91.0%) 123 (91.8%) 120 (90.9%) + No Coding Available 122 (91.0%) 123 (91.8%) 120 (90.9%) # cmt01a can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination + ATC Level 2 Text A: Drug X B: Placebo C: Combination Other Treatment (N=134) (N=134) (N=132) ——————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) @@ -64,140 +64,8 @@ Total number of patients with at least one treatment 52 (38.8%) 58 (43.3%) 60 (45.5%) Total number of treatments 69 73 80 medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - No Coding available + No Coding Available Total number of patients with at least one treatment 1 (0.7%) 0 0 Total number of treatments 2 0 0 - No Coding available 1 (0.7%) 0 0 - -# cmt01a_2 can handle all NA values - - Code - res - Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination - Other Treatment (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 609 622 703 - No Coding available - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 609 622 703 - No Coding available 122 (91.0%) 123 (91.8%) 120 (90.9%) - -# cmt01a_2 can handle some NA values - - Code - res - Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination - Other Treatment (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 609 622 703 - ATCCLAS2 B - Total number of patients with at least one treatment 101 (75.4%) 101 (75.4%) 108 (81.8%) - Total number of treatments 263 275 306 - medname B_1/4 51 (38.1%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) - medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) - ATCCLAS2 A - Total number of patients with at least one treatment 97 (72.4%) 98 (73.1%) 102 (77.3%) - Total number of treatments 205 207 242 - medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) - medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - ATCCLAS2 B p2 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - Total number of treatments 139 155 159 - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 B p3 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - Total number of treatments 139 155 159 - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 C - Total number of patients with at least one treatment 81 (60.4%) 84 (62.7%) 89 (67.4%) - Total number of treatments 139 140 155 - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 50 (37.3%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p2 - Total number of patients with at least one treatment 82 (61.2%) 84 (62.7%) 89 (67.4%) - Total number of treatments 140 140 155 - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p3 - Total number of patients with at least one treatment 52 (38.8%) 58 (43.3%) 60 (45.5%) - Total number of treatments 69 73 80 - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - ATCCLAS2 A p2 - Total number of patients with at least one treatment 45 (33.6%) 54 (40.3%) 48 (36.4%) - Total number of treatments 58 66 64 - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - No Coding available - Total number of patients with at least one treatment 1 (0.7%) 0 0 - Total number of treatments 2 0 0 - No Coding available 1 (0.7%) 0 0 - -# cmt01a_3 can handle all NA values - - Code - res - Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination - Other Treatment (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 609 622 703 - No Coding available - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - No Coding available 122 (91.0%) 123 (91.8%) 120 (90.9%) - -# cmt01a_3 can handle some NA values - - Code - res - Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination - Other Treatment (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 609 622 703 - ATCCLAS2 A - Total number of patients with at least one treatment 97 (72.4%) 98 (73.1%) 102 (77.3%) - medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) - medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - ATCCLAS2 A p2 - Total number of patients with at least one treatment 45 (33.6%) 54 (40.3%) 48 (36.4%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - ATCCLAS2 B - Total number of patients with at least one treatment 101 (75.4%) 101 (75.4%) 108 (81.8%) - medname B_1/4 51 (38.1%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) - medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) - ATCCLAS2 B p2 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 B p3 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 C - Total number of patients with at least one treatment 81 (60.4%) 84 (62.7%) 89 (67.4%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 50 (37.3%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p2 - Total number of patients with at least one treatment 82 (61.2%) 84 (62.7%) 89 (67.4%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p3 - Total number of patients with at least one treatment 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - No Coding available - Total number of patients with at least one treatment 1 (0.7%) 0 0 - No Coding available 1 (0.7%) 0 0 + No Coding Available 1 (0.7%) 0 0 diff --git a/tests/testthat/_snaps/cmt02_pt.md b/tests/testthat/_snaps/cmt02_pt.md index 74273f172..80fed0788 100644 --- a/tests/testthat/_snaps/cmt02_pt.md +++ b/tests/testthat/_snaps/cmt02_pt.md @@ -1,33 +1,33 @@ -# cmt02_pt_1 can handle all NA values +# cmt02_pt can handle all NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Other Treatment A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) ————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 122 123 120 - No Coding available 122 (91.0%) 123 (91.8%) 120 (90.9%) + Total number of treatments 609 622 703 + No Coding Available 122 (91.0%) 123 (91.8%) 120 (90.9%) -# cmt02_pt_1 can handle some NA values +# cmt02_pt can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Other Treatment A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) ————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 610 622 703 - medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) - No Coding available 1 (0.7%) 0 0 + Total number of treatments 609 622 703 + medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) + medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) + medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) + medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) + medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) + medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) + medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) + medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) + medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) + No Coding Available 1 (0.7%) 0 0 diff --git a/tests/testthat/_snaps/coxt02.md b/tests/testthat/_snaps/coxt02.md index 97dc1f1be..eeb118c8d 100644 --- a/tests/testthat/_snaps/coxt02.md +++ b/tests/testthat/_snaps/coxt02.md @@ -1,76 +1,76 @@ # coxt02 can handle some NA values Code - res1 + cat(formatters::export_as_txt(res1, lpp = 100)) Output Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value ————————————————————————————————————————————————————————————————————————————————————————————— Treatment: Description of Planned Arm (reference = A: Drug X) <0.0001 - B: Placebo 1.52 (1.08, 2.13) 0.0161 - C: Combination 2.61 (1.87, 3.64) <0.0001 + B: Placebo 1.43 (1.05, 1.94) 0.0249 + C: Combination 2.43 (1.79, 3.29) <0.0001 Covariate: - SEX (reference = F) - M 0.97 (0.74, 1.28) 0.8379 - RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.9140 - ASIAN 0.85 (0.47, 1.55) 0.6039 - BLACK OR AFRICAN AMERICAN 0.87 (0.47, 1.62) 0.6607 - WHITE 0.95 (0.51, 1.77) 0.8665 + Sex (reference = F) + M 1.00 (0.78, 1.29) 0.9824 + RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.9404 + ASIAN 0.85 (0.49, 1.46) 0.5544 + BLACK OR AFRICAN AMERICAN 0.86 (0.48, 1.53) 0.6029 + WHITE 0.89 (0.50, 1.59) 0.6997 Age (yr) - All 0.99 (0.97, 1.01) 0.1955 + All 0.99 (0.97, 1.01) 0.2501 --- Code - res2 + cat(formatters::export_as_txt(res2, lpp = 100)) Output Effect/Covariate Included in the Model Hazard Ratio 90% CI p-value ————————————————————————————————————————————————————————————————————————————————————————————— Treatment: Description of Planned Arm (reference = A: Drug X) <0.0001 - B: Placebo 1.52 (1.14, 2.01) 0.0161 - C: Combination 2.61 (1.98, 3.45) <0.0001 + B: Placebo 1.43 (1.10, 1.85) 0.0249 + C: Combination 2.43 (1.88, 3.14) <0.0001 Covariate: - SEX (reference = F) - M 0.97 (0.77, 1.22) 0.8379 - RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.9140 - ASIAN 0.85 (0.52, 1.41) 0.6039 - BLACK OR AFRICAN AMERICAN 0.87 (0.52, 1.47) 0.6607 - WHITE 0.95 (0.56, 1.60) 0.8665 + Sex (reference = F) + M 1.00 (0.81, 1.23) 0.9824 + RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.9404 + ASIAN 0.85 (0.54, 1.34) 0.5544 + BLACK OR AFRICAN AMERICAN 0.86 (0.53, 1.39) 0.6029 + WHITE 0.89 (0.55, 1.45) 0.6997 Age (yr) - All 0.99 (0.97, 1.00) 0.1955 + All 0.99 (0.98, 1.00) 0.2501 --- Code - res3 + cat(formatters::export_as_txt(res3, lpp = 100)) Output Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value ———————————————————————————————————————————————————————————————————————————————————————————— Treatment: Description of Planned Arm (reference = A: Drug X) <0.0001 - B: Placebo 1.56 (1.12, 2.17) 0.0080 - C: Combination 2.58 (1.86, 3.58) <0.0001 + B: Placebo 1.44 (1.06, 1.96) 0.0195 + C: Combination 2.42 (1.79, 3.28) <0.0001 Covariate: - SEX (reference = F) - M 0.98 (0.75, 1.27) 0.8712 + Sex (reference = F) + M 1.00 (0.79, 1.29) 0.9721 Age (yr) - All 0.99 (0.97, 1.01) 0.1969 + All 0.99 (0.97, 1.01) 0.2216 --- Code - res4 + cat(formatters::export_as_txt(res4, lpp = 100)) Output Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value ———————————————————————————————————————————————————————————————————————————————————————————— Treatment: Description of Planned Arm (reference = A: Drug X) <0.0001 - B: Placebo 1.52 (1.08, 2.13) 0.0163 - C: Combination 2.64 (1.89, 3.69) <0.0001 + B: Placebo 1.43 (1.04, 1.95) 0.0254 + C: Combination 2.45 (1.80, 3.32) <0.0001 Covariate: - SEX (reference = F) - M 1.00 (0.76, 1.33) 0.9933 + Sex (reference = F) + M 1.00 (0.78, 1.29) 0.9899 Age (yr) - All 0.99 (0.97, 1.01) 0.1919 + All 0.99 (0.97, 1.01) 0.1973 diff --git a/tests/testthat/_snaps/default_tlg.md b/tests/testthat/_snaps/default_tlg.md index 1b418c520..92da0cc70 100644 --- a/tests/testthat/_snaps/default_tlg.md +++ b/tests/testthat/_snaps/default_tlg.md @@ -1,32 +1,25 @@ -# aet01_1 function with default argument value return expected result with test data +# ael01_nollt function with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - A: Drug X B: Placebo C: Combination - (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one AE 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of AEs 609 622 703 - Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) - Total number of patients withdrawn from study due to an AE 3 (2.2%) 6 (4.5%) 5 (3.8%) - Total number of patients with at least one - AE with fatal outcome 76 (56.7%) 70 (52.2%) 75 (56.8%) - Serious AE 104 (77.6%) 101 (75.4%) 99 (75.0%) - Serious AE leading to withdrawal from treatment 9 (6.7%) 6 (4.5%) 11 (8.3%) - Serious AE leading to dose modification/interruption 22 (16.4%) 26 (19.4%) 29 (22.0%) - Related Serious AE 76 (56.7%) 70 (52.2%) 75 (56.8%) - AE leading to withdrawal from treatment 27 (20.1%) 26 (19.4%) 30 (22.7%) - AE leading to dose modification/interruption 66 (49.3%) 76 (56.7%) 74 (56.1%) - Related AE 105 (78.4%) 108 (80.6%) 109 (82.6%) - Related AE leading to withdrawal from treatment 6 (4.5%) 12 (9.0%) 8 (6.1%) - Related AE leading to dose modification/interruption 29 (21.6%) 38 (28.4%) 38 (28.8%) - Severe AE (at greatest intensity) 91 (67.9%) 90 (67.2%) 93 (70.5%) + MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event + ——————————————————————————————————————————————————————————————————————————————————————— + cl A.1 dcd A.1.1.1.1 trm A.1.1.1.1 + dcd A.1.1.1.2 trm A.1.1.1.2 + cl B.1 dcd B.1.1.1.1 trm B.1.1.1.1 + cl B.2 dcd B.2.1.2.1 trm B.2.1.2.1 + dcd B.2.2.3.1 trm B.2.2.3.1 + cl C.1 dcd C.1.1.1.3 trm C.1.1.1.3 + cl C.2 dcd C.2.1.2.1 trm C.2.1.2.1 + cl D.1 dcd D.1.1.1.1 trm D.1.1.1.1 + dcd D.1.1.4.2 trm D.1.1.4.2 + cl D.2 dcd D.2.1.5.3 trm D.2.1.5.3 -# aet01_2 functions with default argument value return expected result with test data +# aet01 function with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -47,57 +40,71 @@ Related AE leading to withdrawal from treatment 6 (4.5%) 12 (9.0%) 8 (6.1%) Related AE leading to dose modification/interruption 29 (21.6%) 38 (28.4%) 38 (28.8%) Severe AE (at greatest intensity) 91 (67.9%) 90 (67.2%) 93 (70.5%) - Total number of patients with at least one - SMQ 01 Reference Name 72 (53.7%) 79 (59.0%) 75 (56.8%) - SMQ 02 Scope 0 0 0 - CQ 01 Reference Name 74 (55.2%) 80 (59.7%) 87 (65.9%) -# aet01_aesi_1 function with default argument value return expected result with test data +# aet01_aesi function with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - A: Drug X B: Placebo C: Combination - (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one AE 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of AEs 609 622 703 - Total number of patients with at least one AE by worst grade - Grade 1 7 (5.2%) 9 (6.7%) 4 (3.0%) - Grade 2 6 (4.5%) 10 (7.5%) 7 (5.3%) - Grade 3 18 (13.4%) 14 (10.4%) 16 (12.1%) - Grade 4 15 (11.2%) 20 (14.9%) 18 (13.6%) - Grade 5 (fatal outcome) 76 (56.7%) 70 (52.2%) 75 (56.8%) - Total number of patients with study drug withdrawn due to AE 27 (20.1%) 26 (19.4%) 30 (22.7%) - Total number of patients with dose modified/interrupted due to AE 66 (49.3%) 76 (56.7%) 74 (56.1%) - Total number of patients with treatment received for AE 98 (73.1%) 102 (76.1%) 103 (78.0%) - Total number of patients with all non-fatal AEs resolved 84 (62.7%) 92 (68.7%) 97 (73.5%) - Total number of patients with at least one unresolved or ongoing non-fatal AE 102 (76.1%) 110 (82.1%) 107 (81.1%) - Total number of patients with at least one serious AE 104 (77.6%) 101 (75.4%) 99 (75.0%) - Total number of patients with at least one related AE 105 (78.4%) 108 (80.6%) 109 (82.6%) - -# ael01_nollt_1 function with default argument value return expected result with test data - - Code - res - Output - MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event - ——————————————————————————————————————————————————————————————————————————————————————— - cl A.1 dcd A.1.1.1.1 trm A.1.1.1.1 - dcd A.1.1.1.2 trm A.1.1.1.2 - cl B.1 dcd B.1.1.1.1 trm B.1.1.1.1 - cl B.2 dcd B.2.1.2.1 trm B.2.1.2.1 - dcd B.2.2.3.1 trm B.2.2.3.1 - cl C.1 dcd C.1.1.1.3 trm C.1.1.1.3 - cl C.2 dcd C.2.1.2.1 trm C.2.1.2.1 - cl D.1 dcd D.1.1.1.1 trm D.1.1.1.1 - dcd D.1.1.4.2 trm D.1.1.4.2 - cl D.2 dcd D.2.1.5.3 trm D.2.1.5.3 - -# aet02_1 functions with default argument value return expected result with test data - - Code - res + A: Drug X + (N=134) + ——————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one AE 122 (91.0%) + Total number of AEs 609 + Total number of patients with at least one AE by worst grade + Grade 1 7 (5.2%) + Grade 2 6 (4.5%) + Grade 3 18 (13.4%) + Grade 4 15 (11.2%) + Grade 5 (fatal outcome) 76 (56.7%) + Total number of patients with study drug withdrawn due to AE 27 (20.1%) + Total number of patients with dose modified/interrupted due to AE 66 (49.3%) + Total number of patients with treatment received for AE 98 (73.1%) + Total number of patients with all non-fatal AEs resolved 84 (62.7%) + Total number of patients with at least one unresolved or ongoing non-fatal AE 102 (76.1%) + Total number of patients with at least one serious AE 104 (77.6%) + Total number of patients with at least one related AE 105 (78.4%) + \s\n B: Placebo + (N=134) + ——————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one AE 123 (91.8%) + Total number of AEs 622 + Total number of patients with at least one AE by worst grade + Grade 1 9 (6.7%) + Grade 2 10 (7.5%) + Grade 3 14 (10.4%) + Grade 4 20 (14.9%) + Grade 5 (fatal outcome) 70 (52.2%) + Total number of patients with study drug withdrawn due to AE 26 (19.4%) + Total number of patients with dose modified/interrupted due to AE 76 (56.7%) + Total number of patients with treatment received for AE 102 (76.1%) + Total number of patients with all non-fatal AEs resolved 92 (68.7%) + Total number of patients with at least one unresolved or ongoing non-fatal AE 110 (82.1%) + Total number of patients with at least one serious AE 101 (75.4%) + Total number of patients with at least one related AE 108 (80.6%) + \s\n C: Combination + (N=132) + —————————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one AE 120 (90.9%) + Total number of AEs 703 + Total number of patients with at least one AE by worst grade + Grade 1 4 (3.0%) + Grade 2 7 (5.3%) + Grade 3 16 (12.1%) + Grade 4 18 (13.6%) + Grade 5 (fatal outcome) 75 (56.8%) + Total number of patients with study drug withdrawn due to AE 30 (22.7%) + Total number of patients with dose modified/interrupted due to AE 74 (56.1%) + Total number of patients with treatment received for AE 103 (78.0%) + Total number of patients with all non-fatal AEs resolved 97 (73.5%) + Total number of patients with at least one unresolved or ongoing non-fatal AE 107 (81.1%) + Total number of patients with at least one serious AE 99 (75.0%) + Total number of patients with at least one related AE 109 (82.6%) + +# aet02 functions with default argument value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) @@ -136,101 +143,10 @@ Total number of events 55 63 64 dcd C.1.1.1.3 43 (32.1%) 46 (34.3%) 43 (32.6%) -# aet02_2 functions with default argument value return expected result with test data - - Code - res - Output - MedDRA System Organ Class - MedDRA High-Level Term A: Drug X B: Placebo C: Combination - MedDRA Preferred Term (N=134) (N=134) (N=132) - ————————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one adverse event 122 (91.0%) 123 (91.8%) 120 (90.9%) - Overall total number of events 609 622 703 - cl A.1 - Total number of patients with at least one adverse event 78 (58.2%) 75 (56.0%) 89 (67.4%) - Total number of events 132 130 160 - hlt A.1.1.1 - Total number of patients with at least one adverse event 78 (58.2%) 75 (56.0%) 89 (67.4%) - Total number of events 132 130 160 - dcd A.1.1.1.1 50 (37.3%) 45 (33.6%) 63 (47.7%) - dcd A.1.1.1.2 48 (35.8%) 48 (35.8%) 50 (37.9%) - cl B.2 - Total number of patients with at least one adverse event 79 (59.0%) 74 (55.2%) 85 (64.4%) - Total number of events 129 138 143 - hlt B.2.2.3 - Total number of patients with at least one adverse event 48 (35.8%) 54 (40.3%) 51 (38.6%) - Total number of events 64 76 77 - dcd B.2.2.3.1 48 (35.8%) 54 (40.3%) 51 (38.6%) - hlt B.2.1.2 - Total number of patients with at least one adverse event 49 (36.6%) 44 (32.8%) 52 (39.4%) - Total number of events 65 62 66 - dcd B.2.1.2.1 49 (36.6%) 44 (32.8%) 52 (39.4%) - cl D.1 - Total number of patients with at least one adverse event 79 (59.0%) 67 (50.0%) 80 (60.6%) - Total number of events 127 106 135 - hlt D.1.1.1 - Total number of patients with at least one adverse event 50 (37.3%) 42 (31.3%) 51 (38.6%) - Total number of events 61 51 71 - dcd D.1.1.1.1 50 (37.3%) 42 (31.3%) 51 (38.6%) - hlt D.1.1.4 - Total number of patients with at least one adverse event 48 (35.8%) 42 (31.3%) 50 (37.9%) - Total number of events 66 55 64 - dcd D.1.1.4.2 48 (35.8%) 42 (31.3%) 50 (37.9%) - cl D.2 - Total number of patients with at least one adverse event 47 (35.1%) 58 (43.3%) 57 (43.2%) - Total number of events 62 72 74 - hlt D.2.1.5 - Total number of patients with at least one adverse event 47 (35.1%) 58 (43.3%) 57 (43.2%) - Total number of events 62 72 74 - dcd D.2.1.5.3 47 (35.1%) 58 (43.3%) 57 (43.2%) - cl B.1 - Total number of patients with at least one adverse event 47 (35.1%) 49 (36.6%) 43 (32.6%) - Total number of events 56 60 62 - hlt B.1.1.1 - Total number of patients with at least one adverse event 47 (35.1%) 49 (36.6%) 43 (32.6%) - Total number of events 56 60 62 - dcd B.1.1.1.1 47 (35.1%) 49 (36.6%) 43 (32.6%) - cl C.2 - Total number of patients with at least one adverse event 35 (26.1%) 48 (35.8%) 55 (41.7%) - Total number of events 48 53 65 - hlt C.2.1.2 - Total number of patients with at least one adverse event 35 (26.1%) 48 (35.8%) 55 (41.7%) - Total number of events 48 53 65 - dcd C.2.1.2.1 35 (26.1%) 48 (35.8%) 55 (41.7%) - cl C.1 - Total number of patients with at least one adverse event 43 (32.1%) 46 (34.3%) 43 (32.6%) - Total number of events 55 63 64 - hlt C.1.1.1 - Total number of patients with at least one adverse event 43 (32.1%) 46 (34.3%) 43 (32.6%) - Total number of events 55 63 64 - dcd C.1.1.1.3 43 (32.1%) 46 (34.3%) 43 (32.6%) - -# aet02_3 functions with default argument value return expected result with test data - - Code - res - Output - MedDRA Preferred Term A: Drug X B: Placebo C: Combination - (N=134) (N=134) (N=132) - ————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one adverse event 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of events 609 622 703 - dcd D.2.1.5.3 47 (35.1%) 58 (43.3%) 57 (43.2%) - dcd A.1.1.1.1 50 (37.3%) 45 (33.6%) 63 (47.7%) - dcd B.2.2.3.1 48 (35.8%) 54 (40.3%) 51 (38.6%) - dcd A.1.1.1.2 48 (35.8%) 48 (35.8%) 50 (37.9%) - dcd B.2.1.2.1 49 (36.6%) 44 (32.8%) 52 (39.4%) - dcd D.1.1.1.1 50 (37.3%) 42 (31.3%) 51 (38.6%) - dcd D.1.1.4.2 48 (35.8%) 42 (31.3%) 50 (37.9%) - dcd B.1.1.1.1 47 (35.1%) 49 (36.6%) 43 (32.6%) - dcd C.2.1.2.1 35 (26.1%) 48 (35.8%) 55 (41.7%) - dcd C.1.1.1.3 43 (32.1%) 46 (34.3%) 43 (32.6%) - -# aet03_1 functions with default argument value return expected result with test data +# aet03 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) @@ -294,10 +210,10 @@ - Any Intensity - 43 (32.1%) 46 (34.3%) 43 (32.6%) SEVERE 43 (32.1%) 46 (34.3%) 43 (32.6%) -# aet04_1 functions with default argument value return expected result with test data +# aet04 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class MedDRA Preferred Term A: Drug X B: Placebo C: Combination @@ -389,10 +305,10 @@ Grade 3-4 43 (32.1%) 46 (34.3%) 43 (32.6%) 4 43 (32.1%) 46 (34.3%) 43 (32.6%) -# aet10_1 functions with default argument value return expected result with test data +# aet10 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) @@ -411,9 +327,9 @@ # cmt01a_1 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination + ATC Level 2 Text A: Drug X B: Placebo C: Combination Other Treatment (N=134) (N=134) (N=132) ——————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) @@ -460,126 +376,30 @@ Total number of treatments 69 73 80 medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) -# cmt01a_2 functions with default argument value return expected result with test data - - Code - res - Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination - Other Treatment (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 609 622 703 - ATCCLAS2 B - Total number of patients with at least one treatment 102 (76.1%) 101 (75.4%) 108 (81.8%) - Total number of treatments 264 275 306 - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) - medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) - ATCCLAS2 A - Total number of patients with at least one treatment 97 (72.4%) 98 (73.1%) 102 (77.3%) - Total number of treatments 205 207 242 - medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) - medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - ATCCLAS2 B p2 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - Total number of treatments 139 155 159 - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 B p3 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - Total number of treatments 139 155 159 - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 C - Total number of patients with at least one treatment 82 (61.2%) 84 (62.7%) 89 (67.4%) - Total number of treatments 140 140 155 - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p2 - Total number of patients with at least one treatment 82 (61.2%) 84 (62.7%) 89 (67.4%) - Total number of treatments 140 140 155 - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p3 - Total number of patients with at least one treatment 52 (38.8%) 58 (43.3%) 60 (45.5%) - Total number of treatments 69 73 80 - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - ATCCLAS2 A p2 - Total number of patients with at least one treatment 45 (33.6%) 54 (40.3%) 48 (36.4%) - Total number of treatments 58 66 64 - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - -# cmt01a_3 functions with default argument value return expected result with test data - - Code - res - Output - ATC Class Level 2 A: Drug X B: Placebo C: Combination - Other Treatment (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of treatments 609 622 703 - ATCCLAS2 A - Total number of patients with at least one treatment 97 (72.4%) 98 (73.1%) 102 (77.3%) - medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) - medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - ATCCLAS2 A p2 - Total number of patients with at least one treatment 45 (33.6%) 54 (40.3%) 48 (36.4%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - ATCCLAS2 B - Total number of patients with at least one treatment 102 (76.1%) 101 (75.4%) 108 (81.8%) - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) - medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) - ATCCLAS2 B p2 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 B p3 - Total number of patients with at least one treatment 78 (58.2%) 82 (61.2%) 89 (67.4%) - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - ATCCLAS2 C - Total number of patients with at least one treatment 82 (61.2%) 84 (62.7%) 89 (67.4%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p2 - Total number of patients with at least one treatment 82 (61.2%) 84 (62.7%) 89 (67.4%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - ATCCLAS2 C p3 - Total number of patients with at least one treatment 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - -# cmt02_pt_1 functions with default argument value return expected result with test data +# cmt02_pt functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Other Treatment A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) ————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one treatment 122 (91.0%) 123 (91.8%) 120 (90.9%) Total number of treatments 609 622 703 - medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) - medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) - medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) - medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) - medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) - medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) - medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) - medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) - medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) + medname A_1/3 54 (40.3%) 49 (36.6%) 69 (52.3%) + medname C_2/2 52 (38.8%) 58 (43.3%) 60 (45.5%) + medname B_1/4 52 (38.8%) 57 (42.5%) 59 (44.7%) + medname B_2/4 52 (38.8%) 55 (41.0%) 56 (42.4%) + medname A_2/3 53 (39.6%) 50 (37.3%) 56 (42.4%) + medname C_1/2 51 (38.1%) 50 (37.3%) 56 (42.4%) + medname B_4/4 50 (37.3%) 45 (33.6%) 55 (41.7%) + medname A_3/3 45 (33.6%) 54 (40.3%) 48 (36.4%) + medname B_3/4 47 (35.1%) 47 (35.1%) 52 (39.4%) -# coxt02_1 functions with default argument value return expected result with test data +# coxt02 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value ————————————————————————————————————————————————————————————————————————————————————————————— @@ -597,10 +417,10 @@ Age (yr) All 0.99 (0.97, 1.01) 0.2501 -# dmt01_1 functions with default argument value return expected result with test data +# dmt01 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) @@ -610,38 +430,38 @@ Mean (SD) 33.8 (6.6) 35.4 (7.9) 35.4 (7.7) 34.9 (7.4) Median 33.0 35.0 35.0 34.0 Min - Max 21.0 - 50.0 21.0 - 62.0 20.0 - 69.0 20.0 - 69.0 - Age group (yr) + Age Group n 134 134 132 400 <65 134 (100%) 134 (100%) 131 (99.2%) 399 (99.8%) >=65 0 0 1 (0.8%) 1 (0.2%) Sex n 134 134 132 400 - F 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%) - M 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%) + Male 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%) + Female 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%) Ethnicity n 134 134 132 400 NOT REPORTED 6 (4.5%) 10 (7.5%) 11 (8.3%) 27 (6.8%) HISPANIC OR LATINO 15 (11.2%) 18 (13.4%) 15 (11.4%) 48 (12.0%) NOT HISPANIC OR LATINO 104 (77.6%) 103 (76.9%) 101 (76.5%) 308 (77.0%) UNKNOWN 9 (6.7%) 3 (2.2%) 5 (3.8%) 17 (4.2%) - Race + RACE n 134 134 132 400 AMERICAN INDIAN OR ALASKA NATIVE 8 (6.0%) 11 (8.2%) 6 (4.5%) 25 (6.2%) ASIAN 68 (50.7%) 68 (50.7%) 73 (55.3%) 209 (52.2%) BLACK OR AFRICAN AMERICAN 31 (23.1%) 28 (20.9%) 32 (24.2%) 91 (22.8%) WHITE 27 (20.1%) 27 (20.1%) 21 (15.9%) 75 (18.8%) -# dst01_1 functions with default argument value return expected result with test data +# dst01 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) ————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) + Completed 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) + Discontinued 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) @@ -650,1381 +470,18 @@ WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) -# dst01_2 functions with default argument value return expected result with test data - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ——————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - Safety 28 (20.9%) 29 (21.6%) 27 (20.5%) 84 (21.0%) - ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) - DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) - Non-Safety 14 (10.4%) 11 (8.2%) 11 (8.3%) 36 (9.0%) - LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) - PHYSICIAN DECISION 2 (1.5%) 3 (2.2%) 2 (1.5%) 7 (1.8%) - PROTOCOL VIOLATION 5 (3.7%) 3 (2.2%) 4 (3.0%) 12 (3.0%) - WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) - WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) - -# dst01_3 functions with default argument value return expected result with test data - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ——————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - Safety 28 (20.9%) 29 (21.6%) 27 (20.5%) 84 (21.0%) - ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) - DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) - Non-Safety 14 (10.4%) 11 (8.2%) 11 (8.3%) 36 (9.0%) - LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) - PHYSICIAN DECISION 2 (1.5%) 3 (2.2%) 2 (1.5%) 7 (1.8%) - PROTOCOL VIOLATION 5 (3.7%) 3 (2.2%) 4 (3.0%) 12 (3.0%) - WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) - WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) - Completed Treatment 47 (35.1%) 35 (26.1%) 42 (31.8%) 124 (31.0%) - Ongoing Treatment 39 (29.1%) 46 (34.3%) 46 (34.8%) 131 (32.8%) - Discontinued Treatment 48 (35.8%) 53 (39.6%) 44 (33.3%) 145 (36.2%) - -# dtht01_1 functions with default argument value return expected result with test data +# dtht01 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) ————————————————————————————————————————————————————————————————— Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) - Primary cause of death + Primary Cause of Death n 25 23 22 - ADVERSE EVENT 9 (36.0%) 7 (30.4%) 10 (45.5%) - PROGRESSIVE DISEASE 8 (32.0%) 6 (26.1%) 6 (27.3%) - OTHER 8 (32.0%) 10 (43.5%) 6 (27.3%) - -# egt01_1 functions with default argument value return expected result with test data - - Code - res - Output - Parameter - Analysis Visit A: Drug X B: Placebo C: Combination - Change from Change from Change from - Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline - ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Heart Rate - BASELINE - n 134 0 134 0 132 0 - Mean (SD) 71.4 (17.9) NA 69.8 (20.7) NA 69.3 (20.9) NA - Median 72.7 NA 73.4 NA 72.0 NA - Min - Max 9.1 - 106.9 NA 13.5 - 115.5 NA 11.6 - 115.5 NA - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 70.2 (20.3) -1.3 (26.0) 69.4 (20.8) -0.4 (29.7) 68.7 (18.1) -0.7 (27.8) - Median 70.7 -2.2 70.5 -0.5 68.6 -0.8 - Min - Max 8.5 - 127.5 -51.0 - 89.2 16.9 - 129.1 -68.2 - 88.4 16.9 - 115.6 -68.2 - 67.2 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 70.3 (19.6) -1.1 (26.3) 71.1 (20.6) 1.3 (31.4) 69.2 (18.1) -0.1 (28.6) - Median 70.9 -1.1 72.5 -0.3 69.3 -1.5 - Min - Max 17.1 - 116.3 -85.0 - 67.5 9.2 - 120.5 -73.1 - 81.4 29.6 - 120.5 -67.7 - 66.3 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 68.3 (20.2) -3.2 (28.7) 68.9 (20.6) -0.9 (30.1) 70.9 (20.3) 1.5 (27.3) - Median 68.8 -2.2 67.8 1.2 70.1 0.1 - Min - Max 13.3 - 131.7 -81.2 - 72.6 24.0 - 130.4 -73.0 - 103.3 20.9 - 116.8 -64.5 - 72.5 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 70.1 (18.4) -1.4 (26.6) 71.6 (20.3) 1.8 (30.3) 71.0 (20.6) 1.7 (29.6) - Median 69.3 -4.5 72.2 -0.9 70.5 3.8 - Min - Max 22.3 - 116.5 -58.1 - 77.3 17.5 - 129.1 -64.3 - 85.3 10.4 - 117.3 -65.9 - 105.7 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 66.4 (19.7) -5.0 (27.1) 71.3 (18.9) 1.4 (27.1) 71.3 (18.6) 1.9 (29.6) - Median 65.4 -6.8 70.9 0.6 73.3 1.7 - Min - Max 23.9 - 110.4 -73.3 - 57.2 25.9 - 125.7 -71.2 - 67.4 23.9 - 117.2 -58.2 - 68.9 - QT Duration - BASELINE - n 134 0 134 0 132 0 - Mean (SD) 336.8 (118.0) NA 351.0 (98.4) NA 352.6 (105.1) NA - Median 344.4 NA 351.5 NA 348.0 NA - Min - Max 87.0 - 665.4 NA 98.9 - 641.9 NA 105.7 - 628.1 NA - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 342.6 (101.1) 5.7 (159.9) 363.9 (102.3) 12.9 (140.7) 359.4 (105.2) 6.8 (147.1) - Median 347.3 -1.8 356.5 13.7 363.8 8.7 - Min - Max 91.6 - 591.4 -346.4 - 452.8 114.9 - 656.5 -317.5 - 416.4 51.9 - 611.9 -473.2 - 358.0 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 353.2 (93.9) 16.4 (162.1) 345.9 (96.8) -5.1 (152.5) 335.7 (98.6) -16.9 (138.4) - Median 351.1 16.7 346.8 -9.7 321.0 -22.3 - Min - Max 138.0 - 587.3 -414.1 - 389.2 146.4 - 556.1 -440.3 - 364.8 104.9 - 562.3 -326.5 - 325.3 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 370.1 (101.6) 33.3 (152.8) 343.4 (102.6) -7.6 (138.8) 346.9 (95.0) -5.7 (144.7) - Median 378.2 39.6 335.1 -15.9 352.2 9.1 - Min - Max 118.1 - 615.2 -391.7 - 520.1 63.4 - 566.5 -311.3 - 293.8 126.1 - 580.8 -412.1 - 410.0 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 345.8 (96.0) 8.9 (145.6) 354.4 (108.3) 3.4 (142.4) 341.4 (106.7) -11.2 (145.6) - Median 340.1 5.6 346.7 -17.1 352.3 -11.9 - Min - Max 110.1 - 616.6 -393.3 - 456.0 80.8 - 687.7 -439.9 - 364.8 4.9 - 570.6 -480.9 - 330.7 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 358.9 (97.7) 22.1 (155.7) 338.6 (99.3) -12.4 (130.5) 349.3 (95.8) -3.3 (136.0) - Median 352.0 5.9 344.2 0.4 350.3 12.7 - Min - Max 88.4 - 661.1 -353.3 - 539.8 31.3 - 563.9 -338.9 - 352.7 119.0 - 581.8 -311.5 - 295.5 - RR Duration - BASELINE - n 134 0 134 0 132 0 - Mean (SD) 1028.4 (286.4) NA 1027.5 (324.0) NA 1074.6 (277.3) NA - Median 1041.9 NA 1047.3 NA 1080.9 NA - Min - Max 34.3 - 1783.7 NA 5.3 - 1877.2 NA 289.6 - 1617.1 NA - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 990.2 (318.7) -38.3 (446.4) 1061.6 (269.1) 34.1 (401.8) 1039.6 (284.4) -35.0 (406.0) - Median 963.9 -86.5 1061.5 66.9 1014.8 -97.8 - Min - Max 110.8 - 2014.6 -1014.8 - 1389.4 276.8 - 1712.0 -942.2 - 993.8 498.2 - 1937.5 -958.6 - 908.9 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 1013.4 (304.1) -15.0 (425.8) 1109.4 (318.2) 81.9 (453.1) 1045.2 (277.5) -29.4 (380.8) - Median 1040.7 40.5 1117.8 69.3 1034.6 -15.3 - Min - Max 164.2 - 1677.1 -1216.1 - 1053.2 160.7 - 2048.7 -1127.1 - 1148.6 252.8 - 1722.3 -859.3 - 871.5 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 1014.0 (305.0) -14.4 (406.5) 1118.3 (296.5) 90.9 (409.6) 1036.6 (268.5) -38.0 (421.5) - Median 1027.2 -50.5 1134.6 52.0 1030.7 -60.7 - Min - Max 357.0 - 1798.7 -882.9 - 1080.3 97.1 - 1825.4 -887.1 - 1166.2 446.0 - 1713.4 -984.8 - 902.4 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 1033.3 (313.9) 4.9 (483.2) 1079.8 (298.9) 52.3 (429.3) 1027.5 (295.9) -47.1 (378.2) - Median 1050.4 5.6 1051.6 69.6 1023.4 -49.5 - Min - Max 54.3 - 1979.4 -1345.9 - 1195.4 347.9 - 1762.0 -826.4 - 1191.8 341.6 - 2144.9 -1002.0 - 1048.7 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 1072.3 (282.9) 43.9 (379.0) 1058.5 (271.0) 31.0 (436.0) 1029.0 (271.2) -45.6 (405.5) - Median 1067.3 55.9 1068.9 33.6 1065.3 -34.4 - Min - Max 353.0 - 2000.6 -1028.8 - 1418.6 208.8 - 1794.7 -979.0 - 1365.1 436.3 - 1794.1 -962.2 - 1329.9 - -# egt02_1 functions with default argument value return expected result with test data - - Code - res - Output - Assessment A: Drug X B: Placebo C: Combination - Abnormality (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————— - Heart Rate - Low 49/134 (36.6%) 57/134 (42.5%) 55/132 (41.7%) - High 48/134 (35.8%) 51/134 (38.1%) 48/132 (36.4%) - QT Duration - Low 53/134 (39.6%) 56/134 (41.8%) 54/132 (40.9%) - High 45/134 (33.6%) 51/134 (38.1%) 45/132 (34.1%) - RR Duration - Low 56/134 (41.8%) 41/134 (30.6%) 50/132 (37.9%) - High 39/134 (29.1%) 62/134 (46.3%) 41/132 (31.1%) - -# egt02_2 functions with default argument value return expected result with test data - - Code - res - Output - Assessment A: Drug X B: Placebo C: Combination - Abnormality (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————— - Heart Rate - Low 43/128 (33.6%) 47/124 (37.9%) 40/117 (34.2%) - High 41/127 (32.3%) 46/129 (35.7%) 38/122 (31.1%) - QT Duration - Low 32/113 (28.3%) 48/126 (38.1%) 46/124 (37.1%) - High 36/125 (28.8%) 47/130 (36.2%) 33/119 (27.7%) - RR Duration - Low 51/129 (39.5%) 30/123 (24.4%) 44/126 (34.9%) - High 32/127 (25.2%) 50/122 (41%) 34/125 (27.2%) - -# egt03_1 functions with default argument value return expected result with test data - - Code - res - Output - Planned Arm Code Minimum Post-Baseline Assessment - Baseline Reference Range Indicator LOW NORMAL HIGH Missing - ———————————————————————————————————————————————————————————————————————————————— - ARM A (N=134) - LOW 1 (0.7%) 5 (3.7%) 0 0 - NORMAL 36 (26.9%) 85 (63.4%) 0 0 - HIGH 3 (2.2%) 4 (3%) 0 0 - Missing 0 0 0 0 - ARM B (N=134) - LOW 1 (0.7%) 9 (6.7%) 0 0 - NORMAL 41 (30.6%) 78 (58.2%) 0 0 - HIGH 1 (0.7%) 4 (3%) 0 0 - Missing 0 0 0 0 - ARM C (N=132) - LOW 4 (3%) 11 (8.3%) 0 0 - NORMAL 32 (24.2%) 75 (56.8%) 0 0 - HIGH 1 (0.8%) 9 (6.8%) 0 0 - Missing 0 0 0 0 - -# egt03_2 functions with default argument value return expected result with test data - - Code - res - Output - Planned Arm Code Maximum Post-Baseline Assessment - Baseline Reference Range Indicator LOW NORMAL HIGH Missing - ———————————————————————————————————————————————————————————————————————————————— - ARM A (N=134) - LOW 0 2 (1.5%) 4 (3%) 0 - NORMAL 0 88 (65.7%) 33 (24.6%) 0 - HIGH 0 5 (3.7%) 2 (1.5%) 0 - Missing 0 0 0 0 - ARM B (N=134) - LOW 0 8 (6%) 2 (1.5%) 0 - NORMAL 0 78 (58.2%) 41 (30.6%) 0 - HIGH 0 3 (2.2%) 2 (1.5%) 0 - Missing 0 0 0 0 - ARM C (N=132) - LOW 0 12 (9.1%) 3 (2.3%) 0 - NORMAL 0 79 (59.8%) 28 (21.2%) 0 - HIGH 0 5 (3.8%) 5 (3.8%) 0 - Missing 0 0 0 0 - -# egt05_qtcat_1 functions with default argument value return expected result with test data - - Code - res - Output - Parameter - Analysis Visit A: Drug X B: Placebo C: Combination - Category (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————— - QT Duration - BASELINE - Value at Visit - n 134 134 132 - <=450 msec 115 (85.8%) 117 (87.3%) 104 (78.8%) - >450 to <=480 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) - >480 to <=500 msec 4 (3%) 3 (2.2%) 6 (4.5%) - >500 msec 9 (6.7%) 4 (3%) 13 (9.8%) - WEEK 1 DAY 8 - Value at Visit - n 134 134 132 - <=450 msec 113 (84.3%) 106 (79.1%) 106 (80.3%) - >450 to <=480 msec 10 (7.5%) 10 (7.5%) 11 (8.3%) - >480 to <=500 msec 4 (3%) 4 (3%) 3 (2.3%) - >500 msec 7 (5.2%) 14 (10.4%) 12 (9.1%) - Change from Baseline - n 134 134 132 - <=30 msec 76 (56.7%) 75 (56%) 75 (56.8%) - >30 to <=60 msec 7 (5.2%) 13 (9.7%) 11 (8.3%) - >60 msec 51 (38.1%) 46 (34.3%) 46 (34.8%) - WEEK 2 DAY 15 - Value at Visit - n 134 134 132 - <=450 msec 111 (82.8%) 114 (85.1%) 112 (84.8%) - >450 to <=480 msec 10 (7.5%) 9 (6.7%) 9 (6.8%) - >480 to <=500 msec 7 (5.2%) 2 (1.5%) 5 (3.8%) - >500 msec 6 (4.5%) 9 (6.7%) 6 (4.5%) - Change from Baseline - n 134 134 132 - <=30 msec 71 (53%) 87 (64.9%) 89 (67.4%) - >30 to <=60 msec 11 (8.2%) 9 (6.7%) 9 (6.8%) - >60 msec 52 (38.8%) 38 (28.4%) 34 (25.8%) - WEEK 3 DAY 22 - Value at Visit - n 134 134 132 - <=450 msec 106 (79.1%) 112 (83.6%) 118 (89.4%) - >450 to <=480 msec 13 (9.7%) 7 (5.2%) 3 (2.3%) - >480 to <=500 msec 4 (3%) 5 (3.7%) 2 (1.5%) - >500 msec 11 (8.2%) 10 (7.5%) 9 (6.8%) - Change from Baseline - n 134 134 132 - <=30 msec 63 (47%) 80 (59.7%) 81 (61.4%) - >30 to <=60 msec 14 (10.4%) 8 (6%) 11 (8.3%) - >60 msec 57 (42.5%) 46 (34.3%) 40 (30.3%) - WEEK 4 DAY 29 - Value at Visit - n 134 134 132 - <=450 msec 117 (87.3%) 103 (76.9%) 114 (86.4%) - >450 to <=480 msec 7 (5.2%) 14 (10.4%) 6 (4.5%) - >480 to <=500 msec 4 (3%) 7 (5.2%) 3 (2.3%) - >500 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) - Change from Baseline - n 134 134 132 - <=30 msec 79 (59%) 80 (59.7%) 79 (59.8%) - >30 to <=60 msec 11 (8.2%) 7 (5.2%) 10 (7.6%) - >60 msec 44 (32.8%) 47 (35.1%) 43 (32.6%) - WEEK 5 DAY 36 - Value at Visit - n 134 134 132 - <=450 msec 107 (79.9%) 117 (87.3%) 112 (84.8%) - >450 to <=480 msec 16 (11.9%) 5 (3.7%) 13 (9.8%) - >480 to <=500 msec 5 (3.7%) 9 (6.7%) 3 (2.3%) - >500 msec 6 (4.5%) 3 (2.2%) 4 (3%) - Change from Baseline - n 134 134 132 - <=30 msec 72 (53.7%) 82 (61.2%) 73 (55.3%) - >30 to <=60 msec 10 (7.5%) 11 (8.2%) 11 (8.3%) - >60 msec 52 (38.8%) 41 (30.6%) 48 (36.4%) - -# ext01_1 functions with default argument value return expected result with test data - - Code - res - Output - A: Drug X B: Placebo C: Combination - (N=134) (N=134) (N=132) - ———————————————————————————————————————————————————————————————————————————————————————— - Total number of doses administered - n 134 134 132 - Mean (SD) 7.0 (0.0) 7.0 (0.0) 7.0 (0.0) - Median 7.0 7.0 7.0 - Min - Max 7.0 - 7.0 7.0 - 7.0 7.0 - 7.0 - Total dose administered - n 134 134 132 - Mean (SD) 6655.5 (1209.6) 6401.2 (1269.9) 6776.4 (1212.5) - Median 6720.0 6360.0 6720.0 - Min - Max 4320.0 - 9360.0 4080.0 - 9360.0 4320.0 - 9360.0 - -# ext01_2 functions with default argument value return expected result with test data - - Code - res - Output - A: Drug X B: Placebo C: Combination - (N=134) (N=134) (N=132) - ———————————————————————————————————————————————————————————————————————————————————————— - Total dose administered - n 134 134 132 - Mean (SD) 6655.5 (1209.6) 6401.2 (1269.9) 6776.4 (1212.5) - Median 6720.0 6360.0 6720.0 - Min - Max 4320.0 - 9360.0 4080.0 - 9360.0 4320.0 - 9360.0 - n 134 134 132 - <5000 10 (7.5%) 18 (13.4%) 7 (5.3%) - >9000 2 (1.5%) 3 (2.2%) 3 (2.3%) - 5000-7000 72 (53.7%) 71 (53.0%) 71 (53.8%) - 7000-9000 50 (37.3%) 42 (31.3%) 51 (38.6%) - Total number of doses administered - n 134 134 132 - Mean (SD) 7.0 (0.0) 7.0 (0.0) 7.0 (0.0) - Median 7.0 7.0 7.0 - Min - Max 7.0 - 7.0 7.0 - 7.0 7.0 - 7.0 - -# lbt01_1 functions with default argument value return expected result with test data - - Code - res - Output - Parameter - Analysis Visit A: Drug X B: Placebo C: Combination - Change from Change from Change from - Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline - —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Alanine Aminotransferase Measurement - BASELINE - n 134 134 132 - Mean (SD) 19.786 (4.161) 20.153 (4.171) 20.451 (3.911) - Median 19.786 20.077 20.387 - Min - Max 6.99 - 30.43 8.11 - 34.56 8.82 - 28.72 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 19.301 (3.981) -0.485 (5.850) 20.221 (3.974) 0.068 (6.036) 20.553 (3.895) 0.102 (5.461) - Median 19.209 -0.511 20.090 -0.725 20.402 0.025 - Min - Max 8.86 - 27.32 -12.52 - 19.70 5.84 - 28.75 -12.29 - 17.41 9.87 - 30.70 -13.69 - 15.54 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 19.704 (4.233) -0.082 (6.003) 20.123 (4.265) -0.030 (6.263) 19.247 (3.592) -1.204 (5.485) - Median 19.168 0.038 19.986 -0.371 19.608 -0.482 - Min - Max 7.17 - 30.53 -13.15 - 17.17 7.19 - 30.54 -18.37 - 14.39 8.11 - 26.68 -14.28 - 15.65 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 20.130 (3.757) 0.344 (5.761) 19.837 (3.871) -0.316 (5.604) 19.428 (3.944) -1.023 (5.550) - Median 20.044 0.451 19.873 -0.178 18.838 -1.065 - Min - Max 11.52 - 29.49 -16.04 - 16.26 11.86 - 28.24 -18.52 - 15.00 10.20 - 28.49 -12.33 - 11.10 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 20.351 (4.583) 0.565 (6.506) 19.632 (4.346) -0.521 (6.293) 19.823 (3.995) -0.627 (5.311) - Median 19.763 0.353 19.151 -1.186 19.884 -0.646 - Min - Max 9.88 - 34.50 -17.00 - 18.79 11.49 - 31.98 -16.58 - 17.23 7.76 - 29.31 -12.13 - 15.30 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 20.418 (3.925) 0.632 (6.053) 19.859 (4.223) -0.294 (6.315) 19.990 (4.169) -0.460 (5.570) - Median 20.718 0.926 20.113 0.728 20.503 -0.990 - Min - Max 10.95 - 30.17 -16.03 - 16.09 10.32 - 29.06 -19.04 - 12.64 7.41 - 27.78 -15.62 - 16.61 - C-Reactive Protein Measurement - BASELINE - n 134 134 132 - Mean (SD) 0.974 (0.236) 1.002 (0.197) 1.005 (0.210) - Median 0.989 1.003 0.996 - Min - Max 0.47 - 1.63 0.50 - 1.58 0.51 - 1.56 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 1.047 (0.202) 0.073 (0.312) 1.007 (0.220) 0.005 (0.289) 1.006 (0.234) 0.001 (0.327) - Median 1.031 0.074 1.031 0.015 1.017 -0.008 - Min - Max 0.46 - 1.57 -0.71 - 1.03 0.42 - 1.43 -0.78 - 0.93 0.44 - 1.53 -0.80 - 0.75 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 0.994 (0.207) 0.020 (0.314) 1.022 (0.186) 0.020 (0.267) 0.978 (0.206) -0.027 (0.278) - Median 1.011 0.012 1.038 0.021 0.967 -0.035 - Min - Max 0.48 - 1.48 -0.85 - 0.76 0.52 - 1.44 -0.55 - 0.68 0.27 - 1.51 -0.76 - 0.50 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 1.002 (0.208) 0.028 (0.309) 0.982 (0.188) -0.020 (0.266) 0.995 (0.191) -0.010 (0.301) - Median 0.998 0.078 0.969 0.004 0.987 -0.029 - Min - Max 0.42 - 1.48 -0.92 - 0.79 0.52 - 1.44 -0.77 - 0.75 0.50 - 1.57 -0.72 - 0.86 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 1.040 (0.203) 0.067 (0.306) 0.987 (0.205) -0.015 (0.278) 0.994 (0.190) -0.011 (0.289) - Median 1.056 0.079 0.970 -0.032 1.004 0.018 - Min - Max 0.54 - 1.53 -0.78 - 1.04 0.43 - 1.43 -0.62 - 0.59 0.55 - 1.46 -0.82 - 0.82 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 0.993 (0.219) 0.019 (0.334) 1.021 (0.190) 0.019 (0.282) 0.976 (0.191) -0.029 (0.290) - Median 0.981 -0.006 1.006 0.011 0.980 -0.037 - Min - Max 0.40 - 1.49 -1.00 - 0.84 0.58 - 1.51 -0.64 - 0.83 0.55 - 1.59 -0.84 - 0.79 - Immunoglobulin A Measurement - BASELINE - n 134 134 132 - Mean (SD) 1.996 (0.372) 1.987 (0.415) 2.015 (0.453) - Median 1.934 1.964 1.987 - Min - Max 1.19 - 2.80 0.79 - 3.07 0.80 - 3.00 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 1.970 (0.404) -0.026 (0.534) 2.056 (0.409) 0.069 (0.562) 2.038 (0.421) 0.022 (0.645) - Median 1.989 -0.007 2.026 0.077 2.055 0.023 - Min - Max 0.97 - 2.97 -1.42 - 1.08 1.06 - 3.23 -1.27 - 1.78 0.81 - 3.05 -1.49 - 1.55 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 2.036 (0.393) 0.040 (0.576) 1.994 (0.417) 0.007 (0.583) 1.969 (0.374) -0.046 (0.602) - Median 1.989 0.068 2.034 0.047 1.978 -0.010 - Min - Max 1.17 - 3.09 -1.29 - 1.61 0.89 - 2.99 -1.48 - 1.38 0.97 - 2.75 -1.64 - 1.45 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 1.974 (0.402) -0.022 (0.519) 1.999 (0.396) 0.012 (0.577) 2.048 (0.391) 0.033 (0.602) - Median 1.964 0.023 1.957 0.039 2.056 0.013 - Min - Max 0.71 - 2.81 -1.44 - 1.21 0.75 - 2.89 -1.60 - 1.21 0.99 - 2.99 -1.81 - 1.23 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 1.962 (0.384) -0.035 (0.543) 1.955 (0.381) -0.032 (0.551) 1.979 (0.420) -0.037 (0.622) - Median 2.025 -0.001 1.945 0.028 1.993 -0.068 - Min - Max 0.80 - 2.73 -1.53 - 1.33 1.07 - 2.81 -1.38 - 1.09 0.99 - 2.95 -1.35 - 1.59 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 1.983 (0.384) -0.013 (0.505) 2.018 (0.433) 0.031 (0.635) 1.965 (0.427) -0.050 (0.609) - Median 1.961 -0.012 1.987 0.071 2.009 0.034 - Min - Max 1.04 - 3.07 -1.69 - 1.28 0.92 - 3.35 -1.38 - 1.64 0.62 - 2.88 -1.60 - 1.32 - -# lbt04_1 functions with default argument value return expected result with test data - - Code - res - Output - Laboratory Test A: Drug X B: Placebo C: Combination - Direction of Abnormality (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————— - CHEMISTRY - Alanine Aminotransferase Measurement - Low 10/70 (14.3%) 7/65 (10.8%) 6/67 (9.0%) - High 6/70 (8.6%) 6/59 (10.2%) 5/69 (7.2%) - C-Reactive Protein Measurement - Low 7/70 (10.0%) 6/78 (7.7%) 9/65 (13.8%) - High 7/67 (10.4%) 7/69 (10.1%) 3/62 (4.8%) - Immunoglobulin A Measurement - Low 5/52 (9.6%) 10/64 (15.6%) 8/67 (11.9%) - High 7/50 (14.0%) 8/63 (12.7%) 8/67 (11.9%) - COAGULATION - Alanine Aminotransferase Measurement - Low 6/69 (8.7%) 5/67 (7.5%) 6/64 (9.4%) - High 12/67 (17.9%) 7/64 (10.9%) 6/62 (9.7%) - C-Reactive Protein Measurement - Low 8/65 (12.3%) 7/68 (10.3%) 6/67 (9.0%) - High 8/63 (12.7%) 5/66 (7.6%) 6/61 (9.8%) - Immunoglobulin A Measurement - Low 8/60 (13.3%) 8/69 (11.6%) 2/66 (3.0%) - High 6/62 (9.7%) 8/78 (10.3%) 2/64 (3.1%) - HEMATOLOGY - Alanine Aminotransferase Measurement - Low 4/59 (6.8%) 5/63 (7.9%) 10/71 (14.1%) - High 6/58 (10.3%) 7/60 (11.7%) 8/68 (11.8%) - C-Reactive Protein Measurement - Low 9/70 (12.9%) 6/57 (10.5%) 12/75 (16.0%) - High 4/63 (6.3%) 3/53 (5.7%) 11/67 (16.4%) - Immunoglobulin A Measurement - Low 6/69 (8.7%) 8/67 (11.9%) 9/60 (15.0%) - High 9/71 (12.7%) 4/68 (5.9%) 11/63 (17.5%) - -# lbt05_1 functions with default argument value return expected result with test data - - Code - res - Output - Laboratory Test A: Drug X B: Placebo C: Combination - Direction of Abnormality (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————— - Alanine Aminotransferase Measurement (n) 129 128 127 - Low - Single, not last 1 (0.8%) 2 (1.6%) 2 (1.6%) - Last or replicated 4 (3.1%) 11 (8.6%) 3 (2.4%) - Any Abnormality 5 (3.9%) 13 (10.2%) 5 (3.9%) - High - Single, not last 4 (3.1%) 4 (3.1%) 1 (0.8%) - Last or replicated 5 (3.9%) 8 (6.2%) 6 (4.7%) - Any Abnormality 9 (7.0%) 12 (9.4%) 7 (5.5%) - C-Reactive Protein Measurement (n) 128 123 123 - Low - Single, not last 1 (0.8%) 0 3 (2.4%) - Last or replicated 11 (8.6%) 7 (5.7%) 4 (3.3%) - Any Abnormality 12 (9.4%) 7 (5.7%) 7 (5.7%) - High - Single, not last 2 (1.6%) 1 (0.8%) 2 (1.6%) - Last or replicated 9 (7.0%) 10 (8.1%) 11 (8.9%) - Any Abnormality 11 (8.6%) 11 (8.9%) 13 (10.6%) - Immunoglobulin A Measurement (n) 126 125 119 - Low - Single, not last 1 (0.8%) 3 (2.4%) 4 (3.4%) - Last or replicated 6 (4.8%) 6 (4.8%) 7 (5.9%) - Any Abnormality 7 (5.6%) 9 (7.2%) 11 (9.2%) - High - Single, not last 1 (0.8%) 1 (0.8%) 2 (1.7%) - Last or replicated 3 (2.4%) 8 (6.4%) 4 (3.4%) - Any Abnormality 4 (3.2%) 9 (7.2%) 6 (5.0%) - -# lbt07_1 functions with default argument value return expected result with test data - - Code - res - Output - Parameter - Direction of Abnormality A: Drug X B: Placebo C: Combination - Highest NCI CTCAE Grade (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————— - Alanine Aminotransferase Measurement (n) 134 133 132 - LOW - 1 14 (10.4%) 15 (11.3%) 10 (7.6%) - 2 13 (9.7%) 18 (13.5%) 11 (8.3%) - 3 20 (14.9%) 12 (9.0%) 10 (7.6%) - 4 7 (5.2%) 8 (6.0%) 10 (7.6%) - Any 54 (40.3%) 53 (39.8%) 41 (31.1%) - HIGH - 1 18 (13.4%) 16 (12.0%) 18 (13.6%) - 2 15 (11.2%) 13 (9.8%) 17 (12.9%) - 3 10 (7.5%) 16 (12.0%) 13 (9.8%) - 4 12 (9.0%) 11 (8.3%) 13 (9.8%) - Any 55 (41.0%) 56 (42.1%) 61 (46.2%) - C-Reactive Protein Measurement (n) 134 134 132 - LOW - 1 16 (11.9%) 19 (14.2%) 15 (11.4%) - 2 21 (15.7%) 13 (9.7%) 16 (12.1%) - 3 12 (9.0%) 9 (6.7%) 18 (13.6%) - 4 11 (8.2%) 7 (5.2%) 5 (3.8%) - Any 60 (44.8%) 48 (35.8%) 54 (40.9%) - HIGH - 1 17 (12.7%) 15 (11.2%) 9 (6.8%) - 2 15 (11.2%) 16 (11.9%) 13 (9.8%) - 3 16 (11.9%) 12 (9.0%) 14 (10.6%) - 4 12 (9.0%) 12 (9.0%) 10 (7.6%) - Any 60 (44.8%) 55 (41.0%) 46 (34.8%) - Immunoglobulin A Measurement (n) 133 133 132 - LOW - 1 17 (12.8%) 23 (17.3%) 17 (12.9%) - 2 12 (9.0%) 15 (11.3%) 14 (10.6%) - 3 15 (11.3%) 11 (8.3%) 14 (10.6%) - 4 10 (7.5%) 16 (12.0%) 10 (7.6%) - Any 54 (40.6%) 65 (48.9%) 55 (41.7%) - HIGH - 1 25 (18.8%) 14 (10.5%) 13 (9.8%) - 2 14 (10.5%) 19 (14.3%) 16 (12.1%) - 3 12 (9.0%) 12 (9.0%) 17 (12.9%) - 4 11 (8.3%) 13 (9.8%) 4 (3.0%) - Any 62 (46.6%) 58 (43.6%) 50 (37.9%) - -# lbt14_1 functions with default argument value return expected result with test data - - Code - res - Output - LBT14 - Low Direction - - - —————————————————————————————————————————————————————————————————————————————————————— - Parameter - Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination - Post-baseline NCI-CTCAE Grade (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————————— - Alanine Aminotransferase Measurement - Not Low 124 122 117 - Not Low 74 (59.7%) 76 (62.3%) 80 (68.4%) - 1 13 (10.5%) 12 (9.8%) 9 (7.7%) - 2 13 (10.5%) 16 (13.1%) 11 (9.4%) - 3 17 (13.7%) 11 (9.0%) 9 (7.7%) - 4 7 (5.6%) 7 (5.7%) 8 (6.8%) - 1 3 6 7 - Not Low 0 2 (33.3%) 5 (71.4%) - 1 1 (33.3%) 2 (33.3%) 0 - 2 0 1 (16.7%) 0 - 3 2 (66.7%) 1 (16.7%) 0 - 4 0 0 2 (28.6%) - 2 2 1 4 - Not Low 2 (100%) 0 3 (75.0%) - 2 0 1 (100%) 0 - 3 0 0 1 (25.0%) - 3 2 3 4 - Not Low 2 (100%) 2 (66.7%) 3 (75.0%) - 1 0 1 (33.3%) 1 (25.0%) - 4 3 2 0 - Not Low 2 (66.7%) 1 (50.0%) 0 - 3 1 (33.3%) 0 0 - 4 0 1 (50.0%) 0 - C-Reactive Protein Measurement - Not Low 122 125 120 - Not Low 67 (54.9%) 81 (64.8%) 70 (58.3%) - 1 14 (11.5%) 17 (13.6%) 13 (10.8%) - 2 20 (16.4%) 11 (8.8%) 16 (13.3%) - 3 12 (9.8%) 9 (7.2%) 17 (14.2%) - 4 9 (7.4%) 7 (5.6%) 4 (3.3%) - 1 2 5 5 - Not Low 0 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 1 (20.0%) - 2 1 (50.0%) 1 (20.0%) 0 - 4 1 (50.0%) 0 0 - 2 5 1 1 - Not Low 3 (60.0%) 0 1 (100%) - 1 2 (40.0%) 0 0 - 2 0 1 (100%) 0 - 3 2 2 1 - Not Low 2 (100%) 1 (50.0%) 0 - 1 0 1 (50.0%) 0 - 3 0 0 1 (100%) - 4 3 1 5 - Not Low 2 (66.7%) 1 (100%) 3 (60.0%) - 1 0 0 1 (20.0%) - 4 1 (33.3%) 0 1 (20.0%) - Immunoglobulin A Measurement - Not Low 120 119 120 - Not Low 69 (57.5%) 58 (48.7%) 70 (58.3%) - 1 16 (13.3%) 20 (16.8%) 16 (13.3%) - 2 12 (10.0%) 14 (11.8%) 14 (11.7%) - 3 14 (11.7%) 11 (9.2%) 13 (10.8%) - 4 9 (7.5%) 16 (13.4%) 7 (5.8%) - 1 8 8 3 - Not Low 7 (87.5%) 4 (50.0%) 2 (66.7%) - 1 1 (12.5%) 3 (37.5%) 0 - 2 0 1 (12.5%) 0 - 4 0 0 1 (33.3%) - 2 2 1 2 - Not Low 2 (100%) 1 (100%) 2 (100%) - 3 3 3 4 - Not Low 1 (33.3%) 3 (100%) 2 (50.0%) - 1 0 0 1 (25.0%) - 3 1 (33.3%) 0 0 - 4 1 (33.3%) 0 1 (25.0%) - 4 1 3 3 - Not Low 1 (100%) 3 (100%) 1 (33.3%) - 3 0 0 1 (33.3%) - 4 0 0 1 (33.3%) - -# lbt14_2 functions with default argument value return expected result with test data - - Code - res - Output - LBT14 - High Direction - - - —————————————————————————————————————————————————————————————————————————————————————— - Parameter - Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination - Post-baseline NCI-CTCAE Grade (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————————— - Alanine Aminotransferase Measurement - Not High 121 118 118 - Not High 72 (59.5%) 70 (59.3%) 59 (50.0%) - 1 16 (13.2%) 13 (11.0%) 17 (14.4%) - 2 13 (10.7%) 12 (10.2%) 18 (15.3%) - 3 9 (7.4%) 14 (11.9%) 12 (10.2%) - 4 11 (9.1%) 9 (7.6%) 12 (10.2%) - 1 4 4 3 - Not High 1 (25.0%) 1 (25.0%) 2 (66.7%) - 1 1 (25.0%) 0 0 - 2 1 (25.0%) 0 0 - 3 0 1 (25.0%) 1 (33.3%) - 4 1 (25.0%) 2 (50.0%) 0 - 2 4 4 4 - Not High 3 (75.0%) 3 (75.0%) 3 (75.0%) - 1 0 1 (25.0%) 1 (25.0%) - 2 1 (25.0%) 0 0 - 3 2 5 5 - Not High 2 (100%) 2 (40.0%) 4 (80.0%) - 1 0 2 (40.0%) 0 - 2 0 1 (20.0%) 0 - 4 0 0 1 (20.0%) - 4 3 3 2 - Not High 1 (33.3%) 2 (66.7%) 2 (100%) - 1 1 (33.3%) 0 0 - 3 1 (33.3%) 1 (33.3%) 0 - C-Reactive Protein Measurement - Not High 115 115 114 - Not High 60 (52.2%) 68 (59.1%) 70 (61.4%) - 1 17 (14.8%) 13 (11.3%) 9 (7.9%) - 2 12 (10.4%) 14 (12.2%) 13 (11.4%) - 3 16 (13.9%) 10 (8.7%) 13 (11.4%) - 4 10 (8.7%) 10 (8.7%) 9 (7.9%) - 1 5 5 5 - Not High 4 (80.0%) 3 (60.0%) 5 (100%) - 2 0 2 (40.0%) 0 - 4 1 (20.0%) 0 0 - 2 6 5 5 - Not High 3 (50.0%) 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 0 - 2 2 (33.3%) 0 0 - 4 1 (16.7%) 1 (20.0%) 1 (20.0%) - 3 2 3 5 - Not High 2 (100%) 1 (33.3%) 4 (80.0%) - 3 0 1 (33.3%) 1 (20.0%) - 4 0 1 (33.3%) 0 - 4 6 6 3 - Not High 5 (83.3%) 4 (66.7%) 3 (100%) - 1 0 1 (16.7%) 0 - 2 1 (16.7%) 0 0 - 3 0 1 (16.7%) 0 - Immunoglobulin A Measurement - Not High 119 123 119 - Not High 61 (51.3%) 69 (56.1%) 74 (62.2%) - 1 24 (20.2%) 12 (9.8%) 13 (10.9%) - 2 13 (10.9%) 20 (16.3%) 12 (10.1%) - 3 11 (9.2%) 11 (8.9%) 16 (13.4%) - 4 10 (8.4%) 11 (8.9%) 4 (3.4%) - 1 2 4 6 - Not High 2 (100%) 2 (50.0%) 5 (83.3%) - 2 0 0 1 (16.7%) - 4 0 2 (50.0%) 0 - 2 4 4 3 - Not High 3 (75.0%) 2 (50.0%) 1 (33.3%) - 1 0 2 (50.0%) 0 - 2 0 0 1 (33.3%) - 3 0 0 1 (33.3%) - 4 1 (25.0%) 0 0 - 3 5 2 2 - Not High 3 (60.0%) 0 1 (50.0%) - 1 1 (20.0%) 0 0 - 2 0 0 1 (50.0%) - 3 1 (20.0%) 2 (100%) 0 - 4 4 1 2 - Not High 3 (75.0%) 1 (100%) 1 (50.0%) - 2 1 (25.0%) 0 1 (50.0%) - -# mht01_1 functions with default argument value return expected result with test data - - Code - res - Output - MedDRA System Organ Class A: Drug X B: Placebo C: Combination - MedDRA Preferred Term (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one condition 122 (91.0%) 123 (91.8%) 120 (90.9%) - Total number of conditions 609 622 703 - cl A - Total number of patients with at least one condition 78 (58.2%) 75 (56.0%) 89 (67.4%) - Total number of conditions 132 130 160 - trm A_1/2 50 (37.3%) 45 (33.6%) 63 (47.7%) - trm A_2/2 48 (35.8%) 48 (35.8%) 50 (37.9%) - cl B - Total number of patients with at least one condition 96 (71.6%) 89 (66.4%) 97 (73.5%) - Total number of conditions 185 198 205 - trm B_3/3 48 (35.8%) 54 (40.3%) 51 (38.6%) - trm B_2/3 49 (36.6%) 44 (32.8%) 52 (39.4%) - trm B_1/3 47 (35.1%) 49 (36.6%) 43 (32.6%) - cl C - Total number of patients with at least one condition 67 (50.0%) 75 (56.0%) 79 (59.8%) - Total number of conditions 103 116 129 - trm C_2/2 35 (26.1%) 48 (35.8%) 55 (41.7%) - trm C_1/2 43 (32.1%) 46 (34.3%) 43 (32.6%) - cl D - Total number of patients with at least one condition 96 (71.6%) 90 (67.2%) 98 (74.2%) - Total number of conditions 189 178 209 - trm D_3/3 47 (35.1%) 58 (43.3%) 57 (43.2%) - trm D_1/3 50 (37.3%) 42 (31.3%) 51 (38.6%) - trm D_2/3 48 (35.8%) 42 (31.3%) 50 (37.9%) - -# pdt01_1 function with default argument value return expected result with test data - - Code - res - Output - Category A: Drug X B: Placebo C: Combination - Description (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one major protocol deviation 22 (16.4%) 23 (17.2%) 13 (9.8%) - Total number of major protocol deviations 40 42 21 - EXCLUSION CRITERIA - Active or untreated or other excluded cns metastases 5 (3.7%) 3 (2.2%) 0 - Pregnancy criteria 2 (1.5%) 4 (3.0%) 0 - History of other malignancies within the last 5 years 3 (2.2%) 2 (1.5%) 0 - Uncontrolled concurrent condition 3 (2.2%) 1 (0.7%) 0 - Other exclusion criteria 0 0 3 (2.3%) - Received prior prohibited therapy or medication 0 2 (1.5%) 1 (0.8%) - INCLUSION CRITERIA - No signed ICF at study entry 6 (4.5%) 4 (3.0%) 0 - Ineligible cancer type or current cancer stage 6 (4.5%) 1 (0.7%) 1 (0.8%) - Inclusion lab values outside allowed limits 0 3 (2.2%) 0 - Does not meet prior therapy requirements 1 (0.7%) 0 0 - Inclusion-related test not done/out of window 0 0 1 (0.8%) - MEDICATION - Significant deviation from planned dose 3 (2.2%) 1 (0.7%) 2 (1.5%) - Received incorrect study medication 1 (0.7%) 2 (1.5%) 1 (0.8%) - Discontinued study drug for unspecified reason 1 (0.7%) 1 (0.7%) 1 (0.8%) - Dose missed or significantly out of window 2 (1.5%) 0 1 (0.8%) - Received prohibited concomitant medication 0 2 (1.5%) 0 - PROCEDURAL - Eligibility-related test not done/out of window 1 (0.7%) 6 (4.5%) 1 (0.8%) - Omission of screening tumor assessment 0 4 (3.0%) 3 (2.3%) - Missed assessment affecting safety/study outcomes 1 (0.7%) 2 (1.5%) 2 (1.5%) - Failure to sign updated ICF within two visits 2 (1.5%) 1 (0.7%) 1 (0.8%) - Missed 2 or more efficacy assessments 2 (1.5%) 0 1 (0.8%) - Omission of complete lab panel required by protocol 0 1 (0.7%) 1 (0.8%) - -# pdt02_1 function with default argument value return expected result with test data - - Code - res - Output - Primary Reason A: Drug X B: Placebo C: Combination - Description (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one major protocol deviation related to epidemic/pandemic 9 (6.7%) 2 (1.5%) 5 (3.8%) - Total number of major protocol deviations related to epidemic/pandemic 9 2 6 - Site action due to epidemic/pandemic 9 (6.7%) 2 (1.5%) 5 (3.8%) - Significant deviation from planned dose 3 (2.2%) 1 (0.7%) 2 (1.5%) - Failure to sign updated ICF within two visits 2 (1.5%) 1 (0.7%) 1 (0.8%) - Dose missed or significantly out of window 2 (1.5%) 0 1 (0.8%) - Missed 2 or more efficacy assessments 2 (1.5%) 0 1 (0.8%) - -# rmpt01_1 function with default argument value return expected result with test data - - Code - res - Output - Duration of exposure Patients Person time* - (N=400) (N=400) - —————————————————————————————————————————————————————————————————————— - Total Number of Patients and Person Time 400 (100.0%) 49700 - < 1 month 39 (9.8%) 728 - 1 to <3 months 111 (27.8%) 6418 - 3 to <6 months 136 (34.0%) 17645 - >=6 months 114 (28.5%) 24909 - -# vst01_1 functions with default argument value return expected result with test data - - Code - res - Output - Parameter A: Drug X B: Placebo C: Combination - Analysis Visit Change from Change from Change from - Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline - ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Diastolic Blood Pressure - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 50.0 (7.2) NA 50.8 (8.4) NA 50.2 (7.6) NA - Median 49.7 NA 50.1 NA 49.6 NA - Min - Max 31.7 - 71.2 NA 29.3 - 69.2 NA 26.9 - 70.0 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 48.6 (8.0) 0.0 (0.0) 50.4 (7.9) 0.0 (0.0) 51.1 (7.8) 0.0 (0.0) - Median 48.4 0.0 50.2 0.0 50.8 0.0 - Min - Max 27.7 - 64.6 0.0 - 0.0 21.7 - 67.5 0.0 - 0.0 29.7 - 71.4 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 50.3 (7.5) 1.7 (10.8) 49.7 (7.7) -0.8 (10.9) 48.9 (7.9) -2.3 (10.4) - Median 50.1 0.6 49.7 -1.1 47.7 -2.2 - Min - Max 33.0 - 69.0 -20.4 - 29.9 33.7 - 66.5 -25.8 - 28.4 30.4 - 67.0 -22.1 - 22.4 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 50.8 (7.8) 2.2 (11.8) 49.7 (8.4) -0.7 (12.4) 50.0 (8.3) -1.1 (11.6) - Median 51.4 3.1 50.2 -0.7 51.0 -2.3 - Min - Max 31.9 - 70.3 -23.9 - 39.2 30.6 - 68.1 -28.4 - 37.0 24.8 - 65.6 -29.2 - 30.7 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.7 (7.8) 2.1 (10.9) 49.1 (7.9) -1.3 (11.1) 49.9 (7.7) -1.2 (10.9) - Median 50.2 2.6 49.5 -2.3 50.0 -0.6 - Min - Max 29.1 - 74.9 -25.8 - 30.7 24.5 - 67.1 -28.1 - 33.9 31.5 - 68.5 -29.7 - 27.0 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.1) 1.5 (10.9) 49.6 (7.1) -0.8 (10.6) 49.7 (8.0) -1.4 (11.0) - Median 49.3 1.2 49.2 -0.8 49.8 -0.2 - Min - Max 29.4 - 71.4 -30.9 - 24.8 32.7 - 67.0 -33.2 - 35.9 28.7 - 68.4 -35.5 - 28.4 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 50.6 (7.5) 2.0 (11.2) 48.4 (8.0) -2.1 (11.7) 49.1 (7.6) -2.0 (10.7) - Median 49.4 1.6 47.7 -2.9 49.2 -2.2 - Min - Max 35.1 - 72.2 -25.2 - 31.5 30.4 - 70.6 -31.2 - 29.2 30.6 - 72.9 -30.5 - 34.6 - Pulse Rate - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.6 (9.0) NA 49.4 (8.4) NA 49.3 (8.6) NA - Median 49.9 NA 48.9 NA 48.6 NA - Min - Max 25.9 - 68.8 NA 30.5 - 80.5 NA 26.5 - 67.5 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 51.9 (8.1) 0.0 (0.0) 50.3 (8.8) 0.0 (0.0) 50.3 (9.4) 0.0 (0.0) - Median 51.2 0.0 51.2 0.0 50.7 0.0 - Min - Max 28.5 - 72.9 0.0 - 0.0 26.9 - 67.3 0.0 - 0.0 27.8 - 71.2 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.3) -1.8 (11.6) 49.3 (7.5) -1.0 (11.6) 49.8 (7.7) -0.5 (12.6) - Median 49.9 -2.7 48.8 -2.2 49.5 -1.5 - Min - Max 26.7 - 69.4 -26.4 - 29.6 30.7 - 67.8 -29.5 - 32.1 30.1 - 72.9 -25.1 - 33.3 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 49.7 (8.8) -2.2 (12.4) 50.8 (7.6) 0.6 (11.8) 49.1 (7.7) -1.2 (11.3) - Median 49.2 -3.0 50.3 0.1 49.2 -1.1 - Min - Max 26.0 - 69.6 -37.6 - 26.4 33.3 - 70.3 -28.9 - 37.7 32.2 - 73.6 -33.7 - 26.3 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.5 (7.4) -1.4 (11.1) 49.9 (7.8) -0.4 (11.0) 49.8 (7.2) -0.5 (12.1) - Median 50.6 -1.1 49.4 -0.8 49.6 -2.3 - Min - Max 27.7 - 73.0 -30.0 - 26.5 27.8 - 71.0 -26.5 - 33.4 27.9 - 67.5 -28.7 - 28.0 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 49.0 (8.3) -2.9 (11.1) 50.0 (8.4) -0.3 (12.0) 51.0 (7.7) 0.7 (11.6) - Median 48.8 -3.0 49.9 -0.4 51.4 0.7 - Min - Max 32.3 - 78.4 -28.4 - 30.4 30.4 - 79.8 -29.1 - 28.3 31.4 - 70.3 -30.6 - 25.1 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 48.4 (8.5) -3.5 (11.6) 50.3 (7.2) 0.0 (11.2) 49.7 (7.6) -0.5 (12.4) - Median 47.7 -4.0 50.3 -1.5 49.1 -2.7 - Min - Max 25.0 - 75.7 -41.3 - 31.5 29.4 - 67.7 -24.9 - 27.3 35.3 - 73.7 -24.6 - 34.0 - Respiratory Rate - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.2 (8.2) NA 50.3 (8.3) NA 49.6 (8.4) NA - Median 49.3 NA 49.9 NA 50.1 NA - Min - Max 26.0 - 74.4 NA 31.4 - 69.2 NA 24.3 - 67.9 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 49.4 (8.1) 0.0 (0.0) 51.1 (8.2) 0.0 (0.0) 50.8 (8.4) 0.0 (0.0) - Median 49.8 0.0 50.5 0.0 51.1 0.0 - Min - Max 29.3 - 69.3 0.0 - 0.0 31.2 - 74.5 0.0 - 0.0 26.2 - 71.0 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 49.5 (8.0) 0.1 (11.6) 50.0 (7.9) -1.1 (11.5) 51.0 (7.8) 0.2 (11.1) - Median 49.3 0.2 49.1 -1.6 51.1 0.4 - Min - Max 24.1 - 66.1 -31.6 - 32.1 25.0 - 67.7 -29.1 - 30.9 29.9 - 69.8 -23.6 - 27.7 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 49.7 (7.7) 0.3 (9.7) 50.4 (8.7) -0.8 (12.1) 49.3 (8.5) -1.4 (12.0) - Median 49.2 1.4 49.7 -1.6 50.2 -1.6 - Min - Max 30.8 - 71.3 -24.9 - 27.6 28.5 - 77.0 -29.0 - 28.9 22.4 - 67.6 -43.8 - 27.0 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.6 (8.2) 1.2 (11.7) 50.2 (6.9) -1.0 (10.1) 49.1 (7.3) -1.6 (11.1) - Median 50.5 0.7 49.7 -0.7 49.6 -0.9 - Min - Max 33.2 - 70.8 -33.5 - 33.3 32.3 - 67.8 -29.6 - 22.2 27.4 - 63.3 -25.4 - 33.6 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (7.7) 0.0 (10.9) 49.9 (7.8) -1.2 (11.0) 50.8 (7.8) 0.1 (11.1) - Median 48.9 -1.4 48.9 -2.4 50.4 -0.6 - Min - Max 25.9 - 69.7 -25.9 - 40.3 33.7 - 68.5 -25.0 - 29.2 31.9 - 72.0 -27.6 - 31.1 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 49.9 (7.7) 0.5 (11.5) 50.6 (8.2) -0.5 (12.0) 49.9 (7.9) -0.8 (10.6) - Median 49.8 -0.2 50.3 -0.6 49.6 -1.7 - Min - Max 34.3 - 70.7 -30.3 - 37.2 28.4 - 69.8 -29.4 - 23.8 29.8 - 68.4 -21.3 - 22.3 - Systolic Blood Pressure - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.6 (8.3) NA 50.3 (8.3) NA 50.9 (7.8) NA - Median 49.6 NA 50.2 NA 50.8 NA - Min - Max 24.0 - 70.9 NA 26.2 - 79.1 NA 27.6 - 67.4 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 49.4 (8.5) 0.0 (0.0) 50.2 (8.5) 0.0 (0.0) 48.5 (7.2) 0.0 (0.0) - Median 48.3 0.0 50.0 0.0 49.2 0.0 - Min - Max 24.3 - 71.1 0.0 - 0.0 24.4 - 71.1 0.0 - 0.0 26.2 - 63.4 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 50.7 (9.2) 1.3 (12.8) 49.3 (8.7) -1.0 (11.2) 49.6 (8.0) 1.2 (10.2) - Median 49.5 0.1 48.3 -1.7 49.8 0.1 - Min - Max 29.8 - 79.0 -29.5 - 37.6 33.0 - 74.0 -27.6 - 24.8 25.5 - 68.6 -22.8 - 31.3 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (8.5) -0.0 (11.9) 49.4 (7.0) -0.9 (11.0) 49.3 (7.7) 0.8 (9.7) - Median 49.5 -0.2 49.4 -0.9 48.3 -0.2 - Min - Max 24.2 - 65.4 -39.1 - 32.7 27.6 - 69.2 -37.1 - 33.9 29.4 - 74.7 -24.9 - 29.0 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 49.7 (7.8) 0.3 (11.4) 49.0 (7.8) -1.2 (12.1) 50.5 (8.3) 2.0 (11.1) - Median 50.1 1.5 48.8 -1.2 51.7 2.0 - Min - Max 31.3 - 70.3 -27.5 - 27.1 15.6 - 66.2 -35.6 - 36.4 29.6 - 69.4 -29.7 - 30.6 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (7.6) 0.0 (11.5) 49.4 (8.6) -0.8 (12.6) 50.7 (7.4) 2.2 (10.5) - Median 49.8 0.6 49.9 -1.3 50.8 3.0 - Min - Max 22.9 - 69.6 -32.3 - 28.5 22.1 - 72.1 -29.7 - 38.1 29.7 - 65.1 -28.8 - 34.1 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (7.9) -0.0 (11.9) 50.2 (8.7) -0.0 (11.8) 50.4 (8.2) 1.9 (10.5) - Median 49.6 0.7 49.9 0.2 50.8 2.4 - Min - Max 26.1 - 69.7 -39.2 - 33.9 27.9 - 74.2 -27.7 - 36.2 34.3 - 74.5 -23.7 - 32.4 - Temperature - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 48.9 (9.4) NA 50.1 (7.9) NA 50.2 (8.4) NA - Median 49.6 NA 50.1 NA 49.8 NA - Min - Max 29.0 - 75.2 NA 29.9 - 73.4 NA 30.5 - 72.3 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 49.7 (8.3) 0.0 (0.0) 50.9 (7.4) 0.0 (0.0) 49.1 (8.2) 0.0 (0.0) - Median 50.4 0.0 51.5 0.0 48.7 0.0 - Min - Max 29.0 - 69.1 0.0 - 0.0 30.7 - 67.7 0.0 - 0.0 20.6 - 70.5 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 51.6 (8.1) 1.9 (11.8) 49.5 (8.2) -1.4 (9.9) 49.8 (7.6) 0.6 (11.2) - Median 52.3 2.3 48.8 -1.1 50.2 0.9 - Min - Max 31.5 - 71.2 -28.0 - 33.2 27.1 - 67.3 -28.1 - 26.6 32.1 - 68.5 -28.0 - 29.4 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 50.2 (7.5) 0.5 (11.0) 49.5 (7.0) -1.3 (10.2) 51.8 (8.1) 2.6 (11.8) - Median 50.7 -0.7 49.7 -0.7 51.6 2.8 - Min - Max 35.1 - 67.7 -33.9 - 25.4 32.3 - 73.2 -29.7 - 29.0 30.1 - 73.3 -24.9 - 32.8 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.2) 0.3 (11.1) 49.9 (8.0) -1.0 (10.9) 49.7 (8.2) 0.6 (11.1) - Median 49.5 1.1 49.6 -1.1 49.2 0.5 - Min - Max 29.0 - 68.7 -29.3 - 24.1 32.7 - 70.3 -28.3 - 21.6 35.2 - 75.2 -27.3 - 32.0 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 50.7 (7.7) 0.9 (11.8) 49.8 (8.5) -1.1 (11.8) 49.9 (7.5) 0.8 (11.5) - Median 50.7 1.4 49.8 -1.7 49.8 0.1 - Min - Max 29.7 - 70.8 -25.9 - 29.2 24.4 - 68.9 -28.2 - 37.3 28.4 - 68.6 -25.8 - 32.5 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 50.3 (8.3) 0.6 (12.3) 50.5 (8.1) -0.4 (11.7) 50.1 (7.3) 0.9 (10.8) - Median 49.8 -0.5 50.8 -0.3 49.7 0.9 - Min - Max 33.4 - 75.0 -30.1 - 33.4 34.6 - 78.0 -23.1 - 30.9 31.1 - 73.4 -23.8 - 39.1 - Weight - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.9 (7.4) NA 49.7 (8.3) NA 50.3 (9.1) NA - Median 48.7 NA 49.3 NA 49.7 NA - Min - Max 33.7 - 65.9 NA 25.8 - 71.5 NA 26.0 - 70.0 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 50.7 (7.9) 0.0 (0.0) 49.9 (8.3) 0.0 (0.0) 49.4 (7.5) 0.0 (0.0) - Median 49.8 0.0 50.7 0.0 49.6 0.0 - Min - Max 33.3 - 71.9 0.0 - 0.0 27.9 - 69.8 0.0 - 0.0 29.4 - 65.1 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 49.2 (7.7) -1.5 (11.4) 49.1 (7.6) -0.8 (11.4) 49.6 (8.4) 0.2 (12.1) - Median 50.5 -0.2 48.9 -2.7 49.9 -0.5 - Min - Max 26.0 - 64.5 -42.9 - 21.3 31.5 - 66.1 -25.0 - 23.5 29.7 - 69.1 -31.0 - 32.6 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 50.9 (8.2) 0.2 (11.2) 50.0 (7.8) 0.1 (12.5) 49.7 (7.9) 0.4 (10.8) - Median 50.3 2.0 50.2 -0.2 49.8 1.3 - Min - Max 32.1 - 70.1 -30.0 - 22.8 28.7 - 72.1 -29.2 - 34.6 28.1 - 73.7 -28.0 - 26.6 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 49.0 (8.0) -1.8 (11.4) 49.6 (8.3) -0.3 (12.5) 50.4 (8.1) 1.1 (10.8) - Median 48.9 -1.3 48.5 -1.0 50.8 -0.2 - Min - Max 31.7 - 75.4 -29.7 - 24.9 32.4 - 76.0 -36.8 - 34.4 27.8 - 70.9 -28.9 - 31.7 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.1) -0.7 (11.2) 49.5 (8.1) -0.4 (10.4) 49.7 (7.5) 0.3 (10.4) - Median 50.9 -0.9 49.4 -0.5 49.6 -1.2 - Min - Max 30.1 - 68.9 -29.5 - 24.3 29.0 - 69.5 -24.9 - 26.3 30.8 - 77.4 -23.4 - 29.9 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 49.0 (8.1) -1.7 (11.5) 51.6 (8.5) 1.7 (11.5) 49.9 (7.4) 0.5 (10.9) - Median 49.8 -0.8 51.8 1.2 49.6 -0.2 - Min - Max 26.4 - 66.7 -34.8 - 29.7 26.3 - 76.6 -24.0 - 29.3 28.7 - 67.9 -36.1 - 31.0 - ---- - - Code - res - Output - Parameter A: Drug X B: Placebo C: Combination - Analysis Visit Change from Change from Change from - Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline - ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Diastolic Blood Pressure - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 50.0 (7.2) NA 50.8 (8.4) NA 50.2 (7.6) NA - Median 49.7 NA 50.1 NA 49.6 NA - Min - Max 31.7 - 71.2 NA 29.3 - 69.2 NA 26.9 - 70.0 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 48.6 (8.0) 0.0 (0.0) 50.4 (7.9) 0.0 (0.0) 51.1 (7.8) 0.0 (0.0) - Median 48.4 0.0 50.2 0.0 50.8 0.0 - Min - Max 27.7 - 64.6 0.0 - 0.0 21.7 - 67.5 0.0 - 0.0 29.7 - 71.4 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 50.3 (7.5) 1.7 (10.8) 49.7 (7.7) -0.8 (10.9) 48.9 (7.9) -2.3 (10.4) - Median 50.1 0.6 49.7 -1.1 47.7 -2.2 - Min - Max 33.0 - 69.0 -20.4 - 29.9 33.7 - 66.5 -25.8 - 28.4 30.4 - 67.0 -22.1 - 22.4 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 50.8 (7.8) 2.2 (11.8) 49.7 (8.4) -0.7 (12.4) 50.0 (8.3) -1.1 (11.6) - Median 51.4 3.1 50.2 -0.7 51.0 -2.3 - Min - Max 31.9 - 70.3 -23.9 - 39.2 30.6 - 68.1 -28.4 - 37.0 24.8 - 65.6 -29.2 - 30.7 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.7 (7.8) 2.1 (10.9) 49.1 (7.9) -1.3 (11.1) 49.9 (7.7) -1.2 (10.9) - Median 50.2 2.6 49.5 -2.3 50.0 -0.6 - Min - Max 29.1 - 74.9 -25.8 - 30.7 24.5 - 67.1 -28.1 - 33.9 31.5 - 68.5 -29.7 - 27.0 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.1) 1.5 (10.9) 49.6 (7.1) -0.8 (10.6) 49.7 (8.0) -1.4 (11.0) - Median 49.3 1.2 49.2 -0.8 49.8 -0.2 - Min - Max 29.4 - 71.4 -30.9 - 24.8 32.7 - 67.0 -33.2 - 35.9 28.7 - 68.4 -35.5 - 28.4 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 50.6 (7.5) 2.0 (11.2) 48.4 (8.0) -2.1 (11.7) 49.1 (7.6) -2.0 (10.7) - Median 49.4 1.6 47.7 -2.9 49.2 -2.2 - Min - Max 35.1 - 72.2 -25.2 - 31.5 30.4 - 70.6 -31.2 - 29.2 30.6 - 72.9 -30.5 - 34.6 - Pulse Rate - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.6 (9.0) NA 49.4 (8.4) NA 49.3 (8.6) NA - Median 49.9 NA 48.9 NA 48.6 NA - Min - Max 25.9 - 68.8 NA 30.5 - 80.5 NA 26.5 - 67.5 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 51.9 (8.1) 0.0 (0.0) 50.3 (8.8) 0.0 (0.0) 50.3 (9.4) 0.0 (0.0) - Median 51.2 0.0 51.2 0.0 50.7 0.0 - Min - Max 28.5 - 72.9 0.0 - 0.0 26.9 - 67.3 0.0 - 0.0 27.8 - 71.2 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.3) -1.8 (11.6) 49.3 (7.5) -1.0 (11.6) 49.8 (7.7) -0.5 (12.6) - Median 49.9 -2.7 48.8 -2.2 49.5 -1.5 - Min - Max 26.7 - 69.4 -26.4 - 29.6 30.7 - 67.8 -29.5 - 32.1 30.1 - 72.9 -25.1 - 33.3 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 49.7 (8.8) -2.2 (12.4) 50.8 (7.6) 0.6 (11.8) 49.1 (7.7) -1.2 (11.3) - Median 49.2 -3.0 50.3 0.1 49.2 -1.1 - Min - Max 26.0 - 69.6 -37.6 - 26.4 33.3 - 70.3 -28.9 - 37.7 32.2 - 73.6 -33.7 - 26.3 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.5 (7.4) -1.4 (11.1) 49.9 (7.8) -0.4 (11.0) 49.8 (7.2) -0.5 (12.1) - Median 50.6 -1.1 49.4 -0.8 49.6 -2.3 - Min - Max 27.7 - 73.0 -30.0 - 26.5 27.8 - 71.0 -26.5 - 33.4 27.9 - 67.5 -28.7 - 28.0 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 49.0 (8.3) -2.9 (11.1) 50.0 (8.4) -0.3 (12.0) 51.0 (7.7) 0.7 (11.6) - Median 48.8 -3.0 49.9 -0.4 51.4 0.7 - Min - Max 32.3 - 78.4 -28.4 - 30.4 30.4 - 79.8 -29.1 - 28.3 31.4 - 70.3 -30.6 - 25.1 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 48.4 (8.5) -3.5 (11.6) 50.3 (7.2) 0.0 (11.2) 49.7 (7.6) -0.5 (12.4) - Median 47.7 -4.0 50.3 -1.5 49.1 -2.7 - Min - Max 25.0 - 75.7 -41.3 - 31.5 29.4 - 67.7 -24.9 - 27.3 35.3 - 73.7 -24.6 - 34.0 - Respiratory Rate - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.2 (8.2) NA 50.3 (8.3) NA 49.6 (8.4) NA - Median 49.3 NA 49.9 NA 50.1 NA - Min - Max 26.0 - 74.4 NA 31.4 - 69.2 NA 24.3 - 67.9 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 49.4 (8.1) 0.0 (0.0) 51.1 (8.2) 0.0 (0.0) 50.8 (8.4) 0.0 (0.0) - Median 49.8 0.0 50.5 0.0 51.1 0.0 - Min - Max 29.3 - 69.3 0.0 - 0.0 31.2 - 74.5 0.0 - 0.0 26.2 - 71.0 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 49.5 (8.0) 0.1 (11.6) 50.0 (7.9) -1.1 (11.5) 51.0 (7.8) 0.2 (11.1) - Median 49.3 0.2 49.1 -1.6 51.1 0.4 - Min - Max 24.1 - 66.1 -31.6 - 32.1 25.0 - 67.7 -29.1 - 30.9 29.9 - 69.8 -23.6 - 27.7 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 49.7 (7.7) 0.3 (9.7) 50.4 (8.7) -0.8 (12.1) 49.3 (8.5) -1.4 (12.0) - Median 49.2 1.4 49.7 -1.6 50.2 -1.6 - Min - Max 30.8 - 71.3 -24.9 - 27.6 28.5 - 77.0 -29.0 - 28.9 22.4 - 67.6 -43.8 - 27.0 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.6 (8.2) 1.2 (11.7) 50.2 (6.9) -1.0 (10.1) 49.1 (7.3) -1.6 (11.1) - Median 50.5 0.7 49.7 -0.7 49.6 -0.9 - Min - Max 33.2 - 70.8 -33.5 - 33.3 32.3 - 67.8 -29.6 - 22.2 27.4 - 63.3 -25.4 - 33.6 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (7.7) 0.0 (10.9) 49.9 (7.8) -1.2 (11.0) 50.8 (7.8) 0.1 (11.1) - Median 48.9 -1.4 48.9 -2.4 50.4 -0.6 - Min - Max 25.9 - 69.7 -25.9 - 40.3 33.7 - 68.5 -25.0 - 29.2 31.9 - 72.0 -27.6 - 31.1 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 49.9 (7.7) 0.5 (11.5) 50.6 (8.2) -0.5 (12.0) 49.9 (7.9) -0.8 (10.6) - Median 49.8 -0.2 50.3 -0.6 49.6 -1.7 - Min - Max 34.3 - 70.7 -30.3 - 37.2 28.4 - 69.8 -29.4 - 23.8 29.8 - 68.4 -21.3 - 22.3 - Systolic Blood Pressure - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.6 (8.3) NA 50.3 (8.3) NA 50.9 (7.8) NA - Median 49.6 NA 50.2 NA 50.8 NA - Min - Max 24.0 - 70.9 NA 26.2 - 79.1 NA 27.6 - 67.4 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 49.4 (8.5) 0.0 (0.0) 50.2 (8.5) 0.0 (0.0) 48.5 (7.2) 0.0 (0.0) - Median 48.3 0.0 50.0 0.0 49.2 0.0 - Min - Max 24.3 - 71.1 0.0 - 0.0 24.4 - 71.1 0.0 - 0.0 26.2 - 63.4 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 50.7 (9.2) 1.3 (12.8) 49.3 (8.7) -1.0 (11.2) 49.6 (8.0) 1.2 (10.2) - Median 49.5 0.1 48.3 -1.7 49.8 0.1 - Min - Max 29.8 - 79.0 -29.5 - 37.6 33.0 - 74.0 -27.6 - 24.8 25.5 - 68.6 -22.8 - 31.3 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (8.5) -0.0 (11.9) 49.4 (7.0) -0.9 (11.0) 49.3 (7.7) 0.8 (9.7) - Median 49.5 -0.2 49.4 -0.9 48.3 -0.2 - Min - Max 24.2 - 65.4 -39.1 - 32.7 27.6 - 69.2 -37.1 - 33.9 29.4 - 74.7 -24.9 - 29.0 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 49.7 (7.8) 0.3 (11.4) 49.0 (7.8) -1.2 (12.1) 50.5 (8.3) 2.0 (11.1) - Median 50.1 1.5 48.8 -1.2 51.7 2.0 - Min - Max 31.3 - 70.3 -27.5 - 27.1 15.6 - 66.2 -35.6 - 36.4 29.6 - 69.4 -29.7 - 30.6 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (7.6) 0.0 (11.5) 49.4 (8.6) -0.8 (12.6) 50.7 (7.4) 2.2 (10.5) - Median 49.8 0.6 49.9 -1.3 50.8 3.0 - Min - Max 22.9 - 69.6 -32.3 - 28.5 22.1 - 72.1 -29.7 - 38.1 29.7 - 65.1 -28.8 - 34.1 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 49.4 (7.9) -0.0 (11.9) 50.2 (8.7) -0.0 (11.8) 50.4 (8.2) 1.9 (10.5) - Median 49.6 0.7 49.9 0.2 50.8 2.4 - Min - Max 26.1 - 69.7 -39.2 - 33.9 27.9 - 74.2 -27.7 - 36.2 34.3 - 74.5 -23.7 - 32.4 - Temperature - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 48.9 (9.4) NA 50.1 (7.9) NA 50.2 (8.4) NA - Median 49.6 NA 50.1 NA 49.8 NA - Min - Max 29.0 - 75.2 NA 29.9 - 73.4 NA 30.5 - 72.3 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 49.7 (8.3) 0.0 (0.0) 50.9 (7.4) 0.0 (0.0) 49.1 (8.2) 0.0 (0.0) - Median 50.4 0.0 51.5 0.0 48.7 0.0 - Min - Max 29.0 - 69.1 0.0 - 0.0 30.7 - 67.7 0.0 - 0.0 20.6 - 70.5 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 51.6 (8.1) 1.9 (11.8) 49.5 (8.2) -1.4 (9.9) 49.8 (7.6) 0.6 (11.2) - Median 52.3 2.3 48.8 -1.1 50.2 0.9 - Min - Max 31.5 - 71.2 -28.0 - 33.2 27.1 - 67.3 -28.1 - 26.6 32.1 - 68.5 -28.0 - 29.4 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 50.2 (7.5) 0.5 (11.0) 49.5 (7.0) -1.3 (10.2) 51.8 (8.1) 2.6 (11.8) - Median 50.7 -0.7 49.7 -0.7 51.6 2.8 - Min - Max 35.1 - 67.7 -33.9 - 25.4 32.3 - 73.2 -29.7 - 29.0 30.1 - 73.3 -24.9 - 32.8 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.2) 0.3 (11.1) 49.9 (8.0) -1.0 (10.9) 49.7 (8.2) 0.6 (11.1) - Median 49.5 1.1 49.6 -1.1 49.2 0.5 - Min - Max 29.0 - 68.7 -29.3 - 24.1 32.7 - 70.3 -28.3 - 21.6 35.2 - 75.2 -27.3 - 32.0 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 50.7 (7.7) 0.9 (11.8) 49.8 (8.5) -1.1 (11.8) 49.9 (7.5) 0.8 (11.5) - Median 50.7 1.4 49.8 -1.7 49.8 0.1 - Min - Max 29.7 - 70.8 -25.9 - 29.2 24.4 - 68.9 -28.2 - 37.3 28.4 - 68.6 -25.8 - 32.5 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 50.3 (8.3) 0.6 (12.3) 50.5 (8.1) -0.4 (11.7) 50.1 (7.3) 0.9 (10.8) - Median 49.8 -0.5 50.8 -0.3 49.7 0.9 - Min - Max 33.4 - 75.0 -30.1 - 33.4 34.6 - 78.0 -23.1 - 30.9 31.1 - 73.4 -23.8 - 39.1 - Weight - SCREENING - n 134 0 134 0 132 0 - Mean (SD) 49.9 (7.4) NA 49.7 (8.3) NA 50.3 (9.1) NA - Median 48.7 NA 49.3 NA 49.7 NA - Min - Max 33.7 - 65.9 NA 25.8 - 71.5 NA 26.0 - 70.0 NA - BASELINE - n 134 134 134 134 132 132 - Mean (SD) 50.7 (7.9) 0.0 (0.0) 49.9 (8.3) 0.0 (0.0) 49.4 (7.5) 0.0 (0.0) - Median 49.8 0.0 50.7 0.0 49.6 0.0 - Min - Max 33.3 - 71.9 0.0 - 0.0 27.9 - 69.8 0.0 - 0.0 29.4 - 65.1 0.0 - 0.0 - WEEK 1 DAY 8 - n 134 134 134 134 132 132 - Mean (SD) 49.2 (7.7) -1.5 (11.4) 49.1 (7.6) -0.8 (11.4) 49.6 (8.4) 0.2 (12.1) - Median 50.5 -0.2 48.9 -2.7 49.9 -0.5 - Min - Max 26.0 - 64.5 -42.9 - 21.3 31.5 - 66.1 -25.0 - 23.5 29.7 - 69.1 -31.0 - 32.6 - WEEK 2 DAY 15 - n 134 134 134 134 132 132 - Mean (SD) 50.9 (8.2) 0.2 (11.2) 50.0 (7.8) 0.1 (12.5) 49.7 (7.9) 0.4 (10.8) - Median 50.3 2.0 50.2 -0.2 49.8 1.3 - Min - Max 32.1 - 70.1 -30.0 - 22.8 28.7 - 72.1 -29.2 - 34.6 28.1 - 73.7 -28.0 - 26.6 - WEEK 3 DAY 22 - n 134 134 134 134 132 132 - Mean (SD) 49.0 (8.0) -1.8 (11.4) 49.6 (8.3) -0.3 (12.5) 50.4 (8.1) 1.1 (10.8) - Median 48.9 -1.3 48.5 -1.0 50.8 -0.2 - Min - Max 31.7 - 75.4 -29.7 - 24.9 32.4 - 76.0 -36.8 - 34.4 27.8 - 70.9 -28.9 - 31.7 - WEEK 4 DAY 29 - n 134 134 134 134 132 132 - Mean (SD) 50.1 (8.1) -0.7 (11.2) 49.5 (8.1) -0.4 (10.4) 49.7 (7.5) 0.3 (10.4) - Median 50.9 -0.9 49.4 -0.5 49.6 -1.2 - Min - Max 30.1 - 68.9 -29.5 - 24.3 29.0 - 69.5 -24.9 - 26.3 30.8 - 77.4 -23.4 - 29.9 - WEEK 5 DAY 36 - n 134 134 134 134 132 132 - Mean (SD) 49.0 (8.1) -1.7 (11.5) 51.6 (8.5) 1.7 (11.5) 49.9 (7.4) 0.5 (10.9) - Median 49.8 -0.8 51.8 1.2 49.6 -0.2 - Min - Max 26.4 - 66.7 -34.8 - 29.7 26.3 - 76.6 -24.0 - 29.3 28.7 - 67.9 -36.1 - 31.0 - -# vst02_1 functions with default argument value return expected result with test data - - Code - res - Output - Assessment A: Drug X B: Placebo C: Combination - Abnormality (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————— - Diastolic Blood Pressure - Low 69/134 (51.5%) 73/134 (54.5%) 67/132 (50.8%) - High 76/134 (56.7%) 67/134 (50%) 65/132 (49.2%) - Pulse Rate - Low 75/134 (56%) 67/134 (50%) 69/132 (52.3%) - High 67/134 (50%) 74/134 (55.2%) 53/132 (40.2%) - Respiratory Rate - Low 70/134 (52.2%) 72/134 (53.7%) 64/132 (48.5%) - High 75/134 (56%) 65/134 (48.5%) 71/132 (53.8%) - Systolic Blood Pressure - Low 71/134 (53%) 69/134 (51.5%) 70/132 (53%) - High 78/134 (58.2%) 62/134 (46.3%) 64/132 (48.5%) - Temperature - Low 66/134 (49.3%) 68/134 (50.7%) 81/132 (61.4%) - High 67/134 (50%) 66/134 (49.3%) 69/132 (52.3%) - Weight - Low 73/134 (54.5%) 71/134 (53%) 76/132 (57.6%) - High 69/134 (51.5%) 74/134 (55.2%) 74/132 (56.1%) - -# vst02_2 functions with default argument value return expected result with test data - - Code - res - Output - Assessment A: Drug X B: Placebo C: Combination - Abnormality (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————— - Diastolic Blood Pressure - Low 55/120 (45.8%) 60/121 (49.6%) 53/118 (44.9%) - High 55/113 (48.7%) 56/123 (45.5%) 52/119 (43.7%) - Pulse Rate - Low 66/125 (52.8%) 54/121 (44.6%) 55/118 (46.6%) - High 52/119 (43.7%) 59/119 (49.6%) 38/117 (32.5%) - Respiratory Rate - Low 59/123 (48%) 56/118 (47.5%) 50/118 (42.4%) - High 65/124 (52.4%) 58/127 (45.7%) 57/118 (48.3%) - Systolic Blood Pressure - Low 53/116 (45.7%) 55/120 (45.8%) 58/120 (48.3%) - High 65/121 (53.7%) 53/125 (42.4%) 56/124 (45.2%) - Temperature - Low 51/119 (42.9%) 53/119 (44.5%) 64/115 (55.7%) - High 61/128 (47.7%) 53/121 (43.8%) 59/122 (48.4%) - Weight - Low 59/120 (49.2%) 54/117 (46.2%) 63/119 (52.9%) - High 58/123 (47.2%) 61/121 (50.4%) 55/113 (48.7%) + Adverse Event 9 (36.0%) 7 (30.4%) 10 (45.5%) + Progressive Disease 8 (32.0%) 6 (26.1%) 6 (27.3%) + Other 8 (32.0%) 10 (43.5%) 6 (27.3%) diff --git a/tests/testthat/_snaps/dmt01.md b/tests/testthat/_snaps/dmt01.md index 3ef12007f..d053a4799 100644 --- a/tests/testthat/_snaps/dmt01.md +++ b/tests/testthat/_snaps/dmt01.md @@ -1,56 +1,60 @@ -# dmt01_1 can handle NA values +# dmt01 can handle NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) —————————————————————————————————————————————————————————————————————————————————————————————— + Age Group + n 134 134 132 400 + <65 134 (100%) 134 (100%) 131 (99.2%) 399 (99.8%) + >=65 0 0 1 (0.8%) 1 (0.2%) Sex n 134 134 132 400 - F 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%) - M 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%) + Male 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%) + Female 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%) Ethnicity n 134 134 132 400 NOT REPORTED 6 (4.5%) 10 (7.5%) 11 (8.3%) 27 (6.8%) HISPANIC OR LATINO 15 (11.2%) 18 (13.4%) 15 (11.4%) 48 (12.0%) NOT HISPANIC OR LATINO 104 (77.6%) 103 (76.9%) 101 (76.5%) 308 (77.0%) UNKNOWN 9 (6.7%) 3 (2.2%) 5 (3.8%) 17 (4.2%) - Race + RACE n 134 134 132 400 AMERICAN INDIAN OR ALASKA NATIVE 8 (6.0%) 11 (8.2%) 6 (4.5%) 25 (6.2%) ASIAN 68 (50.7%) 68 (50.7%) 73 (55.3%) 209 (52.2%) BLACK OR AFRICAN AMERICAN 31 (23.1%) 28 (20.9%) 32 (24.2%) 91 (22.8%) WHITE 27 (20.1%) 27 (20.1%) 21 (15.9%) 75 (18.8%) -# dmt01_1 can handle some NA values +# dmt01 can handle numeric NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) —————————————————————————————————————————————————————————————————————————————————————————————— Age (yr) - n 133 134 132 399 + n 134 134 132 400 Mean (SD) 33.8 (6.6) 35.4 (7.9) 35.4 (7.7) 34.9 (7.4) Median 33.0 35.0 35.0 34.0 Min - Max 21.0 - 50.0 21.0 - 62.0 20.0 - 69.0 20.0 - 69.0 - Age group (yr) - n 133 134 132 399 - <65 133 (100%) 134 (100%) 131 (99.2%) 398 (99.7%) - >=65 0 0 1 (0.8%) 1 (0.3%) + Age Group + n 134 134 132 400 + <65 134 (100%) 134 (100%) 131 (99.2%) 399 (99.8%) + >=65 0 0 1 (0.8%) 1 (0.2%) Sex n 134 134 132 400 - F 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%) - M 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%) + Male 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%) + Female 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%) Ethnicity n 134 134 132 400 NOT REPORTED 6 (4.5%) 10 (7.5%) 11 (8.3%) 27 (6.8%) HISPANIC OR LATINO 15 (11.2%) 18 (13.4%) 15 (11.4%) 48 (12.0%) NOT HISPANIC OR LATINO 104 (77.6%) 103 (76.9%) 101 (76.5%) 308 (77.0%) UNKNOWN 9 (6.7%) 3 (2.2%) 5 (3.8%) 17 (4.2%) - Race + RACE n 134 134 132 400 AMERICAN INDIAN OR ALASKA NATIVE 8 (6.0%) 11 (8.2%) 6 (4.5%) 25 (6.2%) ASIAN 68 (50.7%) 68 (50.7%) 73 (55.3%) 209 (52.2%) diff --git a/tests/testthat/_snaps/dst01.md b/tests/testthat/_snaps/dst01.md index 791363c31..456161989 100644 --- a/tests/testthat/_snaps/dst01.md +++ b/tests/testthat/_snaps/dst01.md @@ -1,36 +1,35 @@ -# dst01 can handle all NA values +# dst01 works as expected when all data are NA Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ———————————————————————————————————————————————————————————————————————— - Completed Study 0 0 0 0 + + ———————————————————————————————————————————————————————————————————————————————————————— + Null Report: No observations met the reporting criteria for inclusion in this output. -# dst01_1 can handle all NA values in disc_reason_var +# dst01 can handle all NA values in DCSREAS Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ———————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) + A: Drug X B: Placebo C: Combination All Patients + (N=134) (N=134) (N=132) (N=400) + —————————————————————————————————————————————————————————————————————— + Completed 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) + Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) + Discontinued 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) -# dst01_1 can handle some NA values +# dst01 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) ————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 72 (54.5%) 206 (51.5%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 41 (30.6%) 40 (29.9%) 38 (28.8%) 119 (29.8%) + Completed 68 (51.1%) 66 (49.3%) 72 (55.0%) 206 (51.8%) + Ongoing 24 (18.0%) 28 (20.9%) 21 (16.0%) 73 (18.3%) + Discontinued 41 (30.6%) 40 (29.9%) 38 (28.8%) 119 (29.8%) ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) DEATH 24 (17.9%) 23 (17.2%) 22 (16.7%) 69 (17.2%) LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) @@ -39,161 +38,79 @@ WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) -# dst01_1 can handle missing levels in status_var - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ————————————————————————————————————————————————————————————————————————— - Completed Study 0 0 0 0 - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - -# dst01_1 can handle missing levels in disc_reason_var +# dst01 can handle missing levels in status_var Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ———————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) + A: Drug X B: Placebo C: Combination All Patients + (N=134) (N=134) (N=132) (N=400) + ———————————————————————————————————————————————————————————————— + Ongoing 24 (100%) 28 (100%) 21 (100%) 73 (100%) -# dst01_2 can handle all NA values +# dst01 can create variants Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ———————————————————————————————————————————————————————————————————————— - Completed Study 0 0 0 0 - -# dst01_2 can handle all NA values in disc_reason_var - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ———————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - -# dst01_2 can handle some NA values - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ——————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 72 (54.5%) 206 (51.5%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 41 (30.6%) 40 (29.9%) 38 (28.8%) 119 (29.8%) - Safety 27 (20.1%) 29 (21.6%) 27 (20.5%) 83 (20.8%) - ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) - DEATH 24 (17.9%) 23 (17.2%) 22 (16.7%) 69 (17.2%) - Non-Safety 14 (10.4%) 11 (8.2%) 11 (8.3%) 36 (9.0%) - LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) - PHYSICIAN DECISION 2 (1.5%) 3 (2.2%) 2 (1.5%) 7 (1.8%) - PROTOCOL VIOLATION 5 (3.7%) 3 (2.2%) 4 (3.0%) 12 (3.0%) - WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) - WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) - -# dst01_2 can handle missing levels in disc_reason_var - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ———————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - Safety 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) - DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) - -# dst01_3 can handle all NA values - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ———————————————————————————————————————————————————————————————————————— - Completed Study 0 0 0 0 + A: Drug X B: Placebo C: Combination All Patients + (N=134) (N=134) (N=132) (N=400) + ————————————————————————————————————————————————————————————————————————————————————————— + Completed 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) + Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) + Alive: Ongoing 8 (6.0%) 6 (4.5%) 8 (6.1%) 22 (5.5%) + Alive: In Follow-up 16 (11.9%) 22 (16.4%) 13 (9.8%) 51 (12.8%) + Discontinued 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) + ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) + DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) + LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) + PHYSICIAN DECISION 2 (1.5%) 3 (2.2%) 2 (1.5%) 7 (1.8%) + PROTOCOL VIOLATION 5 (3.7%) 3 (2.2%) 4 (3.0%) 12 (3.0%) + WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) + WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) -# dst01_3 can handle all NA values in status_treatment_var +--- Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) ——————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) + Completed 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - Safety 28 (20.9%) 29 (21.6%) 27 (20.5%) 84 (21.0%) + Discontinued 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) + Safety ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) - Non-Safety 14 (10.4%) 11 (8.2%) 11 (8.3%) 36 (9.0%) + Non-Safety LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) PHYSICIAN DECISION 2 (1.5%) 3 (2.2%) 2 (1.5%) 7 (1.8%) PROTOCOL VIOLATION 5 (3.7%) 3 (2.2%) 4 (3.0%) 12 (3.0%) WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) -# dst01_3 can handle some NA values in status_treatment_var +--- Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination All Patients (N=134) (N=134) (N=132) (N=400) ——————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) + Completed 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - Safety 28 (20.9%) 29 (21.6%) 27 (20.5%) 84 (21.0%) + Discontinued 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) + Safety ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) - Non-Safety 14 (10.4%) 11 (8.2%) 11 (8.3%) 36 (9.0%) + Non-Safety LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) PHYSICIAN DECISION 2 (1.5%) 3 (2.2%) 2 (1.5%) 7 (1.8%) PROTOCOL VIOLATION 5 (3.7%) 3 (2.2%) 4 (3.0%) 12 (3.0%) WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) - Completed Treatment 46 (34.3%) 35 (26.1%) 41 (31.1%) 122 (30.5%) + Completed Treatment 47 (35.1%) 35 (26.1%) 42 (31.8%) 124 (31.0%) Ongoing Treatment 39 (29.1%) 46 (34.3%) 46 (34.8%) 131 (32.8%) Discontinued Treatment 48 (35.8%) 53 (39.6%) 44 (33.3%) 145 (36.2%) -# dst01_3 can handle missing levels in status_treatment_var - - Code - res - Output - A: Drug X B: Placebo C: Combination All Patients - (N=134) (N=134) (N=132) (N=400) - ——————————————————————————————————————————————————————————————————————————————————————————— - Completed Study 68 (50.7%) 66 (49.3%) 73 (55.3%) 207 (51.7%) - Ongoing 24 (17.9%) 28 (20.9%) 21 (15.9%) 73 (18.2%) - Discontinued Study 42 (31.3%) 40 (29.9%) 38 (28.8%) 120 (30.0%) - Safety 28 (20.9%) 29 (21.6%) 27 (20.5%) 84 (21.0%) - ADVERSE EVENT 3 (2.2%) 6 (4.5%) 5 (3.8%) 14 (3.5%) - DEATH 25 (18.7%) 23 (17.2%) 22 (16.7%) 70 (17.5%) - Non-Safety 14 (10.4%) 11 (8.2%) 11 (8.3%) 36 (9.0%) - LACK OF EFFICACY 2 (1.5%) 2 (1.5%) 3 (2.3%) 7 (1.8%) - PHYSICIAN DECISION 2 (1.5%) 3 (2.2%) 2 (1.5%) 7 (1.8%) - PROTOCOL VIOLATION 5 (3.7%) 3 (2.2%) 4 (3.0%) 12 (3.0%) - WITHDRAWAL BY PARENT/GUARDIAN 4 (3.0%) 2 (1.5%) 1 (0.8%) 7 (1.8%) - WITHDRAWAL BY SUBJECT 1 (0.7%) 1 (0.7%) 1 (0.8%) 3 (0.8%) - Ongoing Treatment 39 (29.1%) 46 (34.3%) 46 (34.8%) 131 (32.8%) - diff --git a/tests/testthat/_snaps/dtht01.md b/tests/testthat/_snaps/dtht01.md index 57a7ef323..a6630f699 100644 --- a/tests/testthat/_snaps/dtht01.md +++ b/tests/testthat/_snaps/dtht01.md @@ -1,71 +1,72 @@ # dtht01 can handle all NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - A: Drug X B: Placebo C: Combination - (N=134) (N=134) (N=132) - ————————————————————————————————————————————————————————————————————————————— - Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) - Days from last drug administration - n 25 23 22 - <=30 14 (56.0%) 11 (47.8%) 14 (63.6%) - >30 11 (44.0%) 12 (52.2%) 8 (36.4%) + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————— + Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) + Primary Cause of Death + n 0 0 0 + Adverse Event 0 0 0 + Progressive Disease 0 0 0 + Other 0 0 0 # dtht01 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) ———————————————————————————————————————————————————————————————————————————————————————————————————— Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) - Primary cause of death + Primary Cause of Death n 24 23 22 - ADVERSE EVENT 8 (33.3%) 7 (30.4%) 10 (45.5%) - PROGRESSIVE DISEASE 8 (33.3%) 6 (26.1%) 6 (27.3%) - OTHER 8 (33.3%) 10 (43.5%) 6 (27.3%) - LOST TO FOLLOW UP 2 (8.0%) 2 (8.7%) 2 (9.1%) - MISSING 2 (8.0%) 3 (13.0%) 2 (9.1%) - Post-study reporting of death 1 (4.0%) 2 (8.7%) 1 (4.5%) - SUICIDE 2 (8.0%) 2 (8.7%) 1 (4.5%) - UNKNOWN 1 (4.0%) 1 (4.3%) 0 + Adverse Event 8 (33.3%) 7 (30.4%) 10 (45.5%) + Progressive Disease 8 (33.3%) 6 (26.1%) 6 (27.3%) + Other 8 (33.3%) 10 (43.5%) 6 (27.3%) + LOST TO FOLLOW UP 2 (8.3%) 2 (8.3%) 2 (8.3%) + MISSING 2 (8.3%) 3 (12.5%) 2 (8.3%) + Post-study reporting of death 1 (4.2%) 2 (8.3%) 1 (4.2%) + SUICIDE 2 (8.3%) 2 (8.3%) 1 (4.2%) + UNKNOWN 1 (4.2%) 1 (4.2%) 0 Days from last drug administration n 25 23 22 <=30 14 (56.0%) 11 (47.8%) 14 (63.6%) >30 11 (44.0%) 12 (52.2%) 8 (36.4%) Primary cause by days from last study drug administration <=30 - n 13 11 14 - ADVERSE EVENT 3 (23.1%) 2 (18.2%) 6 (42.9%) - PROGRESSIVE DISEASE 6 (46.2%) 3 (27.3%) 4 (28.6%) - OTHER 4 (30.8%) 6 (54.5%) 4 (28.6%) + n 14 11 14 + Adverse Event 3 (21.4%) 2 (18.2%) 6 (42.9%) + Progressive Disease 6 (42.9%) 3 (27.3%) 4 (28.6%) + Other 4 (28.6%) 6 (54.5%) 4 (28.6%) >30 n 11 12 8 - ADVERSE EVENT 5 (45.5%) 5 (41.7%) 4 (50.0%) - PROGRESSIVE DISEASE 2 (18.2%) 3 (25.0%) 2 (25.0%) - OTHER 4 (36.4%) 4 (33.3%) 2 (25.0%) + Adverse Event 5 (45.5%) 5 (41.7%) 4 (50.0%) + Progressive Disease 2 (18.2%) 3 (25.0%) 2 (25.0%) + Other 4 (36.4%) 4 (33.3%) 2 (25.0%) # dtht01 can be parametrize as expected Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) ———————————————————————————————————————————————————————————————————————————————————————————————————— Total number of deaths 25 (18.7%) 23 (17.2%) 22 (16.7%) - Primary cause of death + Primary Cause of Death n 25 23 22 - ADVERSE EVENT 9 (36.0%) 7 (30.4%) 10 (45.5%) - PROGRESSIVE DISEASE 8 (32.0%) 6 (26.1%) 6 (27.3%) - OTHER 8 (32.0%) 10 (43.5%) 6 (27.3%) - LOST TO FOLLOW UP 2 (8.0%) 2 (8.7%) 2 (9.1%) - MISSING 2 (8.0%) 3 (13.0%) 2 (9.1%) - Post-study reporting of death 1 (4.0%) 2 (8.7%) 1 (4.5%) - SUICIDE 2 (8.0%) 2 (8.7%) 1 (4.5%) - UNKNOWN 1 (4.0%) 1 (4.3%) 0 + Adverse Event 9 (36.0%) 7 (30.4%) 10 (45.5%) + Progressive Disease 8 (32.0%) 6 (26.1%) 6 (27.3%) + Other 8 (32.0%) 10 (43.5%) 6 (27.3%) + LOST TO FOLLOW UP 2 (8.3%) 2 (8.3%) 2 (8.3%) + MISSING 2 (8.3%) 3 (12.5%) 2 (8.3%) + Post-study reporting of death 1 (4.2%) 2 (8.3%) 1 (4.2%) + SUICIDE 2 (8.3%) 2 (8.3%) 1 (4.2%) + UNKNOWN 1 (4.2%) 1 (4.2%) 0 Days from last drug administration n 25 23 22 <=30 14 (56.0%) 11 (47.8%) 14 (63.6%) @@ -73,12 +74,12 @@ Primary cause by days from last study drug administration <=30 n 14 11 14 - ADVERSE EVENT 4 (28.6%) 2 (18.2%) 6 (42.9%) - PROGRESSIVE DISEASE 6 (42.9%) 3 (27.3%) 4 (28.6%) - OTHER 4 (28.6%) 6 (54.5%) 4 (28.6%) + Adverse Event 4 (28.6%) 2 (18.2%) 6 (42.9%) + Progressive Disease 6 (42.9%) 3 (27.3%) 4 (28.6%) + Other 4 (28.6%) 6 (54.5%) 4 (28.6%) >30 n 11 12 8 - ADVERSE EVENT 5 (45.5%) 5 (41.7%) 4 (50.0%) - PROGRESSIVE DISEASE 2 (18.2%) 3 (25.0%) 2 (25.0%) - OTHER 4 (36.4%) 4 (33.3%) 2 (25.0%) + Adverse Event 5 (45.5%) 5 (41.7%) 4 (50.0%) + Progressive Disease 2 (18.2%) 3 (25.0%) 2 (25.0%) + Other 4 (36.4%) 4 (33.3%) 2 (25.0%) diff --git a/tests/testthat/_snaps/egt01.md b/tests/testthat/_snaps/egt01.md new file mode 100644 index 000000000..132c3551d --- /dev/null +++ b/tests/testthat/_snaps/egt01.md @@ -0,0 +1,125 @@ +# egt01 functions with default argument value return expected result with test data + + Code + res + Output + Parameter A: Drug X B: Placebo C: Combination + Analysis Visit Change from Change from Change from + Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline + (N=3216) (N=3216) (N=3216) (N=3216) (N=3168) (N=3168) + —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— + Heart Rate + BASELINE + n 134 134 132 + Mean (SD) 71.447 (17.932) 69.829 (20.717) 69.341 (20.948) + Median 72.697 73.352 71.956 + Min - Max 9.09 - 106.91 13.49 - 115.52 11.63 - 115.49 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 70.191 (20.274) -1.257 (25.966) 69.427 (20.799) -0.401 (29.735) 68.654 (18.064) -0.687 (27.807) + Median 70.703 -2.197 70.462 -0.520 68.573 -0.760 + Min - Max 8.53 - 127.50 -50.97 - 89.16 16.85 - 129.14 -68.18 - 88.38 16.87 - 115.60 -68.25 - 67.20 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 70.317 (19.561) -1.130 (26.262) 71.108 (20.556) 1.279 (31.353) 69.193 (18.056) -0.148 (28.606) + Median 70.885 -1.105 72.524 -0.311 69.304 -1.548 + Min - Max 17.14 - 116.32 -85.03 - 67.52 9.22 - 120.54 -73.07 - 81.44 29.62 - 120.50 -67.75 - 66.29 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 68.251 (20.168) -3.196 (28.657) 68.947 (20.558) -0.881 (30.142) 70.884 (20.280) 1.543 (27.285) + Median 68.787 -2.167 67.802 1.195 70.124 0.139 + Min - Max 13.33 - 131.73 -81.20 - 72.57 23.98 - 130.41 -73.03 - 103.31 20.91 - 116.79 -64.51 - 72.52 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 70.063 (18.410) -1.385 (26.595) 71.601 (20.336) 1.772 (30.262) 71.020 (20.591) 1.679 (29.597) + Median 69.330 -4.535 72.211 -0.884 70.523 3.811 + Min - Max 22.30 - 116.51 -58.07 - 77.32 17.53 - 129.06 -64.32 - 85.34 10.35 - 117.30 -65.91 - 105.67 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 66.406 (19.745) -5.041 (27.112) 71.252 (18.923) 1.423 (27.084) 71.257 (18.563) 1.916 (29.591) + Median 65.405 -6.827 70.858 0.637 73.292 1.735 + Min - Max 23.89 - 110.38 -73.26 - 57.24 25.86 - 125.73 -71.15 - 67.37 23.89 - 117.19 -58.23 - 68.86 + QT Duration + BASELINE + n 134 134 132 + Mean (SD) 336.834 (117.958) 351.004 (98.436) 352.598 (105.114) + Median 344.414 351.480 347.956 + Min - Max 86.98 - 665.40 98.90 - 641.92 105.68 - 628.14 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 342.574 (101.093) 5.741 (159.936) 363.946 (102.338) 12.943 (140.729) 359.424 (105.161) 6.826 (147.129) + Median 347.264 -1.779 356.539 13.730 363.838 8.685 + Min - Max 91.63 - 591.42 -346.44 - 452.75 114.92 - 656.45 -317.53 - 416.35 51.91 - 611.88 -473.19 - 358.00 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 353.244 (93.926) 16.410 (162.103) 345.926 (96.783) -5.078 (152.509) 335.689 (98.605) -16.909 (138.448) + Median 351.099 16.722 346.831 -9.681 320.957 -22.267 + Min - Max 138.01 - 587.30 -414.07 - 389.16 146.42 - 556.07 -440.28 - 364.76 104.91 - 562.34 -326.55 - 325.27 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 370.115 (101.568) 33.282 (152.780) 343.412 (102.585) -7.592 (138.803) 346.947 (94.965) -5.652 (144.651) + Median 378.209 39.586 335.119 -15.888 352.154 9.113 + Min - Max 118.14 - 615.18 -391.72 - 520.09 63.37 - 566.51 -311.28 - 293.76 126.09 - 580.81 -412.11 - 410.01 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 345.774 (95.970) 8.941 (145.647) 354.377 (108.286) 3.374 (142.390) 341.358 (106.745) -11.240 (145.648) + Median 340.134 5.576 346.699 -17.129 352.295 -11.868 + Min - Max 110.12 - 616.58 -393.34 - 456.04 80.82 - 687.69 -439.90 - 364.80 4.95 - 570.61 -480.94 - 330.67 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 358.903 (97.693) 22.069 (155.681) 338.648 (99.260) -12.356 (130.457) 349.303 (95.769) -3.296 (135.997) + Median 351.959 5.886 344.167 0.405 350.319 12.680 + Min - Max 88.38 - 661.12 -353.30 - 539.84 31.25 - 563.90 -338.85 - 352.75 119.02 - 581.83 -311.45 - 295.53 + RR Duration + BASELINE + n 134 134 132 + Mean (SD) 1028.419 (286.385) 1027.484 (324.000) 1074.623 (277.328) + Median 1041.860 1047.268 1080.866 + Min - Max 34.33 - 1783.71 5.29 - 1877.19 289.60 - 1617.06 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 990.155 (318.736) -38.264 (446.403) 1061.587 (269.138) 34.103 (401.759) 1039.642 (284.389) -34.981 (406.037) + Median 963.881 -86.501 1061.504 66.914 1014.780 -97.826 + Min - Max 110.82 - 2014.56 -1014.82 - 1389.40 276.83 - 1711.99 -942.16 - 993.82 498.21 - 1937.47 -958.61 - 908.90 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 1013.371 (304.135) -15.047 (425.807) 1109.402 (318.227) 81.918 (453.105) 1045.209 (277.506) -29.414 (380.841) + Median 1040.693 40.485 1117.764 69.275 1034.637 -15.331 + Min - Max 164.19 - 1677.10 -1216.10 - 1053.15 160.73 - 2048.73 -1127.10 - 1148.61 252.84 - 1722.33 -859.27 - 871.54 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 1013.987 (304.990) -14.431 (406.529) 1118.345 (296.527) 90.861 (409.573) 1036.593 (268.521) -38.030 (421.484) + Median 1027.232 -50.543 1134.596 52.029 1030.717 -60.720 + Min - Max 357.04 - 1798.65 -882.94 - 1080.26 97.14 - 1825.43 -887.06 - 1166.15 446.02 - 1713.38 -984.79 - 902.37 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 1033.309 (313.919) 4.890 (483.153) 1079.762 (298.940) 52.278 (429.253) 1027.549 (295.856) -47.074 (378.235) + Median 1050.399 5.601 1051.613 69.554 1023.360 -49.519 + Min - Max 54.33 - 1979.43 -1345.93 - 1195.41 347.94 - 1762.04 -826.43 - 1191.83 341.62 - 2144.86 -1002.03 - 1048.66 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 1072.335 (282.901) 43.916 (379.048) 1058.452 (271.012) 30.968 (436.030) 1029.043 (271.211) -45.580 (405.528) + Median 1067.330 55.872 1068.950 33.615 1065.256 -34.395 + Min - Max 352.97 - 2000.56 -1028.79 - 1418.57 208.83 - 1794.73 -978.97 - 1365.13 436.28 - 1794.07 -962.18 - 1329.88 + +# egt01 can handle n = 0 and outputs NE instead of infs and NAs + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X + Value at Visit + (N=0) + ——————————————————————————————— + Heart Rate + BASELINE + n 0 + Mean (SD) NE (NE) + Median NE + Min - Max NE - NE + WEEK 1 DAY 8 + n 0 + Mean (SD) NE (NE) + Median NE + Min - Max NE - NE + diff --git a/tests/testthat/_snaps/egt02.md b/tests/testthat/_snaps/egt02.md new file mode 100644 index 000000000..bf0445c44 --- /dev/null +++ b/tests/testthat/_snaps/egt02.md @@ -0,0 +1,36 @@ +# egt02_1 functions with default argument value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + Assessment A: Drug X B: Placebo C: Combination + Abnormality (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————— + Heart Rate + Low 49/134 (36.6%) 57/134 (42.5%) 55/132 (41.7%) + High 48/134 (35.8%) 51/134 (38.1%) 48/132 (36.4%) + QT Duration + Low 53/134 (39.6%) 56/134 (41.8%) 54/132 (40.9%) + High 45/134 (33.6%) 51/134 (38.1%) 45/132 (34.1%) + RR Duration + Low 56/134 (41.8%) 41/134 (30.6%) 50/132 (37.9%) + High 39/134 (29.1%) 62/134 (46.3%) 41/132 (31.1%) + +# egt02_2 functions with default value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + Assessment A: Drug X B: Placebo C: Combination + Abnormality (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————— + Heart Rate + Low 43/128 (33.6%) 47/124 (37.9%) 40/117 (34.2%) + High 41/127 (32.3%) 46/129 (35.7%) 38/122 (31.1%) + QT Duration + Low 32/113 (28.3%) 48/126 (38.1%) 46/124 (37.1%) + High 36/125 (28.8%) 47/130 (36.2%) 33/119 (27.7%) + RR Duration + Low 51/129 (39.5%) 30/123 (24.4%) 44/126 (34.9%) + High 32/127 (25.2%) 50/122 (41%) 34/125 (27.2%) + diff --git a/tests/testthat/_snaps/egt03.md b/tests/testthat/_snaps/egt03.md index 76d732669..2bc1eaaca 100644 --- a/tests/testthat/_snaps/egt03.md +++ b/tests/testthat/_snaps/egt03.md @@ -1,40 +1,31 @@ -# egt03_1 can handle all NA values +# egt03 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Planned Arm Code Minimum Post-Baseline Assessment - Baseline Reference Range Indicator LOW NORMAL HIGH Missing + Baseline Reference Range Indicator LOW NORMAL HIGH Missing ———————————————————————————————————————————————————————————————————————————————— ARM A (N=134) - LOW 0 0 0 0 - NORMAL 0 0 0 0 - HIGH 0 0 0 0 - Missing 0 0 0 0 + LOW 1 (0.7%) 5 (3.7%) 0 0 + NORMAL 36 (26.9%) 85 (63.4%) 0 0 + HIGH 3 (2.2%) 4 (3%) 0 0 + Missing 0 0 0 0 ARM B (N=134) - LOW 0 0 0 0 - NORMAL 0 0 0 0 - HIGH 0 0 0 0 - Missing 0 0 0 0 + LOW 1 (0.7%) 9 (6.7%) 0 0 + NORMAL 41 (30.6%) 78 (58.2%) 0 0 + HIGH 1 (0.7%) 4 (3%) 0 0 + Missing 0 0 0 0 ARM C (N=132) - LOW 0 0 0 0 - NORMAL 0 0 0 0 - HIGH 0 0 0 0 - Missing 0 0 0 0 - ---- - - Code - res - Output - - ———————————————————————————————————————————————————————————————————————————————————————— - Null Report: No observations met the reporting criteria for inclusion in this output. + LOW 4 (3%) 11 (8.3%) 0 0 + NORMAL 32 (24.2%) 75 (56.8%) 0 0 + HIGH 1 (0.8%) 9 (6.8%) 0 0 + Missing 0 0 0 0 -# egt03_1 can handle some NA values +# egt03 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Planned Arm Code Minimum Post-Baseline Assessment Baseline Reference Range Indicator LOW NORMAL HIGH Missing @@ -55,51 +46,3 @@ HIGH 1 (0.8%) 9 (6.8%) 0 0 Missing 0 0 0 0 -# egt03_2 can handle all NA values - - Code - res - Output - Planned Arm Code Maximum Post-Baseline Assessment - Baseline Reference Range Indicator LOW NORMAL HIGH Missing - ———————————————————————————————————————————————————————————————————————————————— - ARM A (N=134) - LOW 0 0 0 0 - NORMAL 0 0 0 0 - HIGH 0 0 0 0 - Missing 0 0 0 0 - ARM B (N=134) - LOW 0 0 0 0 - NORMAL 0 0 0 0 - HIGH 0 0 0 0 - Missing 0 0 0 0 - ARM C (N=132) - LOW 0 0 0 0 - NORMAL 0 0 0 0 - HIGH 0 0 0 0 - Missing 0 0 0 0 - -# egt03_2 can handle some NA values - - Code - res - Output - Planned Arm Code Maximum Post-Baseline Assessment - Baseline Reference Range Indicator LOW NORMAL HIGH Missing - ———————————————————————————————————————————————————————————————————————————————— - ARM A (N=134) - LOW 0 2 (1.5%) 4 (3%) 0 - NORMAL 0 88 (65.7%) 33 (24.6%) 0 - HIGH 0 5 (3.7%) 2 (1.5%) 0 - Missing 0 0 0 0 - ARM B (N=134) - LOW 0 8 (6%) 2 (1.5%) 0 - NORMAL 0 78 (58.2%) 41 (30.6%) 0 - HIGH 0 3 (2.2%) 2 (1.5%) 0 - Missing 0 0 0 0 - ARM C (N=132) - LOW 0 12 (9.1%) 3 (2.3%) 0 - NORMAL 0 79 (59.8%) 28 (21.2%) 0 - HIGH 0 5 (3.8%) 5 (3.8%) 0 - Missing 0 0 0 0 - diff --git a/tests/testthat/_snaps/egt05_qtcat.md b/tests/testthat/_snaps/egt05_qtcat.md index 9469eddd5..6694543d0 100644 --- a/tests/testthat/_snaps/egt05_qtcat.md +++ b/tests/testthat/_snaps/egt05_qtcat.md @@ -1,87 +1,156 @@ -# egt05_qtcat can handle all NA values +# egt05_qtcat functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - - ———————————————————————————————————————————————————————————————————————————————————————— - Null Report: No observations met the reporting criteria for inclusion in this output. + Parameter + Analysis Visit A: Drug X B: Placebo C: Combination + Category (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————————— + QT Duration + BASELINE + Value at Visit + n 134 134 132 + <=450 msec 115 (85.8%) 117 (87.3%) 104 (78.8%) + >450 to <=480 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) + >480 to <=500 msec 4 (3.0%) 3 (2.2%) 6 (4.5%) + >500 msec 9 (6.7%) 4 (3.0%) 13 (9.8%) + WEEK 1 DAY 8 + Value at Visit + n 134 134 132 + <=450 msec 113 (84.3%) 106 (79.1%) 106 (80.3%) + >450 to <=480 msec 10 (7.5%) 10 (7.5%) 11 (8.3%) + >480 to <=500 msec 4 (3.0%) 4 (3.0%) 3 (2.3%) + >500 msec 7 (5.2%) 14 (10.4%) 12 (9.1%) + Change from Baseline + n 134 134 132 + <=30 msec 76 (56.7%) 75 (56.0%) 75 (56.8%) + >30 to <=60 msec 7 (5.2%) 13 (9.7%) 11 (8.3%) + >60 msec 51 (38.1%) 46 (34.3%) 46 (34.8%) + WEEK 2 DAY 15 + Value at Visit + n 134 134 132 + <=450 msec 111 (82.8%) 114 (85.1%) 112 (84.8%) + >450 to <=480 msec 10 (7.5%) 9 (6.7%) 9 (6.8%) + >480 to <=500 msec 7 (5.2%) 2 (1.5%) 5 (3.8%) + >500 msec 6 (4.5%) 9 (6.7%) 6 (4.5%) + Change from Baseline + n 134 134 132 + <=30 msec 71 (53.0%) 87 (64.9%) 89 (67.4%) + >30 to <=60 msec 11 (8.2%) 9 (6.7%) 9 (6.8%) + >60 msec 52 (38.8%) 38 (28.4%) 34 (25.8%) + WEEK 3 DAY 22 + Value at Visit + n 134 134 132 + <=450 msec 106 (79.1%) 112 (83.6%) 118 (89.4%) + >450 to <=480 msec 13 (9.7%) 7 (5.2%) 3 (2.3%) + >480 to <=500 msec 4 (3.0%) 5 (3.7%) 2 (1.5%) + >500 msec 11 (8.2%) 10 (7.5%) 9 (6.8%) + Change from Baseline + n 134 134 132 + <=30 msec 63 (47.0%) 80 (59.7%) 81 (61.4%) + >30 to <=60 msec 14 (10.4%) 8 (6.0%) 11 (8.3%) + >60 msec 57 (42.5%) 46 (34.3%) 40 (30.3%) + WEEK 4 DAY 29 + Value at Visit + n 134 134 132 + <=450 msec 117 (87.3%) 103 (76.9%) 114 (86.4%) + >450 to <=480 msec 7 (5.2%) 14 (10.4%) 6 (4.5%) + >480 to <=500 msec 4 (3.0%) 7 (5.2%) 3 (2.3%) + >500 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) + Change from Baseline + n 134 134 132 + <=30 msec 79 (59.0%) 80 (59.7%) 79 (59.8%) + >30 to <=60 msec 11 (8.2%) 7 (5.2%) 10 (7.6%) + >60 msec 44 (32.8%) 47 (35.1%) 43 (32.6%) + WEEK 5 DAY 36 + Value at Visit + n 134 134 132 + <=450 msec 107 (79.9%) 117 (87.3%) 112 (84.8%) + >450 to <=480 msec 16 (11.9%) 5 (3.7%) 13 (9.8%) + >480 to <=500 msec 5 (3.7%) 9 (6.7%) 3 (2.3%) + >500 msec 6 (4.5%) 3 (2.2%) 4 (3.0%) + Change from Baseline + n 134 134 132 + <=30 msec 72 (53.7%) 82 (61.2%) 73 (55.3%) + >30 to <=60 msec 10 (7.5%) 11 (8.2%) 11 (8.3%) + >60 msec 52 (38.8%) 41 (30.6%) 48 (36.4%) # egt05_qtcat can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output - Parameter - Analysis Visit A: Drug X B: Placebo C: Combination - Category (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————— - QT Duration - BASELINE - Value at Visit - n 133 134 132 - <=450 msec 114 (85.7%) 117 (87.3%) 104 (78.8%) - >450 to <=480 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) - >480 to <=500 msec 4 (3%) 3 (2.2%) 6 (4.5%) - >500 msec 9 (6.8%) 4 (3%) 13 (9.8%) - WEEK 1 DAY 8 - Value at Visit - n 134 134 132 - <=450 msec 113 (84.3%) 106 (79.1%) 106 (80.3%) - >450 to <=480 msec 10 (7.5%) 10 (7.5%) 11 (8.3%) - >480 to <=500 msec 4 (3%) 4 (3%) 3 (2.3%) - >500 msec 7 (5.2%) 14 (10.4%) 12 (9.1%) - Change from Baseline - n 134 134 132 - <=30 msec 76 (56.7%) 75 (56%) 75 (56.8%) - >30 to <=60 msec 7 (5.2%) 13 (9.7%) 11 (8.3%) - >60 msec 51 (38.1%) 46 (34.3%) 46 (34.8%) - WEEK 2 DAY 15 - Value at Visit - n 134 134 132 - <=450 msec 111 (82.8%) 114 (85.1%) 112 (84.8%) - >450 to <=480 msec 10 (7.5%) 9 (6.7%) 9 (6.8%) - >480 to <=500 msec 7 (5.2%) 2 (1.5%) 5 (3.8%) - >500 msec 6 (4.5%) 9 (6.7%) 6 (4.5%) - Change from Baseline - n 134 134 132 - <=30 msec 71 (53%) 87 (64.9%) 89 (67.4%) - >30 to <=60 msec 11 (8.2%) 9 (6.7%) 9 (6.8%) - >60 msec 52 (38.8%) 38 (28.4%) 34 (25.8%) - WEEK 3 DAY 22 - Value at Visit - n 134 134 132 - <=450 msec 106 (79.1%) 112 (83.6%) 118 (89.4%) - >450 to <=480 msec 13 (9.7%) 7 (5.2%) 3 (2.3%) - >480 to <=500 msec 4 (3%) 5 (3.7%) 2 (1.5%) - >500 msec 11 (8.2%) 10 (7.5%) 9 (6.8%) - Change from Baseline - n 134 134 132 - <=30 msec 63 (47%) 80 (59.7%) 81 (61.4%) - >30 to <=60 msec 14 (10.4%) 8 (6%) 11 (8.3%) - >60 msec 57 (42.5%) 46 (34.3%) 40 (30.3%) - WEEK 4 DAY 29 - Value at Visit - n 134 134 132 - <=450 msec 117 (87.3%) 103 (76.9%) 114 (86.4%) - >450 to <=480 msec 7 (5.2%) 14 (10.4%) 6 (4.5%) - >480 to <=500 msec 4 (3%) 7 (5.2%) 3 (2.3%) - >500 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) - Change from Baseline - n 134 134 132 - <=30 msec 79 (59%) 80 (59.7%) 79 (59.8%) - >30 to <=60 msec 11 (8.2%) 7 (5.2%) 10 (7.6%) - >60 msec 44 (32.8%) 47 (35.1%) 43 (32.6%) - WEEK 5 DAY 36 - Value at Visit - n 134 134 132 - <=450 msec 107 (79.9%) 117 (87.3%) 112 (84.8%) - >450 to <=480 msec 16 (11.9%) 5 (3.7%) 13 (9.8%) - >480 to <=500 msec 5 (3.7%) 9 (6.7%) 3 (2.3%) - >500 msec 6 (4.5%) 3 (2.2%) 4 (3%) - Change from Baseline - n 134 134 132 - <=30 msec 72 (53.7%) 82 (61.2%) 73 (55.3%) - >30 to <=60 msec 10 (7.5%) 11 (8.2%) 11 (8.3%) - >60 msec 52 (38.8%) 41 (30.6%) 48 (36.4%) + Parameter + Analysis Visit A: Drug X B: Placebo C: Combination + Category (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————————— + QT Duration + BASELINE + Value at Visit + n 133 134 132 + <=450 msec 114 (85.7%) 117 (87.3%) 104 (78.8%) + >450 to <=480 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) + >480 to <=500 msec 4 (3.0%) 3 (2.2%) 6 (4.5%) + >500 msec 9 (6.8%) 4 (3.0%) 13 (9.8%) + WEEK 1 DAY 8 + Value at Visit + n 134 134 132 + <=450 msec 113 (84.3%) 106 (79.1%) 106 (80.3%) + >450 to <=480 msec 10 (7.5%) 10 (7.5%) 11 (8.3%) + >480 to <=500 msec 4 (3.0%) 4 (3.0%) 3 (2.3%) + >500 msec 7 (5.2%) 14 (10.4%) 12 (9.1%) + Change from Baseline + n 134 134 132 + <=30 msec 76 (56.7%) 75 (56.0%) 75 (56.8%) + >30 to <=60 msec 7 (5.2%) 13 (9.7%) 11 (8.3%) + >60 msec 51 (38.1%) 46 (34.3%) 46 (34.8%) + WEEK 2 DAY 15 + Value at Visit + n 134 134 132 + <=450 msec 111 (82.8%) 114 (85.1%) 112 (84.8%) + >450 to <=480 msec 10 (7.5%) 9 (6.7%) 9 (6.8%) + >480 to <=500 msec 7 (5.2%) 2 (1.5%) 5 (3.8%) + >500 msec 6 (4.5%) 9 (6.7%) 6 (4.5%) + Change from Baseline + n 134 134 132 + <=30 msec 71 (53.0%) 87 (64.9%) 89 (67.4%) + >30 to <=60 msec 11 (8.2%) 9 (6.7%) 9 (6.8%) + >60 msec 52 (38.8%) 38 (28.4%) 34 (25.8%) + WEEK 3 DAY 22 + Value at Visit + n 134 134 132 + <=450 msec 106 (79.1%) 112 (83.6%) 118 (89.4%) + >450 to <=480 msec 13 (9.7%) 7 (5.2%) 3 (2.3%) + >480 to <=500 msec 4 (3.0%) 5 (3.7%) 2 (1.5%) + >500 msec 11 (8.2%) 10 (7.5%) 9 (6.8%) + Change from Baseline + n 134 134 132 + <=30 msec 63 (47.0%) 80 (59.7%) 81 (61.4%) + >30 to <=60 msec 14 (10.4%) 8 (6.0%) 11 (8.3%) + >60 msec 57 (42.5%) 46 (34.3%) 40 (30.3%) + WEEK 4 DAY 29 + Value at Visit + n 134 134 132 + <=450 msec 117 (87.3%) 103 (76.9%) 114 (86.4%) + >450 to <=480 msec 7 (5.2%) 14 (10.4%) 6 (4.5%) + >480 to <=500 msec 4 (3.0%) 7 (5.2%) 3 (2.3%) + >500 msec 6 (4.5%) 10 (7.5%) 9 (6.8%) + Change from Baseline + n 134 134 132 + <=30 msec 79 (59.0%) 80 (59.7%) 79 (59.8%) + >30 to <=60 msec 11 (8.2%) 7 (5.2%) 10 (7.6%) + >60 msec 44 (32.8%) 47 (35.1%) 43 (32.6%) + WEEK 5 DAY 36 + Value at Visit + n 134 134 132 + <=450 msec 107 (79.9%) 117 (87.3%) 112 (84.8%) + >450 to <=480 msec 16 (11.9%) 5 (3.7%) 13 (9.8%) + >480 to <=500 msec 5 (3.7%) 9 (6.7%) 3 (2.3%) + >500 msec 6 (4.5%) 3 (2.2%) 4 (3.0%) + Change from Baseline + n 134 134 132 + <=30 msec 72 (53.7%) 82 (61.2%) 73 (55.3%) + >30 to <=60 msec 10 (7.5%) 11 (8.2%) 11 (8.3%) + >60 msec 52 (38.8%) 41 (30.6%) 48 (36.4%) diff --git a/tests/testthat/_snaps/ext01.md b/tests/testthat/_snaps/ext01.md index e7b55d8f6..fccc6fba6 100644 --- a/tests/testthat/_snaps/ext01.md +++ b/tests/testthat/_snaps/ext01.md @@ -1,7 +1,45 @@ +# ext01 functions with default argument value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ———————————————————————————————————————————————————————————————————————————————————————— + Total number of doses administered + n 134 134 132 + Mean (SD) 7.0 (0.0) 7.0 (0.0) 7.0 (0.0) + Median 7.0 7.0 7.0 + Min - Max 7.0 - 7.0 7.0 - 7.0 7.0 - 7.0 + Total dose administered + n 134 134 132 + Mean (SD) 6655.5 (1209.6) 6401.2 (1269.9) 6776.4 (1212.5) + Median 6720.0 6360.0 6720.0 + Min - Max 4320.0 - 9360.0 4080.0 - 9360.0 4320.0 - 9360.0 + +# ext01 functions with categorical data return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————————————————— + Total dose administered + n 134 134 132 + Mean (SD) 6655.5 (1209.6) 6401.2 (1269.9) 6776.4 (1212.5) + Median 6720.0 6360.0 6720.0 + Min - Max 4320.0 - 9360.0 4080.0 - 9360.0 4320.0 - 9360.0 + n 134 134 132 + <5000 10 (7.5%) 18 (13.4%) 7 (5.3%) + 5000-7000 72 (53.7%) 71 (53.0%) 71 (53.8%) + 7000-9000 50 (37.3%) 42 (31.3%) 51 (38.6%) + >9000 2 (1.5%) 3 (2.2%) 3 (2.3%) + # ext01 works Code - tlg + cat(formatters::export_as_txt(res1, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -20,7 +58,7 @@ --- Code - tlg + cat(formatters::export_as_txt(res2, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -36,10 +74,10 @@ Median 6720.0 6360.0 6720.0 Min - Max 4320.0 - 9360.0 4080.0 - 9360.0 4320.0 - 9360.0 -# ext02_1 works for selected parameters +# ext01 works for selected parameters and categorical variables Code - run(ext01_2, proc_data, prune_0 = TRUE) + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X B: Placebo C: Combination (N=134) (N=134) (N=132) @@ -51,7 +89,7 @@ Min - Max 4320.0 - 9360.0 4080.0 - 9360.0 4320.0 - 9360.0 n 134 134 132 <5000 10 (7.5%) 18 (13.4%) 7 (5.3%) - >9000 2 (1.5%) 3 (2.2%) 3 (2.3%) 5000-7000 72 (53.7%) 71 (53.0%) 71 (53.8%) 7000-9000 50 (37.3%) 42 (31.3%) 51 (38.6%) + >9000 2 (1.5%) 3 (2.2%) 3 (2.3%) diff --git a/tests/testthat/_snaps/lbt01.md b/tests/testthat/_snaps/lbt01.md index d1e268e65..ddae9b235 100644 --- a/tests/testthat/_snaps/lbt01.md +++ b/tests/testthat/_snaps/lbt01.md @@ -1,10 +1,115 @@ -# lbt01_1 can handle n = 0 and outputs NE instead of infs and NAs +# lbt01 functions with default argument value return expected result with test data Code res + Output + Parameter A: Drug X B: Placebo C: Combination + Analysis Visit Change from Change from Change from + Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline + (N=2412) (N=2412) (N=2412) (N=2412) (N=2376) (N=2376) + —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— + Alanine Aminotransferase Measurement + BASELINE + n 134 134 132 + Mean (SD) 19.786 (4.161) 20.153 (4.171) 20.451 (3.911) + Median 19.786 20.077 20.387 + Min - Max 6.99 - 30.43 8.11 - 34.56 8.82 - 28.72 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 19.301 (3.981) -0.485 (5.850) 20.221 (3.974) 0.068 (6.036) 20.553 (3.895) 0.102 (5.461) + Median 19.209 -0.511 20.090 -0.725 20.402 0.025 + Min - Max 8.86 - 27.32 -12.52 - 19.70 5.84 - 28.75 -12.29 - 17.41 9.87 - 30.70 -13.69 - 15.54 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 19.704 (4.233) -0.082 (6.003) 20.123 (4.265) -0.030 (6.263) 19.247 (3.592) -1.204 (5.485) + Median 19.168 0.038 19.986 -0.371 19.608 -0.482 + Min - Max 7.17 - 30.53 -13.15 - 17.17 7.19 - 30.54 -18.37 - 14.39 8.11 - 26.68 -14.28 - 15.65 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 20.130 (3.757) 0.344 (5.761) 19.837 (3.871) -0.316 (5.604) 19.428 (3.944) -1.023 (5.550) + Median 20.044 0.451 19.873 -0.178 18.838 -1.065 + Min - Max 11.52 - 29.49 -16.04 - 16.26 11.86 - 28.24 -18.52 - 15.00 10.20 - 28.49 -12.33 - 11.10 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 20.351 (4.583) 0.565 (6.506) 19.632 (4.346) -0.521 (6.293) 19.823 (3.995) -0.627 (5.311) + Median 19.763 0.353 19.151 -1.186 19.884 -0.646 + Min - Max 9.88 - 34.50 -17.00 - 18.79 11.49 - 31.98 -16.58 - 17.23 7.76 - 29.31 -12.13 - 15.30 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 20.418 (3.925) 0.632 (6.053) 19.859 (4.223) -0.294 (6.315) 19.990 (4.169) -0.460 (5.570) + Median 20.718 0.926 20.113 0.728 20.503 -0.990 + Min - Max 10.95 - 30.17 -16.03 - 16.09 10.32 - 29.06 -19.04 - 12.64 7.41 - 27.78 -15.62 - 16.61 + C-Reactive Protein Measurement + BASELINE + n 134 134 132 + Mean (SD) 0.974 (0.236) 1.002 (0.197) 1.005 (0.210) + Median 0.989 1.003 0.996 + Min - Max 0.47 - 1.63 0.50 - 1.58 0.51 - 1.56 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 1.047 (0.202) 0.073 (0.312) 1.007 (0.220) 0.005 (0.289) 1.006 (0.234) 0.001 (0.327) + Median 1.031 0.074 1.031 0.015 1.017 -0.008 + Min - Max 0.46 - 1.57 -0.71 - 1.03 0.42 - 1.43 -0.78 - 0.93 0.44 - 1.53 -0.80 - 0.75 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 0.994 (0.207) 0.020 (0.314) 1.022 (0.186) 0.020 (0.267) 0.978 (0.206) -0.027 (0.278) + Median 1.011 0.012 1.038 0.021 0.967 -0.035 + Min - Max 0.48 - 1.48 -0.85 - 0.76 0.52 - 1.44 -0.55 - 0.68 0.27 - 1.51 -0.76 - 0.50 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 1.002 (0.208) 0.028 (0.309) 0.982 (0.188) -0.020 (0.266) 0.995 (0.191) -0.010 (0.301) + Median 0.998 0.078 0.969 0.004 0.987 -0.029 + Min - Max 0.42 - 1.48 -0.92 - 0.79 0.52 - 1.44 -0.77 - 0.75 0.50 - 1.57 -0.72 - 0.86 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 1.040 (0.203) 0.067 (0.306) 0.987 (0.205) -0.015 (0.278) 0.994 (0.190) -0.011 (0.289) + Median 1.056 0.079 0.970 -0.032 1.004 0.018 + Min - Max 0.54 - 1.53 -0.78 - 1.04 0.43 - 1.43 -0.62 - 0.59 0.55 - 1.46 -0.82 - 0.82 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 0.993 (0.219) 0.019 (0.334) 1.021 (0.190) 0.019 (0.282) 0.976 (0.191) -0.029 (0.290) + Median 0.981 -0.006 1.006 0.011 0.980 -0.037 + Min - Max 0.40 - 1.49 -1.00 - 0.84 0.58 - 1.51 -0.64 - 0.83 0.55 - 1.59 -0.84 - 0.79 + Immunoglobulin A Measurement + BASELINE + n 134 134 132 + Mean (SD) 1.996 (0.372) 1.987 (0.415) 2.015 (0.453) + Median 1.934 1.964 1.987 + Min - Max 1.19 - 2.80 0.79 - 3.07 0.80 - 3.00 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 1.970 (0.404) -0.026 (0.534) 2.056 (0.409) 0.069 (0.562) 2.038 (0.421) 0.022 (0.645) + Median 1.989 -0.007 2.026 0.077 2.055 0.023 + Min - Max 0.97 - 2.97 -1.42 - 1.08 1.06 - 3.23 -1.27 - 1.78 0.81 - 3.05 -1.49 - 1.55 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 2.036 (0.393) 0.040 (0.576) 1.994 (0.417) 0.007 (0.583) 1.969 (0.374) -0.046 (0.602) + Median 1.989 0.068 2.034 0.047 1.978 -0.010 + Min - Max 1.17 - 3.09 -1.29 - 1.61 0.89 - 2.99 -1.48 - 1.38 0.97 - 2.75 -1.64 - 1.45 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 1.974 (0.402) -0.022 (0.519) 1.999 (0.396) 0.012 (0.577) 2.048 (0.391) 0.033 (0.602) + Median 1.964 0.023 1.957 0.039 2.056 0.013 + Min - Max 0.71 - 2.81 -1.44 - 1.21 0.75 - 2.89 -1.60 - 1.21 0.99 - 2.99 -1.81 - 1.23 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 1.962 (0.384) -0.035 (0.543) 1.955 (0.381) -0.032 (0.551) 1.979 (0.420) -0.037 (0.622) + Median 2.025 -0.001 1.945 0.028 1.993 -0.068 + Min - Max 0.80 - 2.73 -1.53 - 1.33 1.07 - 2.81 -1.38 - 1.09 0.99 - 2.95 -1.35 - 1.59 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 1.983 (0.384) -0.013 (0.505) 2.018 (0.433) 0.031 (0.635) 1.965 (0.427) -0.050 (0.609) + Median 1.961 -0.012 1.987 0.071 2.009 0.034 + Min - Max 1.04 - 3.07 -1.69 - 1.28 0.92 - 3.35 -1.38 - 1.64 0.62 - 2.88 -1.60 - 1.32 + +# lbt01 can handle n = 0 and outputs NE instead of infs and NAs + + Code + cat(formatters::export_as_txt(res, lpp = 100)) Output A: Drug X Value at Visit + (N=0) ————————————————————————————————————————————————————— Alanine Aminotransferase Measurement BASELINE diff --git a/tests/testthat/_snaps/lbt04.md b/tests/testthat/_snaps/lbt04.md index dc799f954..fc27b2bb5 100644 --- a/tests/testthat/_snaps/lbt04.md +++ b/tests/testthat/_snaps/lbt04.md @@ -1,19 +1,94 @@ +# lbt04 functions with default argument value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + Laboratory Test A: Drug X B: Placebo C: Combination + Direction of Abnormality (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————————————— + CHEMISTRY + Alanine Aminotransferase Measurement + Low 10/70 (14.3%) 7/65 (10.8%) 6/67 (9.0%) + High 6/70 (8.6%) 6/59 (10.2%) 5/69 (7.2%) + C-Reactive Protein Measurement + Low 7/70 (10.0%) 6/78 (7.7%) 9/65 (13.8%) + High 7/67 (10.4%) 7/69 (10.1%) 3/62 (4.8%) + Immunoglobulin A Measurement + Low 5/52 (9.6%) 10/64 (15.6%) 8/67 (11.9%) + High 7/50 (14.0%) 8/63 (12.7%) 8/67 (11.9%) + COAGULATION + Alanine Aminotransferase Measurement + Low 6/69 (8.7%) 5/67 (7.5%) 6/64 (9.4%) + High 12/67 (17.9%) 7/64 (10.9%) 6/62 (9.7%) + C-Reactive Protein Measurement + Low 8/65 (12.3%) 7/68 (10.3%) 6/67 (9.0%) + High 8/63 (12.7%) 5/66 (7.6%) 6/61 (9.8%) + Immunoglobulin A Measurement + Low 8/60 (13.3%) 8/69 (11.6%) 2/66 (3.0%) + High 6/62 (9.7%) 8/78 (10.3%) 2/64 (3.1%) + HEMATOLOGY + Alanine Aminotransferase Measurement + Low 4/59 (6.8%) 5/63 (7.9%) 10/71 (14.1%) + High 6/58 (10.3%) 7/60 (11.7%) 8/68 (11.8%) + C-Reactive Protein Measurement + Low 9/70 (12.9%) 6/57 (10.5%) 12/75 (16.0%) + High 4/63 (6.3%) 3/53 (5.7%) 11/67 (16.4%) + Immunoglobulin A Measurement + Low 6/69 (8.7%) 8/67 (11.9%) 9/60 (15.0%) + High 9/71 (12.7%) 4/68 (5.9%) 11/63 (17.5%) + # lbt04 can handle all NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) + Output + + ———————————————————————————————————————————————————————————————————————————————————————— + Null Report: No observations met the reporting criteria for inclusion in this output. + +# lbt04 can handle missing levels + + Code + cat(formatters::export_as_txt(res, lpp = 100)) Output - Laboratory Test A: Drug X B: Placebo C: Combination - Direction of Abnormality (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————— - CHEMISTRY - COAGULATION - HEMATOLOGY + Laboratory Test A: Drug X B: Placebo C: Combination + Direction of Abnormality (N=134) (N=134) (N=132) + ———————————————————————————————————————————————————————————————————————————————— + CHEMISTRY + Alanine Aminotransferase Measurement + Low 0/70 0/65 0/67 + High 0/70 0/59 0/69 + C-Reactive Protein Measurement + Low 0/70 0/78 0/65 + High 0/67 0/69 0/62 + Immunoglobulin A Measurement + Low 0/52 0/64 0/67 + High 0/50 0/63 0/67 + COAGULATION + Alanine Aminotransferase Measurement + Low 0/69 0/67 0/64 + High 0/67 0/64 0/62 + C-Reactive Protein Measurement + Low 0/65 0/68 0/67 + High 0/63 0/66 0/61 + Immunoglobulin A Measurement + Low 0/60 0/69 0/66 + High 0/62 0/78 0/64 + HEMATOLOGY + Alanine Aminotransferase Measurement + Low 0/59 0/63 0/71 + High 0/58 0/60 0/68 + C-Reactive Protein Measurement + Low 0/70 0/57 0/75 + High 0/63 0/53 0/67 + Immunoglobulin A Measurement + Low 0/69 0/67 0/60 + High 0/71 0/68 0/63 # lbt04 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Laboratory Test A: Drug X B: Placebo C: Combination Direction of Abnormality (N=134) (N=134) (N=132) diff --git a/tests/testthat/_snaps/lbt05.md b/tests/testthat/_snaps/lbt05.md index 97961b95f..989d315b8 100644 --- a/tests/testthat/_snaps/lbt05.md +++ b/tests/testthat/_snaps/lbt05.md @@ -1,7 +1,43 @@ +# lbt05 functions with default argument value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + Laboratory Test A: Drug X B: Placebo C: Combination + Direction of Abnormality (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————— + Alanine Aminotransferase Measurement (n) 129 128 127 + Low + Single, not last 1 (0.8%) 2 (1.6%) 2 (1.6%) + Last or replicated 4 (3.1%) 11 (8.6%) 3 (2.4%) + Any Abnormality 5 (3.9%) 13 (10.2%) 5 (3.9%) + High + Single, not last 4 (3.1%) 4 (3.1%) 1 (0.8%) + Last or replicated 5 (3.9%) 8 (6.2%) 6 (4.7%) + Any Abnormality 9 (7.0%) 12 (9.4%) 7 (5.5%) + C-Reactive Protein Measurement (n) 128 123 123 + Low + Single, not last 1 (0.8%) 0 3 (2.4%) + Last or replicated 11 (8.6%) 7 (5.7%) 4 (3.3%) + Any Abnormality 12 (9.4%) 7 (5.7%) 7 (5.7%) + High + Single, not last 2 (1.6%) 1 (0.8%) 2 (1.6%) + Last or replicated 9 (7.0%) 10 (8.1%) 11 (8.9%) + Any Abnormality 11 (8.6%) 11 (8.9%) 13 (10.6%) + Immunoglobulin A Measurement (n) 126 125 119 + Low + Single, not last 1 (0.8%) 3 (2.4%) 4 (3.4%) + Last or replicated 6 (4.8%) 6 (4.8%) 7 (5.9%) + Any Abnormality 7 (5.6%) 9 (7.2%) 11 (9.2%) + High + Single, not last 1 (0.8%) 1 (0.8%) 2 (1.7%) + Last or replicated 3 (2.4%) 8 (6.4%) 4 (3.4%) + Any Abnormality 4 (3.2%) 9 (7.2%) 6 (5.0%) + # lbt05 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Laboratory Test A: Drug X B: Placebo C: Combination Direction of Abnormality (N=134) (N=134) (N=132) diff --git a/tests/testthat/_snaps/lbt07.md b/tests/testthat/_snaps/lbt07.md index ac86af61b..462255f74 100644 --- a/tests/testthat/_snaps/lbt07.md +++ b/tests/testthat/_snaps/lbt07.md @@ -1,7 +1,56 @@ +# lbt07 functions with default argument value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + Parameter + Direction of Abnormality A: Drug X B: Placebo C: Combination + Highest NCI CTCAE Grade (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————————— + Alanine Aminotransferase Measurement (n) 134 133 132 + LOW + 1 14 (10.4%) 15 (11.3%) 10 (7.6%) + 2 13 (9.7%) 18 (13.5%) 11 (8.3%) + 3 20 (14.9%) 12 (9.0%) 10 (7.6%) + 4 7 (5.2%) 8 (6.0%) 10 (7.6%) + Any 54 (40.3%) 53 (39.8%) 41 (31.1%) + HIGH + 1 18 (13.4%) 16 (12.0%) 18 (13.6%) + 2 15 (11.2%) 13 (9.8%) 17 (12.9%) + 3 10 (7.5%) 16 (12.0%) 13 (9.8%) + 4 12 (9.0%) 11 (8.3%) 13 (9.8%) + Any 55 (41.0%) 56 (42.1%) 61 (46.2%) + C-Reactive Protein Measurement (n) 134 134 132 + LOW + 1 16 (11.9%) 19 (14.2%) 15 (11.4%) + 2 21 (15.7%) 13 (9.7%) 16 (12.1%) + 3 12 (9.0%) 9 (6.7%) 18 (13.6%) + 4 11 (8.2%) 7 (5.2%) 5 (3.8%) + Any 60 (44.8%) 48 (35.8%) 54 (40.9%) + HIGH + 1 17 (12.7%) 15 (11.2%) 9 (6.8%) + 2 15 (11.2%) 16 (11.9%) 13 (9.8%) + 3 16 (11.9%) 12 (9.0%) 14 (10.6%) + 4 12 (9.0%) 12 (9.0%) 10 (7.6%) + Any 60 (44.8%) 55 (41.0%) 46 (34.8%) + Immunoglobulin A Measurement (n) 133 133 132 + LOW + 1 17 (12.8%) 23 (17.3%) 17 (12.9%) + 2 12 (9.0%) 15 (11.3%) 14 (10.6%) + 3 15 (11.3%) 11 (8.3%) 14 (10.6%) + 4 10 (7.5%) 16 (12.0%) 10 (7.6%) + Any 54 (40.6%) 65 (48.9%) 55 (41.7%) + HIGH + 1 25 (18.8%) 14 (10.5%) 13 (9.8%) + 2 14 (10.5%) 19 (14.3%) 16 (12.1%) + 3 12 (9.0%) 12 (9.0%) 17 (12.9%) + 4 11 (8.3%) 13 (9.8%) 4 (3.0%) + Any 62 (46.6%) 58 (43.6%) 50 (37.9%) + # lbt07 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output Parameter Direction of Abnormality A: Drug X B: Placebo C: Combination diff --git a/tests/testthat/_snaps/lbt14.md b/tests/testthat/_snaps/lbt14.md index 5bf3af480..c74b553e7 100644 --- a/tests/testthat/_snaps/lbt14.md +++ b/tests/testthat/_snaps/lbt14.md @@ -1,10 +1,199 @@ -# lbt14_1 can handle all NA values +# lbt14 functions with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output LBT14 - Low Direction + —————————————————————————————————————————————————————————————————————————————————————— + Parameter + Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination + Post-baseline NCI-CTCAE Grade (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————— + Alanine Aminotransferase Measurement + Not Low 124 122 117 + Not Low 124 (100%) 122 (100%) 117 (100%) + 1 21 (16.9%) 14 (11.5%) 20 (17.1%) + 2 21 (16.9%) 20 (16.4%) 15 (12.8%) + 3 19 (15.3%) 16 (13.1%) 15 (12.8%) + 4 10 (8.1%) 7 (5.7%) 9 (7.7%) + 1 3 6 7 + Not Low 3 (100%) 6 (100%) 7 (100%) + 1 3 (100%) 6 (100%) 7 (100%) + 2 1 (33.3%) 1 (16.7%) 2 (28.6%) + 3 2 (66.7%) 1 (16.7%) 1 (14.3%) + 4 0 1 (16.7%) 2 (28.6%) + 2 2 1 4 + Not Low 2 (100%) 1 (100%) 4 (100%) + 2 2 (100%) 1 (100%) 4 (100%) + 3 0 0 1 (25.0%) + 3 2 3 4 + Not Low 2 (100%) 3 (100%) 4 (100%) + 1 0 1 (33.3%) 1 (25.0%) + 3 2 (100%) 3 (100%) 4 (100%) + 4 3 2 0 + Not Low 3 (100%) 2 (100%) 0 + 1 1 (33.3%) 1 (50.0%) 0 + 3 1 (33.3%) 0 0 + 4 3 (100%) 2 (100%) 0 + C-Reactive Protein Measurement + Not Low 122 125 120 + Not Low 122 (100%) 125 (100%) 120 (100%) + 1 28 (23.0%) 27 (21.6%) 15 (12.5%) + 2 28 (23.0%) 14 (11.2%) 19 (15.8%) + 3 16 (13.1%) 13 (10.4%) 21 (17.5%) + 4 10 (8.2%) 14 (11.2%) 7 (5.8%) + 1 2 5 5 + Not Low 2 (100%) 5 (100%) 5 (100%) + 1 2 (100%) 5 (100%) 5 (100%) + 2 1 (50.0%) 1 (20.0%) 0 + 4 1 (50.0%) 0 0 + 2 5 1 1 + Not Low 5 (100%) 1 (100%) 1 (100%) + 1 2 (40.0%) 0 0 + 2 5 (100%) 1 (100%) 1 (100%) + 3 2 2 1 + Not Low 2 (100%) 2 (100%) 1 (100%) + 1 0 1 (50.0%) 0 + 3 2 (100%) 2 (100%) 1 (100%) + 4 3 1 5 + Not Low 3 (100%) 1 (100%) 5 (100%) + 1 0 0 2 (40.0%) + 2 0 0 2 (40.0%) + 4 3 (100%) 1 (100%) 5 (100%) + Immunoglobulin A Measurement + Not Low 120 119 120 + Not Low 120 (100%) 119 (100%) 120 (100%) + 1 22 (18.3%) 25 (21.0%) 24 (20.0%) + 2 15 (12.5%) 23 (19.3%) 20 (16.7%) + 3 19 (15.8%) 13 (10.9%) 18 (15.0%) + 4 9 (7.5%) 18 (15.1%) 8 (6.7%) + 1 8 8 3 + Not Low 8 (100%) 8 (100%) 3 (100%) + 1 8 (100%) 8 (100%) 3 (100%) + 2 0 1 (12.5%) 0 + 4 0 0 1 (33.3%) + 2 2 1 2 + Not Low 2 (100%) 1 (100%) 2 (100%) + 1 0 1 (100%) 0 + 2 2 (100%) 1 (100%) 2 (100%) + 4 0 0 1 (50.0%) + 3 3 3 4 + Not Low 3 (100%) 3 (100%) 4 (100%) + 1 0 0 1 (25.0%) + 3 3 (100%) 3 (100%) 4 (100%) + 4 1 (33.3%) 0 1 (25.0%) + 4 1 3 3 + Not Low 1 (100%) 3 (100%) 3 (100%) + 3 0 0 1 (33.3%) + 4 1 (100%) 3 (100%) 3 (100%) + +# lbt14 functions with default argument value return expected result with test data when direction = high + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + LBT14 - High Direction + + —————————————————————————————————————————————————————————————————————————————————————— + Parameter + Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination + Post-baseline NCI-CTCAE Grade (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————— + Alanine Aminotransferase Measurement + Not High 121 118 118 + Not High 121 (100%) 118 (100%) 118 (100%) + 1 18 (14.9%) 18 (15.3%) 23 (19.5%) + 2 17 (14.0%) 17 (14.4%) 21 (17.8%) + 3 15 (12.4%) 17 (14.4%) 17 (14.4%) + 4 12 (9.9%) 10 (8.5%) 13 (11.0%) + 1 4 4 3 + Not High 4 (100%) 4 (100%) 3 (100%) + 1 4 (100%) 4 (100%) 3 (100%) + 2 1 (25.0%) 2 (50.0%) 0 + 3 0 2 (50.0%) 1 (33.3%) + 4 1 (25.0%) 2 (50.0%) 0 + 2 4 4 4 + Not High 4 (100%) 4 (100%) 4 (100%) + 1 0 1 (25.0%) 1 (25.0%) + 2 4 (100%) 4 (100%) 4 (100%) + 3 2 5 5 + Not High 2 (100%) 5 (100%) 5 (100%) + 1 0 2 (40.0%) 0 + 2 0 1 (20.0%) 0 + 3 2 (100%) 5 (100%) 5 (100%) + 4 0 0 1 (20.0%) + 4 3 3 2 + Not High 3 (100%) 3 (100%) 2 (100%) + 1 1 (33.3%) 0 0 + 3 1 (33.3%) 1 (33.3%) 0 + 4 3 (100%) 3 (100%) 2 (100%) + C-Reactive Protein Measurement + Not High 115 115 114 + Not High 115 (100%) 115 (100%) 114 (100%) + 1 24 (20.9%) 20 (17.4%) 18 (15.8%) + 2 17 (14.8%) 19 (16.5%) 20 (17.5%) + 3 21 (18.3%) 12 (10.4%) 14 (12.3%) + 4 11 (9.6%) 12 (10.4%) 18 (15.8%) + 1 5 5 5 + Not High 5 (100%) 5 (100%) 5 (100%) + 1 5 (100%) 5 (100%) 5 (100%) + 2 0 2 (40.0%) 0 + 4 1 (20.0%) 0 0 + 2 6 5 5 + Not High 6 (100%) 5 (100%) 5 (100%) + 1 0 2 (40.0%) 0 + 2 6 (100%) 5 (100%) 5 (100%) + 4 1 (16.7%) 1 (20.0%) 1 (20.0%) + 3 2 3 5 + Not High 2 (100%) 3 (100%) 5 (100%) + 1 0 1 (33.3%) 0 + 2 1 (50.0%) 0 0 + 3 2 (100%) 3 (100%) 5 (100%) + 4 0 1 (33.3%) 0 + 4 6 6 3 + Not High 6 (100%) 6 (100%) 3 (100%) + 1 0 1 (16.7%) 0 + 2 2 (33.3%) 0 0 + 3 0 2 (33.3%) 0 + 4 6 (100%) 6 (100%) 3 (100%) + Immunoglobulin A Measurement + Not High 119 123 119 + Not High 119 (100%) 123 (100%) 119 (100%) + 1 27 (22.7%) 18 (14.6%) 18 (15.1%) + 2 18 (15.1%) 24 (19.5%) 17 (14.3%) + 3 14 (11.8%) 14 (11.4%) 20 (16.8%) + 4 11 (9.2%) 12 (9.8%) 4 (3.4%) + 1 2 4 6 + Not High 2 (100%) 4 (100%) 6 (100%) + 1 2 (100%) 4 (100%) 6 (100%) + 2 0 0 1 (16.7%) + 3 0 1 (25.0%) 0 + 4 0 2 (50.0%) 0 + 2 4 4 3 + Not High 4 (100%) 4 (100%) 3 (100%) + 1 0 3 (75.0%) 0 + 2 4 (100%) 4 (100%) 3 (100%) + 3 0 0 1 (33.3%) + 4 1 (25.0%) 0 0 + 3 5 2 2 + Not High 5 (100%) 2 (100%) 2 (100%) + 1 1 (20.0%) 0 1 (50.0%) + 2 0 0 1 (50.0%) + 3 5 (100%) 2 (100%) 2 (100%) + 4 4 1 2 + Not High 4 (100%) 1 (100%) 2 (100%) + 1 1 (25.0%) 0 0 + 2 1 (25.0%) 0 1 (50.0%) + 3 0 0 1 (50.0%) + 4 4 (100%) 1 (100%) 2 (100%) + +# lbt14 can handle all NA values + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + LBT14 - Low Direction —————————————————————————————————————————————————————————————————————————————————————— Parameter @@ -21,106 +210,114 @@ Missing 134 134 132 Missing 134 (100%) 134 (100%) 132 (100%) -# lbt14_1 can handle some NA values +# lbt14 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output LBT14 - Low Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination Post-baseline NCI-CTCAE Grade (N=134) (N=134) (N=132) —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement - Not Low 123 122 117 - Not Low 72 (58.5%) 76 (62.3%) 80 (68.4%) - 1 13 (10.6%) 11 (9.0%) 9 (7.7%) - 2 13 (10.6%) 16 (13.1%) 11 (9.4%) - 3 17 (13.8%) 11 (9.0%) 9 (7.7%) - 4 7 (5.7%) 7 (5.7%) 8 (6.8%) - Missing 1 (0.8%) 1 (0.8%) 0 - 1 2 6 7 - Not Low 0 2 (33.3%) 5 (71.4%) - 1 0 2 (33.3%) 0 - 2 0 1 (16.7%) 0 - 3 2 (100%) 1 (16.7%) 0 - 4 0 0 2 (28.6%) + Not Low 124 122 117 + Not Low 124 (100%) 122 (100%) 117 (100%) + 1 21 (16.9%) 13 (10.7%) 20 (17.1%) + 2 21 (16.9%) 20 (16.4%) 15 (12.8%) + 3 19 (15.3%) 16 (13.1%) 15 (12.8%) + 4 10 (8.1%) 7 (5.7%) 9 (7.7%) + Missing 2 (1.6%) 2 (1.6%) 1 (0.9%) + 1 3 6 7 + Not Low 3 (100%) 6 (100%) 7 (100%) + 1 3 (100%) 6 (100%) 7 (100%) + 2 1 (33.3%) 1 (16.7%) 2 (28.6%) + 3 2 (66.7%) 1 (16.7%) 1 (14.3%) + 4 0 1 (16.7%) 2 (28.6%) + Missing 0 1 (16.7%) 0 2 2 1 4 - Not Low 2 (100%) 0 3 (75.0%) - 2 0 1 (100%) 0 + Not Low 2 (100%) 1 (100%) 4 (100%) + 2 2 (100%) 1 (100%) 4 (100%) 3 0 0 1 (25.0%) 3 2 3 4 - Not Low 2 (100%) 2 (66.7%) 3 (75.0%) + Not Low 2 (100%) 3 (100%) 4 (100%) 1 0 1 (33.3%) 1 (25.0%) + 3 2 (100%) 3 (100%) 4 (100%) 4 3 2 0 - Not Low 2 (66.7%) 1 (50.0%) 0 + Not Low 3 (100%) 2 (100%) 0 + 1 1 (33.3%) 1 (50.0%) 0 3 1 (33.3%) 0 0 - 4 0 1 (50.0%) 0 - Missing 2 0 0 - Not Low 1 (50.0%) 0 0 - 1 1 (50.0%) 0 0 + 4 3 (100%) 2 (100%) 0 + Missing 5 2 1 + Not Low 4 (80.0%) 2 (100%) 1 (100%) + 1 1 (20.0%) 0 0 C-Reactive Protein Measurement - Not Low 122 125 119 - Not Low 67 (54.9%) 81 (64.8%) 69 (58.0%) - 1 14 (11.5%) 17 (13.6%) 13 (10.9%) - 2 20 (16.4%) 11 (8.8%) 16 (13.4%) - 3 11 (9.0%) 9 (7.2%) 17 (14.3%) - 4 9 (7.4%) 7 (5.6%) 4 (3.4%) - Missing 1 (0.8%) 0 0 + Not Low 122 125 120 + Not Low 122 (100%) 125 (100%) 120 (100%) + 1 28 (23.0%) 27 (21.6%) 15 (12.5%) + 2 28 (23.0%) 14 (11.2%) 19 (15.8%) + 3 15 (12.3%) 13 (10.4%) 21 (17.5%) + 4 10 (8.2%) 14 (11.2%) 7 (5.8%) + Missing 3 (2.5%) 0 4 (3.3%) 1 2 5 5 - Not Low 0 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 1 (20.0%) + Not Low 2 (100%) 5 (100%) 5 (100%) + 1 2 (100%) 5 (100%) 5 (100%) 2 1 (50.0%) 1 (20.0%) 0 4 1 (50.0%) 0 0 2 5 1 1 - Not Low 3 (60.0%) 0 1 (100%) + Not Low 5 (100%) 1 (100%) 1 (100%) 1 2 (40.0%) 0 0 - 2 0 1 (100%) 0 + 2 5 (100%) 1 (100%) 1 (100%) 3 2 2 1 - Not Low 2 (100%) 1 (50.0%) 0 + Not Low 2 (100%) 2 (100%) 1 (100%) 1 0 1 (50.0%) 0 - 3 0 0 1 (100%) + 3 2 (100%) 2 (100%) 1 (100%) 4 3 1 5 - Not Low 2 (66.7%) 1 (100%) 3 (60.0%) - 1 0 0 1 (20.0%) - 4 1 (33.3%) 0 1 (20.0%) - Missing 0 0 1 - Not Low 0 0 1 (100%) + Not Low 3 (100%) 1 (100%) 5 (100%) + 1 0 0 2 (40.0%) + 2 0 0 2 (40.0%) + 4 3 (100%) 1 (100%) 5 (100%) + Missing 2 2 2 + Not Low 2 (100%) 2 (100%) 2 (100%) Immunoglobulin A Measurement Not Low 120 119 120 - Not Low 69 (57.5%) 58 (48.7%) 70 (58.3%) - 1 16 (13.3%) 20 (16.8%) 16 (13.3%) - 2 12 (10.0%) 14 (11.8%) 14 (11.7%) - 3 14 (11.7%) 11 (9.2%) 13 (10.8%) - 4 9 (7.5%) 16 (13.4%) 7 (5.8%) + Not Low 120 (100%) 119 (100%) 120 (100%) + 1 22 (18.3%) 25 (21.0%) 24 (20.0%) + 2 15 (12.5%) 23 (19.3%) 20 (16.7%) + 3 19 (15.8%) 13 (10.9%) 18 (15.0%) + 4 9 (7.5%) 18 (15.1%) 8 (6.7%) + Missing 1 (0.8%) 1 (0.8%) 5 (4.2%) 1 8 8 3 - Not Low 7 (87.5%) 4 (50.0%) 2 (66.7%) - 1 1 (12.5%) 3 (37.5%) 0 + Not Low 8 (100%) 8 (100%) 3 (100%) + 1 8 (100%) 8 (100%) 3 (100%) 2 0 1 (12.5%) 0 4 0 0 1 (33.3%) 2 2 1 2 Not Low 2 (100%) 1 (100%) 2 (100%) + 1 0 1 (100%) 0 + 2 2 (100%) 1 (100%) 2 (100%) + 4 0 0 1 (50.0%) 3 3 3 4 - Not Low 1 (33.3%) 3 (100%) 2 (50.0%) + Not Low 3 (100%) 3 (100%) 4 (100%) 1 0 0 1 (25.0%) - 3 1 (33.3%) 0 0 + 3 3 (100%) 3 (100%) 4 (100%) 4 1 (33.3%) 0 1 (25.0%) 4 1 3 3 - Not Low 1 (100%) 3 (100%) 1 (33.3%) + Not Low 1 (100%) 3 (100%) 3 (100%) 3 0 0 1 (33.3%) - 4 0 0 1 (33.3%) + 4 1 (100%) 3 (100%) 3 (100%) + Missing 2 1 3 + Not Low 2 (100%) 1 (100%) 3 (100%) -# lbt14_1 can accept different gr_missing +# lbt14 can accept different gr_missing Code - run(lbt14_1, proc_data, gr_missing = "incl") + cat(formatters::export_as_txt(res1, lpp = 100)) Output LBT14 - Low Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -128,84 +325,89 @@ —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement Not Low 124 122 117 - Not Low 74 (59.7%) 76 (62.3%) 80 (68.4%) - 1 13 (10.5%) 12 (9.8%) 9 (7.7%) - 2 13 (10.5%) 16 (13.1%) 11 (9.4%) - 3 17 (13.7%) 11 (9.0%) 9 (7.7%) - 4 7 (5.6%) 7 (5.7%) 8 (6.8%) + Not Low 124 (100%) 122 (100%) 117 (100%) + 1 21 (16.9%) 14 (11.5%) 20 (17.1%) + 2 21 (16.9%) 20 (16.4%) 15 (12.8%) + 3 19 (15.3%) 16 (13.1%) 15 (12.8%) + 4 10 (8.1%) 7 (5.7%) 9 (7.7%) 1 3 6 7 - Not Low 0 2 (33.3%) 5 (71.4%) - 1 1 (33.3%) 2 (33.3%) 0 - 2 0 1 (16.7%) 0 - 3 2 (66.7%) 1 (16.7%) 0 - 4 0 0 2 (28.6%) + Not Low 3 (100%) 6 (100%) 7 (100%) + 1 3 (100%) 6 (100%) 7 (100%) + 2 1 (33.3%) 1 (16.7%) 2 (28.6%) + 3 2 (66.7%) 1 (16.7%) 1 (14.3%) + 4 0 1 (16.7%) 2 (28.6%) 2 2 1 4 - Not Low 2 (100%) 0 3 (75.0%) - 2 0 1 (100%) 0 + Not Low 2 (100%) 1 (100%) 4 (100%) + 2 2 (100%) 1 (100%) 4 (100%) 3 0 0 1 (25.0%) 3 2 3 4 - Not Low 2 (100%) 2 (66.7%) 3 (75.0%) + Not Low 2 (100%) 3 (100%) 4 (100%) 1 0 1 (33.3%) 1 (25.0%) + 3 2 (100%) 3 (100%) 4 (100%) 4 3 2 0 - Not Low 2 (66.7%) 1 (50.0%) 0 + Not Low 3 (100%) 2 (100%) 0 + 1 1 (33.3%) 1 (50.0%) 0 3 1 (33.3%) 0 0 - 4 0 1 (50.0%) 0 + 4 3 (100%) 2 (100%) 0 C-Reactive Protein Measurement Not Low 122 125 120 - Not Low 67 (54.9%) 81 (64.8%) 70 (58.3%) - 1 14 (11.5%) 17 (13.6%) 13 (10.8%) - 2 20 (16.4%) 11 (8.8%) 16 (13.3%) - 3 12 (9.8%) 9 (7.2%) 17 (14.2%) - 4 9 (7.4%) 7 (5.6%) 4 (3.3%) + Not Low 122 (100%) 125 (100%) 120 (100%) + 1 28 (23.0%) 27 (21.6%) 15 (12.5%) + 2 28 (23.0%) 14 (11.2%) 19 (15.8%) + 3 16 (13.1%) 13 (10.4%) 21 (17.5%) + 4 10 (8.2%) 14 (11.2%) 7 (5.8%) 1 2 5 5 - Not Low 0 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 1 (20.0%) + Not Low 2 (100%) 5 (100%) 5 (100%) + 1 2 (100%) 5 (100%) 5 (100%) 2 1 (50.0%) 1 (20.0%) 0 4 1 (50.0%) 0 0 2 5 1 1 - Not Low 3 (60.0%) 0 1 (100%) + Not Low 5 (100%) 1 (100%) 1 (100%) 1 2 (40.0%) 0 0 - 2 0 1 (100%) 0 + 2 5 (100%) 1 (100%) 1 (100%) 3 2 2 1 - Not Low 2 (100%) 1 (50.0%) 0 + Not Low 2 (100%) 2 (100%) 1 (100%) 1 0 1 (50.0%) 0 - 3 0 0 1 (100%) + 3 2 (100%) 2 (100%) 1 (100%) 4 3 1 5 - Not Low 2 (66.7%) 1 (100%) 3 (60.0%) - 1 0 0 1 (20.0%) - 4 1 (33.3%) 0 1 (20.0%) + Not Low 3 (100%) 1 (100%) 5 (100%) + 1 0 0 2 (40.0%) + 2 0 0 2 (40.0%) + 4 3 (100%) 1 (100%) 5 (100%) Immunoglobulin A Measurement Not Low 120 119 120 - Not Low 69 (57.5%) 58 (48.7%) 70 (58.3%) - 1 16 (13.3%) 20 (16.8%) 16 (13.3%) - 2 12 (10.0%) 14 (11.8%) 14 (11.7%) - 3 14 (11.7%) 11 (9.2%) 13 (10.8%) - 4 9 (7.5%) 16 (13.4%) 7 (5.8%) + Not Low 120 (100%) 119 (100%) 120 (100%) + 1 22 (18.3%) 25 (21.0%) 24 (20.0%) + 2 15 (12.5%) 23 (19.3%) 20 (16.7%) + 3 19 (15.8%) 13 (10.9%) 18 (15.0%) + 4 9 (7.5%) 18 (15.1%) 8 (6.7%) 1 8 8 3 - Not Low 7 (87.5%) 4 (50.0%) 2 (66.7%) - 1 1 (12.5%) 3 (37.5%) 0 + Not Low 8 (100%) 8 (100%) 3 (100%) + 1 8 (100%) 8 (100%) 3 (100%) 2 0 1 (12.5%) 0 4 0 0 1 (33.3%) 2 2 1 2 Not Low 2 (100%) 1 (100%) 2 (100%) + 1 0 1 (100%) 0 + 2 2 (100%) 1 (100%) 2 (100%) + 4 0 0 1 (50.0%) 3 3 3 4 - Not Low 1 (33.3%) 3 (100%) 2 (50.0%) + Not Low 3 (100%) 3 (100%) 4 (100%) 1 0 0 1 (25.0%) - 3 1 (33.3%) 0 0 + 3 3 (100%) 3 (100%) 4 (100%) 4 1 (33.3%) 0 1 (25.0%) 4 1 3 3 - Not Low 1 (100%) 3 (100%) 1 (33.3%) + Not Low 1 (100%) 3 (100%) 3 (100%) 3 0 0 1 (33.3%) - 4 0 0 1 (33.3%) + 4 1 (100%) 3 (100%) 3 (100%) --- Code - run(lbt14_1, proc_data, gr_missing = "excl") + cat(formatters::export_as_txt(res2, lpp = 100)) Output LBT14 - Low Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -213,87 +415,89 @@ —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement Not Low 124 122 117 - Not Low 74 (59.7%) 76 (62.3%) 80 (68.4%) - 1 13 (10.5%) 12 (9.8%) 9 (7.7%) - 2 13 (10.5%) 16 (13.1%) 11 (9.4%) - 3 17 (13.7%) 11 (9.0%) 9 (7.7%) - 4 7 (5.6%) 7 (5.7%) 8 (6.8%) + Not Low 124 (100%) 122 (100%) 117 (100%) + 1 21 (16.9%) 14 (11.5%) 20 (17.1%) + 2 21 (16.9%) 20 (16.4%) 15 (12.8%) + 3 19 (15.3%) 16 (13.1%) 15 (12.8%) + 4 10 (8.1%) 7 (5.7%) 9 (7.7%) 1 3 6 7 - Not Low 0 2 (33.3%) 5 (71.4%) - 1 1 (33.3%) 2 (33.3%) 0 - 2 0 1 (16.7%) 0 - 3 2 (66.7%) 1 (16.7%) 0 - 4 0 0 2 (28.6%) + Not Low 3 (100%) 6 (100%) 7 (100%) + 1 3 (100%) 6 (100%) 7 (100%) + 2 1 (33.3%) 1 (16.7%) 2 (28.6%) + 3 2 (66.7%) 1 (16.7%) 1 (14.3%) + 4 0 1 (16.7%) 2 (28.6%) 2 2 1 4 - Not Low 2 (100%) 0 3 (75.0%) - 2 0 1 (100%) 0 + Not Low 2 (100%) 1 (100%) 4 (100%) + 2 2 (100%) 1 (100%) 4 (100%) 3 0 0 1 (25.0%) 3 2 3 4 - Not Low 2 (100%) 2 (66.7%) 3 (75.0%) + Not Low 2 (100%) 3 (100%) 4 (100%) 1 0 1 (33.3%) 1 (25.0%) + 3 2 (100%) 3 (100%) 4 (100%) 4 3 2 0 - Not Low 2 (66.7%) 1 (50.0%) 0 + Not Low 3 (100%) 2 (100%) 0 + 1 1 (33.3%) 1 (50.0%) 0 3 1 (33.3%) 0 0 - 4 0 1 (50.0%) 0 + 4 3 (100%) 2 (100%) 0 C-Reactive Protein Measurement Not Low 122 125 120 - Not Low 67 (54.9%) 81 (64.8%) 70 (58.3%) - 1 14 (11.5%) 17 (13.6%) 13 (10.8%) - 2 20 (16.4%) 11 (8.8%) 16 (13.3%) - 3 12 (9.8%) 9 (7.2%) 17 (14.2%) - 4 9 (7.4%) 7 (5.6%) 4 (3.3%) + Not Low 122 (100%) 125 (100%) 120 (100%) + 1 28 (23.0%) 27 (21.6%) 15 (12.5%) + 2 28 (23.0%) 14 (11.2%) 19 (15.8%) + 3 16 (13.1%) 13 (10.4%) 21 (17.5%) + 4 10 (8.2%) 14 (11.2%) 7 (5.8%) 1 2 5 5 - Not Low 0 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 1 (20.0%) + Not Low 2 (100%) 5 (100%) 5 (100%) + 1 2 (100%) 5 (100%) 5 (100%) 2 1 (50.0%) 1 (20.0%) 0 4 1 (50.0%) 0 0 2 5 1 1 - Not Low 3 (60.0%) 0 1 (100%) + Not Low 5 (100%) 1 (100%) 1 (100%) 1 2 (40.0%) 0 0 - 2 0 1 (100%) 0 + 2 5 (100%) 1 (100%) 1 (100%) 3 2 2 1 - Not Low 2 (100%) 1 (50.0%) 0 + Not Low 2 (100%) 2 (100%) 1 (100%) 1 0 1 (50.0%) 0 - 3 0 0 1 (100%) + 3 2 (100%) 2 (100%) 1 (100%) 4 3 1 5 - Not Low 2 (66.7%) 1 (100%) 3 (60.0%) - 1 0 0 1 (20.0%) - 4 1 (33.3%) 0 1 (20.0%) + Not Low 3 (100%) 1 (100%) 5 (100%) + 1 0 0 2 (40.0%) + 2 0 0 2 (40.0%) + 4 3 (100%) 1 (100%) 5 (100%) Immunoglobulin A Measurement Not Low 120 119 120 - Not Low 69 (57.5%) 58 (48.7%) 70 (58.3%) - 1 16 (13.3%) 20 (16.8%) 16 (13.3%) - 2 12 (10.0%) 14 (11.8%) 14 (11.7%) - 3 14 (11.7%) 11 (9.2%) 13 (10.8%) - 4 9 (7.5%) 16 (13.4%) 7 (5.8%) + Not Low 120 (100%) 119 (100%) 120 (100%) + 1 22 (18.3%) 25 (21.0%) 24 (20.0%) + 2 15 (12.5%) 23 (19.3%) 20 (16.7%) + 3 19 (15.8%) 13 (10.9%) 18 (15.0%) + 4 9 (7.5%) 18 (15.1%) 8 (6.7%) 1 8 8 3 - Not Low 7 (87.5%) 4 (50.0%) 2 (66.7%) - 1 1 (12.5%) 3 (37.5%) 0 + Not Low 8 (100%) 8 (100%) 3 (100%) + 1 8 (100%) 8 (100%) 3 (100%) 2 0 1 (12.5%) 0 4 0 0 1 (33.3%) 2 2 1 2 Not Low 2 (100%) 1 (100%) 2 (100%) + 1 0 1 (100%) 0 + 2 2 (100%) 1 (100%) 2 (100%) + 4 0 0 1 (50.0%) 3 3 3 4 - Not Low 1 (33.3%) 3 (100%) 2 (50.0%) + Not Low 3 (100%) 3 (100%) 4 (100%) 1 0 0 1 (25.0%) - 3 1 (33.3%) 0 0 + 3 3 (100%) 3 (100%) 4 (100%) 4 1 (33.3%) 0 1 (25.0%) 4 1 3 3 - Not Low 1 (100%) 3 (100%) 1 (33.3%) + Not Low 1 (100%) 3 (100%) 3 (100%) 3 0 0 1 (33.3%) - 4 0 0 1 (33.3%) - —————————————————————————————————————————————————————————————————————————————————————— - - Patients with missing baseline values are excluded from the analysis. + 4 1 (100%) 3 (100%) 3 (100%) --- Code - run(lbt14_1, proc_data, gr_missing = "gr_0") + cat(formatters::export_as_txt(res3, lpp = 100)) Output LBT14 - Low Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -301,87 +505,89 @@ —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement Not Low 124 122 117 - Not Low 74 (59.7%) 76 (62.3%) 80 (68.4%) - 1 13 (10.5%) 12 (9.8%) 9 (7.7%) - 2 13 (10.5%) 16 (13.1%) 11 (9.4%) - 3 17 (13.7%) 11 (9.0%) 9 (7.7%) - 4 7 (5.6%) 7 (5.7%) 8 (6.8%) + Not Low 124 (100%) 122 (100%) 117 (100%) + 1 21 (16.9%) 14 (11.5%) 20 (17.1%) + 2 21 (16.9%) 20 (16.4%) 15 (12.8%) + 3 19 (15.3%) 16 (13.1%) 15 (12.8%) + 4 10 (8.1%) 7 (5.7%) 9 (7.7%) 1 3 6 7 - Not Low 0 2 (33.3%) 5 (71.4%) - 1 1 (33.3%) 2 (33.3%) 0 - 2 0 1 (16.7%) 0 - 3 2 (66.7%) 1 (16.7%) 0 - 4 0 0 2 (28.6%) + Not Low 3 (100%) 6 (100%) 7 (100%) + 1 3 (100%) 6 (100%) 7 (100%) + 2 1 (33.3%) 1 (16.7%) 2 (28.6%) + 3 2 (66.7%) 1 (16.7%) 1 (14.3%) + 4 0 1 (16.7%) 2 (28.6%) 2 2 1 4 - Not Low 2 (100%) 0 3 (75.0%) - 2 0 1 (100%) 0 + Not Low 2 (100%) 1 (100%) 4 (100%) + 2 2 (100%) 1 (100%) 4 (100%) 3 0 0 1 (25.0%) 3 2 3 4 - Not Low 2 (100%) 2 (66.7%) 3 (75.0%) + Not Low 2 (100%) 3 (100%) 4 (100%) 1 0 1 (33.3%) 1 (25.0%) + 3 2 (100%) 3 (100%) 4 (100%) 4 3 2 0 - Not Low 2 (66.7%) 1 (50.0%) 0 + Not Low 3 (100%) 2 (100%) 0 + 1 1 (33.3%) 1 (50.0%) 0 3 1 (33.3%) 0 0 - 4 0 1 (50.0%) 0 + 4 3 (100%) 2 (100%) 0 C-Reactive Protein Measurement Not Low 122 125 120 - Not Low 67 (54.9%) 81 (64.8%) 70 (58.3%) - 1 14 (11.5%) 17 (13.6%) 13 (10.8%) - 2 20 (16.4%) 11 (8.8%) 16 (13.3%) - 3 12 (9.8%) 9 (7.2%) 17 (14.2%) - 4 9 (7.4%) 7 (5.6%) 4 (3.3%) + Not Low 122 (100%) 125 (100%) 120 (100%) + 1 28 (23.0%) 27 (21.6%) 15 (12.5%) + 2 28 (23.0%) 14 (11.2%) 19 (15.8%) + 3 16 (13.1%) 13 (10.4%) 21 (17.5%) + 4 10 (8.2%) 14 (11.2%) 7 (5.8%) 1 2 5 5 - Not Low 0 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 1 (20.0%) + Not Low 2 (100%) 5 (100%) 5 (100%) + 1 2 (100%) 5 (100%) 5 (100%) 2 1 (50.0%) 1 (20.0%) 0 4 1 (50.0%) 0 0 2 5 1 1 - Not Low 3 (60.0%) 0 1 (100%) + Not Low 5 (100%) 1 (100%) 1 (100%) 1 2 (40.0%) 0 0 - 2 0 1 (100%) 0 + 2 5 (100%) 1 (100%) 1 (100%) 3 2 2 1 - Not Low 2 (100%) 1 (50.0%) 0 + Not Low 2 (100%) 2 (100%) 1 (100%) 1 0 1 (50.0%) 0 - 3 0 0 1 (100%) + 3 2 (100%) 2 (100%) 1 (100%) 4 3 1 5 - Not Low 2 (66.7%) 1 (100%) 3 (60.0%) - 1 0 0 1 (20.0%) - 4 1 (33.3%) 0 1 (20.0%) + Not Low 3 (100%) 1 (100%) 5 (100%) + 1 0 0 2 (40.0%) + 2 0 0 2 (40.0%) + 4 3 (100%) 1 (100%) 5 (100%) Immunoglobulin A Measurement Not Low 120 119 120 - Not Low 69 (57.5%) 58 (48.7%) 70 (58.3%) - 1 16 (13.3%) 20 (16.8%) 16 (13.3%) - 2 12 (10.0%) 14 (11.8%) 14 (11.7%) - 3 14 (11.7%) 11 (9.2%) 13 (10.8%) - 4 9 (7.5%) 16 (13.4%) 7 (5.8%) + Not Low 120 (100%) 119 (100%) 120 (100%) + 1 22 (18.3%) 25 (21.0%) 24 (20.0%) + 2 15 (12.5%) 23 (19.3%) 20 (16.7%) + 3 19 (15.8%) 13 (10.9%) 18 (15.0%) + 4 9 (7.5%) 18 (15.1%) 8 (6.7%) 1 8 8 3 - Not Low 7 (87.5%) 4 (50.0%) 2 (66.7%) - 1 1 (12.5%) 3 (37.5%) 0 + Not Low 8 (100%) 8 (100%) 3 (100%) + 1 8 (100%) 8 (100%) 3 (100%) 2 0 1 (12.5%) 0 4 0 0 1 (33.3%) 2 2 1 2 Not Low 2 (100%) 1 (100%) 2 (100%) + 1 0 1 (100%) 0 + 2 2 (100%) 1 (100%) 2 (100%) + 4 0 0 1 (50.0%) 3 3 3 4 - Not Low 1 (33.3%) 3 (100%) 2 (50.0%) + Not Low 3 (100%) 3 (100%) 4 (100%) 1 0 0 1 (25.0%) - 3 1 (33.3%) 0 0 + 3 3 (100%) 3 (100%) 4 (100%) 4 1 (33.3%) 0 1 (25.0%) 4 1 3 3 - Not Low 1 (100%) 3 (100%) 1 (33.3%) + Not Low 1 (100%) 3 (100%) 3 (100%) 3 0 0 1 (33.3%) - 4 0 0 1 (33.3%) - —————————————————————————————————————————————————————————————————————————————————————— - - Patients with missing baseline values are assumed to be Grade 0 at baseline. + 4 1 (100%) 3 (100%) 3 (100%) -# lbt14_2 can handle all NA values +# lbt14 can handle all NA values with direction = high Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output LBT14 - High Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -397,14 +603,13 @@ Missing 134 134 132 Missing 134 (100%) 134 (100%) 132 (100%) -# lbt14_2 can handle some NA values +# lbt14 can handle some NA values with direction = high Code - res + cat(formatters::export_as_txt(res, lpp = 100)) Output LBT14 - High Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -412,96 +617,120 @@ —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement Not High 121 118 118 - Not High 71 (58.7%) 70 (59.3%) 59 (50.0%) - 1 16 (13.2%) 13 (11.0%) 17 (14.4%) - 2 13 (10.7%) 12 (10.2%) 18 (15.3%) - 3 9 (7.4%) 14 (11.9%) 12 (10.2%) - 4 11 (9.1%) 9 (7.6%) 12 (10.2%) - Missing 1 (0.8%) 0 0 + Not High 121 (100%) 118 (100%) 118 (100%) + 1 18 (14.9%) 18 (15.3%) 23 (19.5%) + 2 17 (14.0%) 17 (14.4%) 21 (17.8%) + 3 15 (12.4%) 17 (14.4%) 17 (14.4%) + 4 12 (9.9%) 10 (8.5%) 13 (11.0%) + Missing 2 (1.7%) 3 (2.5%) 1 (0.8%) 1 4 4 3 - Not High 1 (25.0%) 1 (25.0%) 2 (66.7%) - 1 1 (25.0%) 0 0 - 2 1 (25.0%) 0 0 - 3 0 1 (25.0%) 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 4 (100%) 4 (100%) 3 (100%) + 2 1 (25.0%) 2 (50.0%) 0 + 3 0 2 (50.0%) 1 (33.3%) 4 1 (25.0%) 2 (50.0%) 0 - 2 3 4 4 - Not High 2 (66.7%) 3 (75.0%) 3 (75.0%) + 2 4 4 4 + Not High 4 (100%) 4 (100%) 4 (100%) 1 0 1 (25.0%) 1 (25.0%) - 2 1 (33.3%) 0 0 + 2 4 (100%) 4 (100%) 4 (100%) 3 2 5 5 - Not High 2 (100%) 2 (40.0%) 4 (80.0%) + Not High 2 (100%) 5 (100%) 5 (100%) 1 0 2 (40.0%) 0 2 0 1 (20.0%) 0 + 3 2 (100%) 5 (100%) 5 (100%) 4 0 0 1 (20.0%) 4 3 3 2 - Not High 1 (33.3%) 2 (66.7%) 2 (100%) + Not High 3 (100%) 3 (100%) 2 (100%) 1 1 (33.3%) 0 0 3 1 (33.3%) 1 (33.3%) 0 - Missing 1 0 0 - Not High 1 (100%) 0 0 + 4 3 (100%) 3 (100%) 2 (100%) + Missing 5 2 1 + Not High 5 (100%) 2 (100%) 1 (100%) C-Reactive Protein Measurement Not High 115 115 114 - Not High 60 (52.2%) 68 (59.1%) 70 (61.4%) - 1 17 (14.8%) 13 (11.3%) 9 (7.9%) - 2 12 (10.4%) 14 (12.2%) 13 (11.4%) - 3 16 (13.9%) 10 (8.7%) 12 (10.5%) - 4 10 (8.7%) 10 (8.7%) 9 (7.9%) - Missing 0 0 1 (0.9%) + Not High 115 (100%) 115 (100%) 114 (100%) + 1 24 (20.9%) 20 (17.4%) 18 (15.8%) + 2 17 (14.8%) 19 (16.5%) 20 (17.5%) + 3 21 (18.3%) 12 (10.4%) 13 (11.4%) + 4 11 (9.6%) 12 (10.4%) 18 (15.8%) + Missing 3 (2.6%) 0 3 (2.6%) 1 5 5 5 - Not High 4 (80.0%) 3 (60.0%) 5 (100%) + Not High 5 (100%) 5 (100%) 5 (100%) + 1 5 (100%) 5 (100%) 5 (100%) 2 0 2 (40.0%) 0 4 1 (20.0%) 0 0 2 6 5 5 - Not High 3 (50.0%) 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 0 - 2 2 (33.3%) 0 0 + Not High 6 (100%) 5 (100%) 5 (100%) + 1 0 2 (40.0%) 0 + 2 6 (100%) 5 (100%) 5 (100%) 4 1 (16.7%) 1 (20.0%) 1 (20.0%) 3 2 3 5 - Not High 2 (100%) 1 (33.3%) 4 (80.0%) - 3 0 1 (33.3%) 1 (20.0%) + Not High 2 (100%) 3 (100%) 5 (100%) + 1 0 1 (33.3%) 0 + 2 1 (50.0%) 0 0 + 3 2 (100%) 3 (100%) 4 (80.0%) 4 0 1 (33.3%) 0 + Missing 0 0 1 (20.0%) 4 6 6 3 - Not High 5 (83.3%) 4 (66.7%) 3 (100%) + Not High 6 (100%) 6 (100%) 3 (100%) 1 0 1 (16.7%) 0 - 2 1 (16.7%) 0 0 - 3 0 1 (16.7%) 0 + 2 2 (33.3%) 0 0 + 3 0 2 (33.3%) 0 + 4 6 (100%) 6 (100%) 3 (100%) + Missing 2 2 2 + Not High 2 (100%) 2 (100%) 2 (100%) Immunoglobulin A Measurement - Not High 118 123 118 - Not High 61 (51.7%) 69 (56.1%) 74 (62.7%) - 1 23 (19.5%) 12 (9.8%) 13 (11.0%) - 2 13 (11.0%) 20 (16.3%) 11 (9.3%) - 3 11 (9.3%) 11 (8.9%) 16 (13.6%) - 4 10 (8.5%) 11 (8.9%) 4 (3.4%) + Not High 119 123 119 + Not High 119 (100%) 123 (100%) 119 (100%) + 1 26 (21.8%) 18 (14.6%) 17 (14.3%) + 2 18 (15.1%) 24 (19.5%) 16 (13.4%) + 3 14 (11.8%) 14 (11.4%) 20 (16.8%) + 4 11 (9.2%) 12 (9.8%) 4 (3.4%) + Missing 0 1 (0.8%) 5 (4.2%) 1 2 4 6 - Not High 2 (100%) 2 (50.0%) 5 (83.3%) + Not High 2 (100%) 4 (100%) 6 (100%) + 1 2 (100%) 4 (100%) 6 (100%) 2 0 0 1 (16.7%) + 3 0 1 (25.0%) 0 4 0 2 (50.0%) 0 2 4 4 3 - Not High 3 (75.0%) 2 (50.0%) 1 (33.3%) - 1 0 2 (50.0%) 0 - 2 0 0 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 0 3 (75.0%) 0 + 2 3 (75.0%) 4 (100%) 3 (100%) 3 0 0 1 (33.3%) 4 1 (25.0%) 0 0 + Missing 1 (25.0%) 0 0 3 5 2 2 - Not High 3 (60.0%) 0 1 (50.0%) - 1 1 (20.0%) 0 0 + Not High 5 (100%) 2 (100%) 2 (100%) + 1 1 (20.0%) 0 1 (50.0%) 2 0 0 1 (50.0%) - 3 1 (20.0%) 2 (100%) 0 + 3 5 (100%) 2 (100%) 2 (100%) + \s\nLBT14 - High Direction + + —————————————————————————————————————————————————————————————————————————————————————— + Parameter + Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination + Post-baseline NCI-CTCAE Grade (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————— + Immunoglobulin A Measurement 4 4 1 2 - Not High 3 (75.0%) 1 (100%) 1 (50.0%) + Not High 4 (100%) 1 (100%) 2 (100%) + 1 1 (25.0%) 0 0 2 1 (25.0%) 0 1 (50.0%) - Missing 1 0 1 - 1 1 (100%) 0 0 - 2 0 0 1 (100%) + 3 0 0 1 (50.0%) + 4 4 (100%) 1 (100%) 2 (100%) + Missing 2 1 3 + Not High 1 (50.0%) 1 (100%) 2 (66.7%) + 1 1 (50.0%) 0 0 + 2 0 0 1 (33.3%) -# lbt14_2 can accept different gr_missing +# lbt14 can accept different gr_missing with direction = high Code - run(lbt14_2, proc_data, gr_missing = "incl") + cat(formatters::export_as_txt(res1, lpp = 100)) Output LBT14 - High Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -509,89 +738,99 @@ —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement Not High 121 118 118 - Not High 72 (59.5%) 70 (59.3%) 59 (50.0%) - 1 16 (13.2%) 13 (11.0%) 17 (14.4%) - 2 13 (10.7%) 12 (10.2%) 18 (15.3%) - 3 9 (7.4%) 14 (11.9%) 12 (10.2%) - 4 11 (9.1%) 9 (7.6%) 12 (10.2%) + Not High 121 (100%) 118 (100%) 118 (100%) + 1 18 (14.9%) 18 (15.3%) 23 (19.5%) + 2 17 (14.0%) 17 (14.4%) 21 (17.8%) + 3 15 (12.4%) 17 (14.4%) 17 (14.4%) + 4 12 (9.9%) 10 (8.5%) 13 (11.0%) 1 4 4 3 - Not High 1 (25.0%) 1 (25.0%) 2 (66.7%) - 1 1 (25.0%) 0 0 - 2 1 (25.0%) 0 0 - 3 0 1 (25.0%) 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 4 (100%) 4 (100%) 3 (100%) + 2 1 (25.0%) 2 (50.0%) 0 + 3 0 2 (50.0%) 1 (33.3%) 4 1 (25.0%) 2 (50.0%) 0 2 4 4 4 - Not High 3 (75.0%) 3 (75.0%) 3 (75.0%) + Not High 4 (100%) 4 (100%) 4 (100%) 1 0 1 (25.0%) 1 (25.0%) - 2 1 (25.0%) 0 0 + 2 4 (100%) 4 (100%) 4 (100%) 3 2 5 5 - Not High 2 (100%) 2 (40.0%) 4 (80.0%) + Not High 2 (100%) 5 (100%) 5 (100%) 1 0 2 (40.0%) 0 2 0 1 (20.0%) 0 + 3 2 (100%) 5 (100%) 5 (100%) 4 0 0 1 (20.0%) 4 3 3 2 - Not High 1 (33.3%) 2 (66.7%) 2 (100%) + Not High 3 (100%) 3 (100%) 2 (100%) 1 1 (33.3%) 0 0 3 1 (33.3%) 1 (33.3%) 0 + 4 3 (100%) 3 (100%) 2 (100%) C-Reactive Protein Measurement Not High 115 115 114 - Not High 60 (52.2%) 68 (59.1%) 70 (61.4%) - 1 17 (14.8%) 13 (11.3%) 9 (7.9%) - 2 12 (10.4%) 14 (12.2%) 13 (11.4%) - 3 16 (13.9%) 10 (8.7%) 13 (11.4%) - 4 10 (8.7%) 10 (8.7%) 9 (7.9%) + Not High 115 (100%) 115 (100%) 114 (100%) + 1 24 (20.9%) 20 (17.4%) 18 (15.8%) + 2 17 (14.8%) 19 (16.5%) 20 (17.5%) + 3 21 (18.3%) 12 (10.4%) 14 (12.3%) + 4 11 (9.6%) 12 (10.4%) 18 (15.8%) 1 5 5 5 - Not High 4 (80.0%) 3 (60.0%) 5 (100%) + Not High 5 (100%) 5 (100%) 5 (100%) + 1 5 (100%) 5 (100%) 5 (100%) 2 0 2 (40.0%) 0 4 1 (20.0%) 0 0 2 6 5 5 - Not High 3 (50.0%) 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 0 - 2 2 (33.3%) 0 0 + Not High 6 (100%) 5 (100%) 5 (100%) + 1 0 2 (40.0%) 0 + 2 6 (100%) 5 (100%) 5 (100%) 4 1 (16.7%) 1 (20.0%) 1 (20.0%) 3 2 3 5 - Not High 2 (100%) 1 (33.3%) 4 (80.0%) - 3 0 1 (33.3%) 1 (20.0%) + Not High 2 (100%) 3 (100%) 5 (100%) + 1 0 1 (33.3%) 0 + 2 1 (50.0%) 0 0 + 3 2 (100%) 3 (100%) 5 (100%) 4 0 1 (33.3%) 0 4 6 6 3 - Not High 5 (83.3%) 4 (66.7%) 3 (100%) + Not High 6 (100%) 6 (100%) 3 (100%) 1 0 1 (16.7%) 0 - 2 1 (16.7%) 0 0 - 3 0 1 (16.7%) 0 + 2 2 (33.3%) 0 0 + 3 0 2 (33.3%) 0 + 4 6 (100%) 6 (100%) 3 (100%) Immunoglobulin A Measurement Not High 119 123 119 - Not High 61 (51.3%) 69 (56.1%) 74 (62.2%) - 1 24 (20.2%) 12 (9.8%) 13 (10.9%) - 2 13 (10.9%) 20 (16.3%) 12 (10.1%) - 3 11 (9.2%) 11 (8.9%) 16 (13.4%) - 4 10 (8.4%) 11 (8.9%) 4 (3.4%) + Not High 119 (100%) 123 (100%) 119 (100%) + 1 27 (22.7%) 18 (14.6%) 18 (15.1%) + 2 18 (15.1%) 24 (19.5%) 17 (14.3%) + 3 14 (11.8%) 14 (11.4%) 20 (16.8%) + 4 11 (9.2%) 12 (9.8%) 4 (3.4%) 1 2 4 6 - Not High 2 (100%) 2 (50.0%) 5 (83.3%) + Not High 2 (100%) 4 (100%) 6 (100%) + 1 2 (100%) 4 (100%) 6 (100%) 2 0 0 1 (16.7%) + 3 0 1 (25.0%) 0 4 0 2 (50.0%) 0 2 4 4 3 - Not High 3 (75.0%) 2 (50.0%) 1 (33.3%) - 1 0 2 (50.0%) 0 - 2 0 0 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 0 3 (75.0%) 0 + 2 4 (100%) 4 (100%) 3 (100%) 3 0 0 1 (33.3%) 4 1 (25.0%) 0 0 3 5 2 2 - Not High 3 (60.0%) 0 1 (50.0%) - 1 1 (20.0%) 0 0 + Not High 5 (100%) 2 (100%) 2 (100%) + 1 1 (20.0%) 0 1 (50.0%) 2 0 0 1 (50.0%) - 3 1 (20.0%) 2 (100%) 0 + 3 5 (100%) 2 (100%) 2 (100%) 4 4 1 2 - Not High 3 (75.0%) 1 (100%) 1 (50.0%) + Not High 4 (100%) 1 (100%) 2 (100%) + 1 1 (25.0%) 0 0 2 1 (25.0%) 0 1 (50.0%) + 3 0 0 1 (50.0%) + 4 4 (100%) 1 (100%) 2 (100%) --- Code - run(lbt14_2, proc_data, gr_missing = "excl") + cat(formatters::export_as_txt(res2, lpp = 100)) Output LBT14 - High Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -599,92 +838,99 @@ —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement Not High 121 118 118 - Not High 72 (59.5%) 70 (59.3%) 59 (50.0%) - 1 16 (13.2%) 13 (11.0%) 17 (14.4%) - 2 13 (10.7%) 12 (10.2%) 18 (15.3%) - 3 9 (7.4%) 14 (11.9%) 12 (10.2%) - 4 11 (9.1%) 9 (7.6%) 12 (10.2%) + Not High 121 (100%) 118 (100%) 118 (100%) + 1 18 (14.9%) 18 (15.3%) 23 (19.5%) + 2 17 (14.0%) 17 (14.4%) 21 (17.8%) + 3 15 (12.4%) 17 (14.4%) 17 (14.4%) + 4 12 (9.9%) 10 (8.5%) 13 (11.0%) 1 4 4 3 - Not High 1 (25.0%) 1 (25.0%) 2 (66.7%) - 1 1 (25.0%) 0 0 - 2 1 (25.0%) 0 0 - 3 0 1 (25.0%) 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 4 (100%) 4 (100%) 3 (100%) + 2 1 (25.0%) 2 (50.0%) 0 + 3 0 2 (50.0%) 1 (33.3%) 4 1 (25.0%) 2 (50.0%) 0 2 4 4 4 - Not High 3 (75.0%) 3 (75.0%) 3 (75.0%) + Not High 4 (100%) 4 (100%) 4 (100%) 1 0 1 (25.0%) 1 (25.0%) - 2 1 (25.0%) 0 0 + 2 4 (100%) 4 (100%) 4 (100%) 3 2 5 5 - Not High 2 (100%) 2 (40.0%) 4 (80.0%) + Not High 2 (100%) 5 (100%) 5 (100%) 1 0 2 (40.0%) 0 2 0 1 (20.0%) 0 + 3 2 (100%) 5 (100%) 5 (100%) 4 0 0 1 (20.0%) 4 3 3 2 - Not High 1 (33.3%) 2 (66.7%) 2 (100%) + Not High 3 (100%) 3 (100%) 2 (100%) 1 1 (33.3%) 0 0 3 1 (33.3%) 1 (33.3%) 0 + 4 3 (100%) 3 (100%) 2 (100%) C-Reactive Protein Measurement Not High 115 115 114 - Not High 60 (52.2%) 68 (59.1%) 70 (61.4%) - 1 17 (14.8%) 13 (11.3%) 9 (7.9%) - 2 12 (10.4%) 14 (12.2%) 13 (11.4%) - 3 16 (13.9%) 10 (8.7%) 13 (11.4%) - 4 10 (8.7%) 10 (8.7%) 9 (7.9%) + Not High 115 (100%) 115 (100%) 114 (100%) + 1 24 (20.9%) 20 (17.4%) 18 (15.8%) + 2 17 (14.8%) 19 (16.5%) 20 (17.5%) + 3 21 (18.3%) 12 (10.4%) 14 (12.3%) + 4 11 (9.6%) 12 (10.4%) 18 (15.8%) 1 5 5 5 - Not High 4 (80.0%) 3 (60.0%) 5 (100%) + Not High 5 (100%) 5 (100%) 5 (100%) + 1 5 (100%) 5 (100%) 5 (100%) 2 0 2 (40.0%) 0 4 1 (20.0%) 0 0 2 6 5 5 - Not High 3 (50.0%) 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 0 - 2 2 (33.3%) 0 0 + Not High 6 (100%) 5 (100%) 5 (100%) + 1 0 2 (40.0%) 0 + 2 6 (100%) 5 (100%) 5 (100%) 4 1 (16.7%) 1 (20.0%) 1 (20.0%) 3 2 3 5 - Not High 2 (100%) 1 (33.3%) 4 (80.0%) - 3 0 1 (33.3%) 1 (20.0%) + Not High 2 (100%) 3 (100%) 5 (100%) + 1 0 1 (33.3%) 0 + 2 1 (50.0%) 0 0 + 3 2 (100%) 3 (100%) 5 (100%) 4 0 1 (33.3%) 0 4 6 6 3 - Not High 5 (83.3%) 4 (66.7%) 3 (100%) + Not High 6 (100%) 6 (100%) 3 (100%) 1 0 1 (16.7%) 0 - 2 1 (16.7%) 0 0 - 3 0 1 (16.7%) 0 + 2 2 (33.3%) 0 0 + 3 0 2 (33.3%) 0 + 4 6 (100%) 6 (100%) 3 (100%) Immunoglobulin A Measurement Not High 119 123 119 - Not High 61 (51.3%) 69 (56.1%) 74 (62.2%) - 1 24 (20.2%) 12 (9.8%) 13 (10.9%) - 2 13 (10.9%) 20 (16.3%) 12 (10.1%) - 3 11 (9.2%) 11 (8.9%) 16 (13.4%) - 4 10 (8.4%) 11 (8.9%) 4 (3.4%) + Not High 119 (100%) 123 (100%) 119 (100%) + 1 27 (22.7%) 18 (14.6%) 18 (15.1%) + 2 18 (15.1%) 24 (19.5%) 17 (14.3%) + 3 14 (11.8%) 14 (11.4%) 20 (16.8%) + 4 11 (9.2%) 12 (9.8%) 4 (3.4%) 1 2 4 6 - Not High 2 (100%) 2 (50.0%) 5 (83.3%) + Not High 2 (100%) 4 (100%) 6 (100%) + 1 2 (100%) 4 (100%) 6 (100%) 2 0 0 1 (16.7%) + 3 0 1 (25.0%) 0 4 0 2 (50.0%) 0 2 4 4 3 - Not High 3 (75.0%) 2 (50.0%) 1 (33.3%) - 1 0 2 (50.0%) 0 - 2 0 0 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 0 3 (75.0%) 0 + 2 4 (100%) 4 (100%) 3 (100%) 3 0 0 1 (33.3%) 4 1 (25.0%) 0 0 3 5 2 2 - Not High 3 (60.0%) 0 1 (50.0%) - 1 1 (20.0%) 0 0 + Not High 5 (100%) 2 (100%) 2 (100%) + 1 1 (20.0%) 0 1 (50.0%) 2 0 0 1 (50.0%) - 3 1 (20.0%) 2 (100%) 0 + 3 5 (100%) 2 (100%) 2 (100%) 4 4 1 2 - Not High 3 (75.0%) 1 (100%) 1 (50.0%) + Not High 4 (100%) 1 (100%) 2 (100%) + 1 1 (25.0%) 0 0 2 1 (25.0%) 0 1 (50.0%) - —————————————————————————————————————————————————————————————————————————————————————— - - Patients with missing baseline values are excluded from the analysis. + 3 0 0 1 (50.0%) + 4 4 (100%) 1 (100%) 2 (100%) --- Code - run(lbt14_2, proc_data, gr_missing = "gr_0") + cat(formatters::export_as_txt(res3, lpp = 100)) Output LBT14 - High Direction - —————————————————————————————————————————————————————————————————————————————————————— Parameter Baseline NCI-CTCAE Grade A: Drug X B: Placebo C: Combination @@ -692,81 +938,89 @@ —————————————————————————————————————————————————————————————————————————————————————— Alanine Aminotransferase Measurement Not High 121 118 118 - Not High 72 (59.5%) 70 (59.3%) 59 (50.0%) - 1 16 (13.2%) 13 (11.0%) 17 (14.4%) - 2 13 (10.7%) 12 (10.2%) 18 (15.3%) - 3 9 (7.4%) 14 (11.9%) 12 (10.2%) - 4 11 (9.1%) 9 (7.6%) 12 (10.2%) + Not High 121 (100%) 118 (100%) 118 (100%) + 1 18 (14.9%) 18 (15.3%) 23 (19.5%) + 2 17 (14.0%) 17 (14.4%) 21 (17.8%) + 3 15 (12.4%) 17 (14.4%) 17 (14.4%) + 4 12 (9.9%) 10 (8.5%) 13 (11.0%) 1 4 4 3 - Not High 1 (25.0%) 1 (25.0%) 2 (66.7%) - 1 1 (25.0%) 0 0 - 2 1 (25.0%) 0 0 - 3 0 1 (25.0%) 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 4 (100%) 4 (100%) 3 (100%) + 2 1 (25.0%) 2 (50.0%) 0 + 3 0 2 (50.0%) 1 (33.3%) 4 1 (25.0%) 2 (50.0%) 0 2 4 4 4 - Not High 3 (75.0%) 3 (75.0%) 3 (75.0%) + Not High 4 (100%) 4 (100%) 4 (100%) 1 0 1 (25.0%) 1 (25.0%) - 2 1 (25.0%) 0 0 + 2 4 (100%) 4 (100%) 4 (100%) 3 2 5 5 - Not High 2 (100%) 2 (40.0%) 4 (80.0%) + Not High 2 (100%) 5 (100%) 5 (100%) 1 0 2 (40.0%) 0 2 0 1 (20.0%) 0 + 3 2 (100%) 5 (100%) 5 (100%) 4 0 0 1 (20.0%) 4 3 3 2 - Not High 1 (33.3%) 2 (66.7%) 2 (100%) + Not High 3 (100%) 3 (100%) 2 (100%) 1 1 (33.3%) 0 0 3 1 (33.3%) 1 (33.3%) 0 + 4 3 (100%) 3 (100%) 2 (100%) C-Reactive Protein Measurement Not High 115 115 114 - Not High 60 (52.2%) 68 (59.1%) 70 (61.4%) - 1 17 (14.8%) 13 (11.3%) 9 (7.9%) - 2 12 (10.4%) 14 (12.2%) 13 (11.4%) - 3 16 (13.9%) 10 (8.7%) 13 (11.4%) - 4 10 (8.7%) 10 (8.7%) 9 (7.9%) + Not High 115 (100%) 115 (100%) 114 (100%) + 1 24 (20.9%) 20 (17.4%) 18 (15.8%) + 2 17 (14.8%) 19 (16.5%) 20 (17.5%) + 3 21 (18.3%) 12 (10.4%) 14 (12.3%) + 4 11 (9.6%) 12 (10.4%) 18 (15.8%) 1 5 5 5 - Not High 4 (80.0%) 3 (60.0%) 5 (100%) + Not High 5 (100%) 5 (100%) 5 (100%) + 1 5 (100%) 5 (100%) 5 (100%) 2 0 2 (40.0%) 0 4 1 (20.0%) 0 0 2 6 5 5 - Not High 3 (50.0%) 3 (60.0%) 4 (80.0%) - 1 0 1 (20.0%) 0 - 2 2 (33.3%) 0 0 + Not High 6 (100%) 5 (100%) 5 (100%) + 1 0 2 (40.0%) 0 + 2 6 (100%) 5 (100%) 5 (100%) 4 1 (16.7%) 1 (20.0%) 1 (20.0%) 3 2 3 5 - Not High 2 (100%) 1 (33.3%) 4 (80.0%) - 3 0 1 (33.3%) 1 (20.0%) + Not High 2 (100%) 3 (100%) 5 (100%) + 1 0 1 (33.3%) 0 + 2 1 (50.0%) 0 0 + 3 2 (100%) 3 (100%) 5 (100%) 4 0 1 (33.3%) 0 4 6 6 3 - Not High 5 (83.3%) 4 (66.7%) 3 (100%) + Not High 6 (100%) 6 (100%) 3 (100%) 1 0 1 (16.7%) 0 - 2 1 (16.7%) 0 0 - 3 0 1 (16.7%) 0 + 2 2 (33.3%) 0 0 + 3 0 2 (33.3%) 0 + 4 6 (100%) 6 (100%) 3 (100%) Immunoglobulin A Measurement Not High 119 123 119 - Not High 61 (51.3%) 69 (56.1%) 74 (62.2%) - 1 24 (20.2%) 12 (9.8%) 13 (10.9%) - 2 13 (10.9%) 20 (16.3%) 12 (10.1%) - 3 11 (9.2%) 11 (8.9%) 16 (13.4%) - 4 10 (8.4%) 11 (8.9%) 4 (3.4%) + Not High 119 (100%) 123 (100%) 119 (100%) + 1 27 (22.7%) 18 (14.6%) 18 (15.1%) + 2 18 (15.1%) 24 (19.5%) 17 (14.3%) + 3 14 (11.8%) 14 (11.4%) 20 (16.8%) + 4 11 (9.2%) 12 (9.8%) 4 (3.4%) 1 2 4 6 - Not High 2 (100%) 2 (50.0%) 5 (83.3%) + Not High 2 (100%) 4 (100%) 6 (100%) + 1 2 (100%) 4 (100%) 6 (100%) 2 0 0 1 (16.7%) + 3 0 1 (25.0%) 0 4 0 2 (50.0%) 0 2 4 4 3 - Not High 3 (75.0%) 2 (50.0%) 1 (33.3%) - 1 0 2 (50.0%) 0 - 2 0 0 1 (33.3%) + Not High 4 (100%) 4 (100%) 3 (100%) + 1 0 3 (75.0%) 0 + 2 4 (100%) 4 (100%) 3 (100%) 3 0 0 1 (33.3%) 4 1 (25.0%) 0 0 3 5 2 2 - Not High 3 (60.0%) 0 1 (50.0%) - 1 1 (20.0%) 0 0 + Not High 5 (100%) 2 (100%) 2 (100%) + 1 1 (20.0%) 0 1 (50.0%) 2 0 0 1 (50.0%) - 3 1 (20.0%) 2 (100%) 0 + 3 5 (100%) 2 (100%) 2 (100%) 4 4 1 2 - Not High 3 (75.0%) 1 (100%) 1 (50.0%) + Not High 4 (100%) 1 (100%) 2 (100%) + 1 1 (25.0%) 0 0 2 1 (25.0%) 0 1 (50.0%) - —————————————————————————————————————————————————————————————————————————————————————— - - Patients with missing baseline values are assumed to be Grade 0 at baseline. + 3 0 0 1 (50.0%) + 4 4 (100%) 1 (100%) 2 (100%) diff --git a/tests/testthat/_snaps/mht01.md b/tests/testthat/_snaps/mht01.md index 2bdcf4ce9..00b3bdc6f 100644 --- a/tests/testthat/_snaps/mht01.md +++ b/tests/testthat/_snaps/mht01.md @@ -1,7 +1,7 @@ -# mht01_1 works +# mht01_1 functions with default argument value return expected result with test data Code - run(mht01_1, proc_data) + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) @@ -31,10 +31,43 @@ trm D_1/3 50 (37.3%) 42 (31.3%) 51 (38.6%) trm D_2/3 48 (35.8%) 42 (31.3%) 50 (37.9%) -# mht01_1 works on NULL in lbl_mhbodsys or lbl_mhdecod +# mht01 works Code - run(mht01_1, proc_data, lbl_mhbodsys = NULL, lbl_mhdecod = NULL) + cat(formatters::export_as_txt(res, lpp = 100)) + Output + MedDRA System Organ Class A: Drug X B: Placebo C: Combination + MedDRA Preferred Term (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one condition 122 (91.0%) 123 (91.8%) 120 (90.9%) + Total number of conditions 609 622 703 + cl A + Total number of patients with at least one condition 78 (58.2%) 75 (56.0%) 89 (67.4%) + Total number of conditions 132 130 160 + trm A_1/2 50 (37.3%) 45 (33.6%) 63 (47.7%) + trm A_2/2 48 (35.8%) 48 (35.8%) 50 (37.9%) + cl B + Total number of patients with at least one condition 96 (71.6%) 89 (66.4%) 97 (73.5%) + Total number of conditions 185 198 205 + trm B_3/3 48 (35.8%) 54 (40.3%) 51 (38.6%) + trm B_2/3 49 (36.6%) 44 (32.8%) 52 (39.4%) + trm B_1/3 47 (35.1%) 49 (36.6%) 43 (32.6%) + cl C + Total number of patients with at least one condition 67 (50.0%) 75 (56.0%) 79 (59.8%) + Total number of conditions 103 116 129 + trm C_2/2 35 (26.1%) 48 (35.8%) 55 (41.7%) + trm C_1/2 43 (32.1%) 46 (34.3%) 43 (32.6%) + cl D + Total number of patients with at least one condition 96 (71.6%) 90 (67.2%) 98 (74.2%) + Total number of conditions 189 178 209 + trm D_3/3 47 (35.1%) 58 (43.3%) 57 (43.2%) + trm D_1/3 50 (37.3%) 42 (31.3%) 51 (38.6%) + trm D_2/3 48 (35.8%) 42 (31.3%) 50 (37.9%) + +# mht01 works on NULL in lbl_mhbodsys or lbl_mhdecod + + Code + cat(formatters::export_as_txt(res, lpp = 100)) Output MedDRA System Organ Class A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) diff --git a/tests/testthat/_snaps/pdt01.md b/tests/testthat/_snaps/pdt01.md index 9d75160f2..c603a281c 100644 --- a/tests/testthat/_snaps/pdt01.md +++ b/tests/testthat/_snaps/pdt01.md @@ -1,20 +1,57 @@ -# pdt01_1 can handle all NA values +# pdt01 function with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100, cpp = 200)) Output Category A: Drug X B: Placebo C: Combination Description (N=134) (N=134) (N=132) —————————————————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one major protocol deviation 22 (16.4%) 23 (17.2%) 13 (9.8%) Total number of major protocol deviations 40 42 21 - No Coding available - No Coding available 22 (16.4%) 23 (17.2%) 13 (9.8%) + EXCLUSION CRITERIA + Active or untreated or other excluded cns metastases 5 (3.7%) 3 (2.2%) 0 + Pregnancy criteria 2 (1.5%) 4 (3.0%) 0 + History of other malignancies within the last 5 years 3 (2.2%) 2 (1.5%) 0 + Uncontrolled concurrent condition 3 (2.2%) 1 (0.7%) 0 + Other exclusion criteria 0 0 3 (2.3%) + Received prior prohibited therapy or medication 0 2 (1.5%) 1 (0.8%) + INCLUSION CRITERIA + No signed ICF at study entry 6 (4.5%) 4 (3.0%) 0 + Ineligible cancer type or current cancer stage 6 (4.5%) 1 (0.7%) 1 (0.8%) + Inclusion lab values outside allowed limits 0 3 (2.2%) 0 + Does not meet prior therapy requirements 1 (0.7%) 0 0 + Inclusion-related test not done/out of window 0 0 1 (0.8%) + MEDICATION + Significant deviation from planned dose 3 (2.2%) 1 (0.7%) 2 (1.5%) + Received incorrect study medication 1 (0.7%) 2 (1.5%) 1 (0.8%) + Discontinued study drug for unspecified reason 1 (0.7%) 1 (0.7%) 1 (0.8%) + Dose missed or significantly out of window 2 (1.5%) 0 1 (0.8%) + Received prohibited concomitant medication 0 2 (1.5%) 0 + PROCEDURAL + Eligibility-related test not done/out of window 1 (0.7%) 6 (4.5%) 1 (0.8%) + Omission of screening tumor assessment 0 4 (3.0%) 3 (2.3%) + Missed assessment affecting safety/study outcomes 1 (0.7%) 2 (1.5%) 2 (1.5%) + Failure to sign updated ICF within two visits 2 (1.5%) 1 (0.7%) 1 (0.8%) + Missed 2 or more efficacy assessments 2 (1.5%) 0 1 (0.8%) + Omission of complete lab panel required by protocol 0 1 (0.7%) 1 (0.8%) + +# pdt01 can handle all NA values + + Code + cat(formatters::export_as_txt(res, lpp = 100, cpp = 200)) + Output + Category A: Drug X B: Placebo C: Combination + Description (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least one major protocol deviation 22 (16.4%) 23 (17.2%) 13 (9.8%) + Total number of major protocol deviations 40 42 21 + No Coding Available + No Coding Available 22 (16.4%) 23 (17.2%) 13 (9.8%) -# pdt01_1 can handle some NA values +# pdt01 can handle some NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100, cpp = 200)) Output Category A: Drug X B: Placebo C: Combination Description (N=134) (N=134) (N=132) @@ -47,6 +84,6 @@ Failure to sign updated ICF within two visits 1 (0.7%) 1 (0.7%) 1 (0.8%) Missed 2 or more efficacy assessments 2 (1.5%) 0 1 (0.8%) Omission of complete lab panel required by protocol 0 1 (0.7%) 1 (0.8%) - No Coding available - No Coding available 1 (0.7%) 1 (0.7%) 0 + No Coding Available + No Coding Available 1 (0.7%) 1 (0.7%) 0 diff --git a/tests/testthat/_snaps/pdt02.md b/tests/testthat/_snaps/pdt02.md index eba549da7..fe21ffc1c 100644 --- a/tests/testthat/_snaps/pdt02.md +++ b/tests/testthat/_snaps/pdt02.md @@ -1,31 +1,65 @@ -# pdt02_1 can handle all NA values +# pdt02 function with default argument value return expected result with test data Code - res + cat(formatters::export_as_txt(res, lpp = 100, colwidths = c(40, 10, 10, 10))) Output - Primary Reason A: Drug X B: Placebo C: Combination - Description (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one major protocol deviation related to epidemic/pandemic 9 (6.7%) 2 (1.5%) 5 (3.8%) - Total number of major protocol deviations related to epidemic/pandemic 9 2 6 - No Coding available 9 (6.7%) 2 (1.5%) 5 (3.8%) - No Coding available 9 (6.7%) 2 (1.5%) 5 (3.8%) + Primary Reason C: Combina + Description A: Drug X B: Placebo tion + (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least 9 (6.7%) 2 (1.5%) 5 (3.8%) + one major protocol deviation related to + epidemic/pandemic + Total number of major protocol 9 2 6 + deviations related to epidemic/pandemic + Site action due to epidemic/pandemic 9 (6.7%) 2 (1.5%) 5 (3.8%) + Significant deviation from planned 3 (2.2%) 1 (0.7%) 2 (1.5%) + dose + Failure to sign updated ICF within two 2 (1.5%) 1 (0.7%) 1 (0.8%) + visits + Dose missed or significantly out of 2 (1.5%) 0 1 (0.8%) + window + Missed 2 or more efficacy assessments 2 (1.5%) 0 1 (0.8%) -# pdt02_1 can handle some NA values +# pdt02 can handle all NA values Code - res + cat(formatters::export_as_txt(res, lpp = 100, colwidths = c(40, 10, 10, 10))) Output - Primary Reason A: Drug X B: Placebo C: Combination - Description (N=134) (N=134) (N=132) - —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— - Total number of patients with at least one major protocol deviation related to epidemic/pandemic 9 (6.7%) 2 (1.5%) 5 (3.8%) - Total number of major protocol deviations related to epidemic/pandemic 9 2 6 - Site action due to epidemic/pandemic 8 (6.0%) 2 (1.5%) 5 (3.8%) - Significant deviation from planned dose 3 (2.2%) 1 (0.7%) 2 (1.5%) - Dose missed or significantly out of window 2 (1.5%) 0 1 (0.8%) - Failure to sign updated ICF within two visits 1 (0.7%) 1 (0.7%) 1 (0.8%) - Missed 2 or more efficacy assessments 2 (1.5%) 0 1 (0.8%) - No Coding available 1 (0.7%) 0 0 - No Coding available 1 (0.7%) 0 0 + Primary Reason C: Combina + Description A: Drug X B: Placebo tion + (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least 9 (6.7%) 2 (1.5%) 5 (3.8%) + one major protocol deviation related to + epidemic/pandemic + Total number of major protocol 9 2 6 + deviations related to epidemic/pandemic + No Coding Available 9 (6.7%) 2 (1.5%) 5 (3.8%) + No Coding Available 9 (6.7%) 2 (1.5%) 5 (3.8%) + +# pdt02 can handle some NA values + + Code + cat(formatters::export_as_txt(res, lpp = 100, colwidths = c(40, 10, 10, 10))) + Output + Primary Reason C: Combina + Description A: Drug X B: Placebo tion + (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————— + Total number of patients with at least 9 (6.7%) 2 (1.5%) 5 (3.8%) + one major protocol deviation related to + epidemic/pandemic + Total number of major protocol 9 2 6 + deviations related to epidemic/pandemic + Site action due to epidemic/pandemic 8 (6.0%) 2 (1.5%) 5 (3.8%) + Significant deviation from planned 3 (2.2%) 1 (0.7%) 2 (1.5%) + dose + Dose missed or significantly out of 2 (1.5%) 0 1 (0.8%) + window + Failure to sign updated ICF within two 1 (0.7%) 1 (0.7%) 1 (0.8%) + visits + Missed 2 or more efficacy assessments 2 (1.5%) 0 1 (0.8%) + No Coding Available 1 (0.7%) 0 0 + No Coding Available 1 (0.7%) 0 0 diff --git a/tests/testthat/_snaps/rmpt01.md b/tests/testthat/_snaps/rmpt01.md index 87eeb4eda..c899443d9 100644 --- a/tests/testthat/_snaps/rmpt01.md +++ b/tests/testthat/_snaps/rmpt01.md @@ -1,9 +1,23 @@ +# rmpt01 function with default argument value return expected result with test data + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + Patients Person time* + (N=400) (N=400) + —————————————————————————————————————————————————————————————————————— + Total Number of Patients and Person Time 400 (100.0%) 49700 + < 1 month 39 (9.8%) 728 + 1 to <3 months 111 (27.8%) 6418 + 3 to <6 months 136 (34.0%) 17645 + >=6 months 114 (28.5%) 24909 + # rmpt01 can handle NA values Code - res1 + cat(formatters::export_as_txt(res1, lpp = 100)) Output - Duration of exposure Patients Person time* + Patients Person time* (N=400) (N=400) —————————————————————————————————————————————————————————————————— Total Number of Patients and Person Time 0 (0.0%) 0 @@ -15,28 +29,28 @@ --- Code - res2 + cat(formatters::export_as_txt(res2, lpp = 100)) Output - Parameter Category Patients Person time* - Duration of exposure (N=400) (N=400) - ———————————————————————————————————————————————— - Drug A 0 (0.0%) 0 - < 1 month 0 (0.0%) 0 - 1 to <3 months 0 (0.0%) 0 - 3 to <6 months 0 (0.0%) 0 - >=6 months 0 (0.0%) 0 - Drug B 0 (0.0%) 0 - < 1 month 0 (0.0%) 0 - 1 to <3 months 0 (0.0%) 0 - 3 to <6 months 0 (0.0%) 0 - >=6 months 0 (0.0%) 0 + Parameter Category Patients Person time* + (N=400) (N=400) + ———————————————————————————————————————————— + Drug A 0 (0.0%) 0 + < 1 month 0 (0.0%) 0 + 1 to <3 months 0 (0.0%) 0 + 3 to <6 months 0 (0.0%) 0 + >=6 months 0 (0.0%) 0 + Drug B 0 (0.0%) 0 + < 1 month 0 (0.0%) 0 + 1 to <3 months 0 (0.0%) 0 + 3 to <6 months 0 (0.0%) 0 + >=6 months 0 (0.0%) 0 # rmpt01 can handle some NA values Code - res1 + cat(formatters::export_as_txt(res1, lpp = 100)) Output - Duration of exposure Patients Person time* + Patients Person time* (N=400) (N=400) ————————————————————————————————————————————————————————————————————— Total Number of Patients and Person Time 204 (51.0%) 25560 @@ -48,19 +62,19 @@ --- Code - res2 + cat(formatters::export_as_txt(res2, lpp = 100)) Output - Parameter Category Patients Person time* - Duration of exposure (N=400) (N=400) - ——————————————————————————————————————————————————— - Drug A 111 (27.8%) 14593 - < 1 month 12 (3.0%) 188 - 1 to <3 months 23 (5.8%) 1267 - 3 to <6 months 37 (9.2%) 4719 - >=6 months 39 (9.8%) 8419 - Drug B 93 (23.2%) 10967 - < 1 month 8 (2.0%) 168 - 1 to <3 months 33 (8.2%) 1861 - 3 to <6 months 26 (6.5%) 3294 - >=6 months 26 (6.5%) 5644 + Parameter Category Patients Person time* + (N=400) (N=400) + ——————————————————————————————————————————————— + Drug A 111 (27.8%) 14593 + < 1 month 12 (3.0%) 188 + 1 to <3 months 23 (5.8%) 1267 + 3 to <6 months 37 (9.2%) 4719 + >=6 months 39 (9.8%) 8419 + Drug B 93 (23.2%) 10967 + < 1 month 8 (2.0%) 168 + 1 to <3 months 33 (8.2%) 1861 + 3 to <6 months 26 (6.5%) 3294 + >=6 months 26 (6.5%) 5644 diff --git a/tests/testthat/_snaps/rspt01.md b/tests/testthat/_snaps/rspt01.md new file mode 100644 index 000000000..490d0a936 --- /dev/null +++ b/tests/testthat/_snaps/rspt01.md @@ -0,0 +1,328 @@ +# rspt01 works as expected + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, with correction) (97.4, 100.0) (90.6, 98.9) (97.4, 100.0) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 95% CI (Wald, with correction) (-9.3, 0.3) (-2.8, 2.8) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, with correction) (83.09, 94.52) (64.45, 80.33) (85.63, 96.19) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, with correction) (4.90, 16.00) (14.96, 29.82) (3.24, 13.43) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, with correction) (0.00, 2.58) (1.08, 9.36) (0.00, 2.62) + +# rspt01 works as expected for stratified and unstratified analysis + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, with correction) (97.4, 100.0) (90.6, 98.9) (97.4, 100.0) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 95% CI (Wald, with correction) (-9.3, 0.3) (-2.8, 2.8) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Stratified Analysis + Difference in Response rate (%) -4.4 0.1 + 95% CI (CMH, without correction) (-8.5, -0.3) (-2.2, 2.3) + p-value (Cochran-Mantel-Haenszel Test) 0.0344 0.9560 + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, with correction) (83.09, 94.52) (64.45, 80.33) (85.63, 96.19) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, with correction) (4.90, 16.00) (14.96, 29.82) (3.24, 13.43) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, with correction) (0.00, 2.58) (1.08, 9.36) (0.00, 2.62) + +--- + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ———————————————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, with correction) (97.4, 100.0) (90.6, 98.9) (97.4, 100.0) + Stratified Analysis + Difference in Response rate (%) -4.4 0.1 + 95% CI (CMH, without correction) (-8.5, -0.3) (-2.2, 2.3) + p-value (Cochran-Mantel-Haenszel Test) 0.0344 0.9560 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 95% CI (Wald, with correction) (-9.3, 0.3) (-2.8, 2.8) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, with correction) (83.09, 94.52) (64.45, 80.33) (85.63, 96.19) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, with correction) (4.90, 16.00) (14.96, 29.82) (3.24, 13.43) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, with correction) (0.00, 2.58) (1.08, 9.36) (0.00, 2.62) + +# rspt01 works as expected for unstratified analysis only + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, with correction) (97.4, 100.0) (90.6, 98.9) (97.4, 100.0) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 95% CI (Wald, with correction) (-9.3, 0.3) (-2.8, 2.8) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, with correction) (83.09, 94.52) (64.45, 80.33) (85.63, 96.19) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, with correction) (4.90, 16.00) (14.96, 29.82) (3.24, 13.43) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, with correction) (0.00, 2.58) (1.08, 9.36) (0.00, 2.62) + +--- + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, with correction) (97.4, 100.0) (90.6, 98.9) (97.4, 100.0) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 95% CI (Wald, with correction) (-9.3, 0.3) (-2.8, 2.8) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, with correction) (83.09, 94.52) (64.45, 80.33) (85.63, 96.19) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, with correction) (4.90, 16.00) (14.96, 29.82) (3.24, 13.43) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, with correction) (0.00, 2.58) (1.08, 9.36) (0.00, 2.62) + +# rspt01 works as expected for stratified analysis only + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, with correction) (97.4, 100.0) (90.6, 98.9) (97.4, 100.0) + Stratified Analysis + Difference in Response rate (%) -4.4 0.1 + 95% CI (CMH, without correction) (-8.5, -0.3) (-2.2, 2.3) + p-value (Cochran-Mantel-Haenszel Test) 0.0344 0.9560 + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, with correction) (83.09, 94.52) (64.45, 80.33) (85.63, 96.19) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, with correction) (4.90, 16.00) (14.96, 29.82) (3.24, 13.43) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, with correction) (0.00, 2.58) (1.08, 9.36) (0.00, 2.62) + +--- + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ———————————————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, with correction) (97.4, 100.0) (90.6, 98.9) (97.4, 100.0) + Stratified Analysis + Difference in Response rate (%) -4.4 0.1 + 95% CI (CMH, without correction) (-8.5, -0.3) (-2.2, 2.3) + p-value (Cochran-Mantel-Haenszel Test) 0.0344 0.9560 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, with correction) (83.09, 94.52) (64.45, 80.33) (85.63, 96.19) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, with correction) (4.90, 16.00) (14.96, 29.82) (3.24, 13.43) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, with correction) (0.00, 2.58) (1.08, 9.36) (0.00, 2.62) + +# rspt01 works if change reference group + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + B: Placebo A: Drug X C: Combination + (N=134) (N=134) (N=132) + ——————————————————————————————————————————————————————————————————————————————————————————————— + Responders 127 (94.8%) 133 (99.3%) 131 (99.2%) + 95% CI (Wald, with correction) (90.6, 98.9) (97.4, 100.0) (97.4, 100.0) + Unstratified Analysis + Difference in Response rate (%) 4.5 4.5 + 95% CI (Wald, with correction) (-0.3, 9.3) (-0.3, 9.3) + p-value (Fisher's Exact Test) 0.0662 0.0663 + Odds Ratio (95% CI) 7.33 (0.89 - 60.42) 7.22 (0.88 - 59.52) + Complete Response (CR) 97 (72.4%) 119 (88.8%) 120 (90.9%) + 95% CI (Wald, with correction) (64.45, 80.33) (83.09, 94.52) (85.63, 96.19) + Partial Response (PR) 30 (22.4%) 14 (10.4%) 11 (8.3%) + 95% CI (Wald, with correction) (14.96, 29.82) (4.90, 16.00) (3.24, 13.43) + Stable Disease (SD) 7 (5.2%) 1 (0.7%) 1 (0.8%) + 95% CI (Wald, with correction) (1.08, 9.36) (0.00, 2.58) (0.00, 2.62) + +--- + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + B: Placebo A: Drug X C: Combination + (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————————————————————————————————————————— + Responders 127 (94.8%) 133 (99.3%) 131 (99.2%) + 95% CI (Wald, with correction) (90.6, 98.9) (97.4, 100.0) (97.4, 100.0) + Unstratified Analysis + Difference in Response rate (%) 4.5 4.5 + 95% CI (Wald, with correction) (-0.3, 9.3) (-0.3, 9.3) + p-value (Fisher's Exact Test) 0.0662 0.0663 + Odds Ratio (95% CI) 7.33 (0.89 - 60.42) 7.22 (0.88 - 59.52) + Stratified Analysis + Difference in Response rate (%) 4.4 4.6 + 95% CI (CMH, without correction) (0.3, 8.5) (0.5, 8.6) + p-value (Cochran-Mantel-Haenszel Test) 0.0344 0.0319 + Odds Ratio (95% CI) 7.33 (0.89 - 60.42) 7.22 (0.88 - 59.52) + Complete Response (CR) 97 (72.4%) 119 (88.8%) 120 (90.9%) + 95% CI (Wald, with correction) (64.45, 80.33) (83.09, 94.52) (85.63, 96.19) + Partial Response (PR) 30 (22.4%) 14 (10.4%) 11 (8.3%) + 95% CI (Wald, with correction) (14.96, 29.82) (4.90, 16.00) (3.24, 13.43) + Stable Disease (SD) 7 (5.2%) 1 (0.7%) 1 (0.8%) + 95% CI (Wald, with correction) (1.08, 9.36) (0.00, 2.58) (0.00, 2.62) + +# rspt01 works if change statistic methods + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ————————————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 95% CI (Wald, without correction) (97.8, 100.0) (91.0, 98.5) (97.8, 100.0) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 95% CI (Wald, without correction) (-8.5, -0.4) (-2.1, 2.1) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 95% CI (Wald, without correction) (83.47, 94.14) (64.82, 79.96) (86.00, 95.81) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 95% CI (Wald, without correction) (5.27, 15.63) (15.33, 29.45) (3.62, 13.05) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 95% CI (Wald, without correction) (0.00, 2.20) (1.46, 8.99) (0.00, 2.24) + +--- + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo + (N=134) (N=134) + ——————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) + 95% CI (Wald, without correction) (97.8, 100.0) (91.0, 98.5) + Unstratified Analysis + Difference in Response rate (%) -4.5 + 95% CI (Wald, without correction) (-8.5, -0.4) + p-value (Fisher's Exact Test) 0.0662 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) + Stratified Analysis + Difference in Response rate (%) -4.5 + 95% CI (Anderson-Hauck) (-8.9, -0.0) + p-value (Chi-Squared Test with Schouten Correction) 0.0488 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) + Complete Response (CR) 119 (88.8%) 97 (72.4%) + 95% CI (Wald, without correction) (83.47, 94.14) (64.82, 79.96) + Partial Response (PR) 14 (10.4%) 30 (22.4%) + 95% CI (Wald, without correction) (5.27, 15.63) (15.33, 29.45) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) + 95% CI (Wald, without correction) (0.00, 2.20) (1.46, 8.99) + \s\n C: Combination + (N=132) + ——————————————————————————————————————————————————————————————————————————— + Responders 131 (99.2%) + 95% CI (Wald, without correction) (97.8, 100.0) + Unstratified Analysis + Difference in Response rate (%) -0.0 + 95% CI (Wald, without correction) (-2.1, 2.1) + p-value (Fisher's Exact Test) 1.0000 + Odds Ratio (95% CI) 0.98 (0.06 - 15.91) + Stratified Analysis + Difference in Response rate (%) -0.0 + 95% CI (Anderson-Hauck) (-2.5, 2.5) + p-value (Chi-Squared Test with Schouten Correction) 0.7332 + Odds Ratio (95% CI) 0.98 (0.06 - 15.91) + Complete Response (CR) 120 (90.9%) + 95% CI (Wald, without correction) (86.00, 95.81) + Partial Response (PR) 11 (8.3%) + 95% CI (Wald, without correction) (3.62, 13.05) + Stable Disease (SD) 1 (0.8%) + 95% CI (Wald, without correction) (0.00, 2.24) + +# rspt01 works if change confidence interval + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + —————————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 90% CI (Wald, with correction) (97.7, 100.0) (91.2, 98.3) (97.6, 100.0) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 90% CI (Wald, with correction) (-8.6, -0.3) (-2.5, 2.5) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 90% CI (Wald, with correction) (83.95, 93.66) (65.66, 79.11) (86.41, 95.40) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 90% CI (Wald, with correction) (5.73, 15.17) (16.09, 28.68) (4.00, 12.67) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 90% CI (Wald, with correction) (0.00, 2.34) (1.69, 8.76) (0.00, 2.38) + +--- + + Code + cat(formatters::export_as_txt(res, lpp = 100)) + Output + A: Drug X B: Placebo C: Combination + (N=134) (N=134) (N=132) + ———————————————————————————————————————————————————————————————————————————————————————————————————— + Responders 133 (99.3%) 127 (94.8%) 131 (99.2%) + 90% CI (Wald, with correction) (97.7, 100.0) (91.2, 98.3) (97.6, 100.0) + Unstratified Analysis + Difference in Response rate (%) -4.5 -0.0 + 90% CI (Wald, with correction) (-8.6, -0.3) (-2.5, 2.5) + p-value (Fisher's Exact Test) 0.0662 1.0000 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Stratified Analysis + Difference in Response rate (%) -4.4 0.1 + 90% CI (CMH, without correction) (-7.9, -0.9) (-1.8, 2.0) + p-value (Cochran-Mantel-Haenszel Test) 0.0344 0.9560 + Odds Ratio (95% CI) 0.14 (0.02 - 1.12) 0.98 (0.06 - 15.91) + Complete Response (CR) 119 (88.8%) 97 (72.4%) 120 (90.9%) + 90% CI (Wald, with correction) (83.95, 93.66) (65.66, 79.11) (86.41, 95.40) + Partial Response (PR) 14 (10.4%) 30 (22.4%) 11 (8.3%) + 90% CI (Wald, with correction) (5.73, 15.17) (16.09, 28.68) (4.00, 12.67) + Stable Disease (SD) 1 (0.7%) 7 (5.2%) 1 (0.8%) + 90% CI (Wald, with correction) (0.00, 2.34) (1.69, 8.76) (0.00, 2.38) + diff --git a/tests/testthat/_snaps/vst01.md b/tests/testthat/_snaps/vst01.md new file mode 100644 index 000000000..32c3306fb --- /dev/null +++ b/tests/testthat/_snaps/vst01.md @@ -0,0 +1,454 @@ +# vst01 functions with default argument value return expected result with test data + + Code + res + Output + Parameter A: Drug X B: Placebo C: Combination + Analysis Visit Change from Change from Change from + Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline + (N=134) (N=134) (N=134) (N=134) (N=132) (N=132) + ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— + Diastolic Blood Pressure + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.968 (7.197) NE (NE) 50.753 (8.429) NE (NE) 50.192 (7.627) NE (NE) + Median 49.706 NE 50.087 NE 49.641 NE + Min - Max 31.69 - 71.19 NE - NE 29.26 - 69.21 NE - NE 26.89 - 69.98 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 48.602 (7.962) 50.442 (7.948) 51.107 (7.790) + Median 48.418 50.179 50.804 + Min - Max 27.71 - 64.64 21.68 - 67.51 29.75 - 71.40 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 50.260 (7.514) 1.658 (10.774) 49.674 (7.743) -0.767 (10.947) 48.855 (7.888) -2.251 (10.380) + Median 50.088 0.607 49.747 -1.114 47.677 -2.229 + Min - Max 33.04 - 68.98 -20.37 - 29.94 33.71 - 66.49 -25.80 - 28.37 30.39 - 66.99 -22.06 - 22.44 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 50.836 (7.850) 2.234 (11.752) 49.718 (8.445) -0.724 (12.444) 49.981 (8.338) -1.126 (11.639) + Median 51.437 3.126 50.227 -0.709 51.007 -2.271 + Min - Max 31.89 - 70.34 -23.88 - 39.23 30.64 - 68.11 -28.40 - 36.97 24.82 - 65.57 -29.24 - 30.72 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.712 (7.815) 2.110 (10.865) 49.092 (7.941) -1.350 (11.104) 49.944 (7.662) -1.162 (10.901) + Median 50.157 2.611 49.533 -2.317 50.025 -0.617 + Min - Max 29.07 - 74.89 -25.78 - 30.66 24.50 - 67.11 -28.09 - 33.90 31.52 - 68.55 -29.72 - 26.98 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 50.074 (8.071) 1.472 (10.885) 49.624 (7.102) -0.818 (10.634) 49.707 (8.048) -1.399 (11.047) + Median 49.269 1.202 49.193 -0.757 49.844 -0.182 + Min - Max 29.41 - 71.36 -30.92 - 24.76 32.71 - 66.98 -33.18 - 35.95 28.75 - 68.45 -35.47 - 28.36 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 50.569 (7.531) 1.967 (11.206) 48.366 (7.959) -2.075 (11.736) 49.091 (7.570) -2.015 (10.658) + Median 49.422 1.573 47.721 -2.871 49.237 -2.247 + Min - Max 35.06 - 72.21 -25.22 - 31.47 30.42 - 70.61 -31.23 - 29.16 30.59 - 72.91 -30.45 - 34.57 + Pulse Rate + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.599 (8.981) NE (NE) 49.408 (8.388) NE (NE) 49.293 (8.593) NE (NE) + Median 49.871 NE 48.874 NE 48.603 NE + Min - Max 25.94 - 68.80 NE - NE 30.54 - 80.48 NE - NE 26.48 - 67.52 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 51.861 (8.077) 50.270 (8.808) 50.255 (9.366) + Median 51.232 51.248 50.698 + Min - Max 28.47 - 72.90 26.92 - 67.34 27.78 - 71.18 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 50.065 (8.316) -1.796 (11.589) 49.267 (7.520) -1.002 (11.583) 49.796 (7.650) -0.459 (12.609) + Median 49.930 -2.741 48.776 -2.188 49.478 -1.452 + Min - Max 26.70 - 69.37 -26.42 - 29.59 30.70 - 67.76 -29.47 - 32.12 30.14 - 72.89 -25.12 - 33.32 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 49.710 (8.757) -2.150 (12.372) 50.832 (7.595) 0.562 (11.778) 49.058 (7.657) -1.197 (11.326) + Median 49.224 -3.015 50.253 0.081 49.200 -1.144 + Min - Max 25.97 - 69.62 -37.59 - 26.40 33.32 - 70.27 -28.92 - 37.68 32.20 - 73.64 -33.74 - 26.35 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.450 (7.436) -1.410 (11.076) 49.915 (7.818) -0.355 (10.985) 49.803 (7.156) -0.452 (12.082) + Median 50.600 -1.147 49.386 -0.791 49.648 -2.273 + Min - Max 27.72 - 72.97 -30.00 - 26.46 27.84 - 71.02 -26.47 - 33.42 27.94 - 67.47 -28.68 - 28.02 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 48.956 (8.315) -2.905 (11.073) 49.959 (8.390) -0.310 (11.956) 50.991 (7.662) 0.736 (11.571) + Median 48.846 -3.039 49.948 -0.407 51.400 0.687 + Min - Max 32.27 - 78.39 -28.35 - 30.35 30.43 - 79.82 -29.06 - 28.32 31.41 - 70.33 -30.57 - 25.08 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 48.404 (8.500) -3.457 (11.602) 50.309 (7.177) 0.039 (11.233) 49.724 (7.584) -0.531 (12.428) + Median 47.703 -3.970 50.307 -1.452 49.061 -2.687 + Min - Max 24.96 - 75.72 -41.33 - 31.50 29.38 - 67.65 -24.94 - 27.29 35.29 - 73.67 -24.59 - 34.05 + Respiratory Rate + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.176 (8.185) NE (NE) 50.312 (8.326) NE (NE) 49.623 (8.440) NE (NE) + Median 49.265 NE 49.873 NE 50.058 NE + Min - Max 26.02 - 74.45 NE - NE 31.43 - 69.21 NE - NE 24.29 - 67.89 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 49.406 (8.087) 51.116 (8.187) 50.754 (8.413) + Median 49.781 50.523 51.107 + Min - Max 29.33 - 69.31 31.19 - 74.52 26.15 - 70.95 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 49.488 (8.043) 0.082 (11.647) 49.982 (7.919) -1.134 (11.530) 50.967 (7.820) 0.213 (11.140) + Median 49.276 0.244 49.147 -1.619 51.117 0.436 + Min - Max 24.14 - 66.14 -31.62 - 32.15 25.05 - 67.71 -29.13 - 30.92 29.89 - 69.76 -23.60 - 27.67 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 49.662 (7.678) 0.256 (9.707) 50.350 (8.663) -0.766 (12.149) 49.309 (8.540) -1.445 (12.012) + Median 49.211 1.369 49.736 -1.573 50.184 -1.611 + Min - Max 30.81 - 71.33 -24.86 - 27.63 28.47 - 77.02 -29.01 - 28.89 22.40 - 67.65 -43.84 - 26.98 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.605 (8.215) 1.199 (11.669) 50.155 (6.857) -0.960 (10.139) 49.147 (7.348) -1.607 (11.112) + Median 50.517 0.664 49.664 -0.707 49.563 -0.867 + Min - Max 33.17 - 70.78 -33.52 - 33.26 32.30 - 67.83 -29.57 - 22.20 27.42 - 63.34 -25.43 - 33.62 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 49.424 (7.669) 0.018 (10.853) 49.873 (7.786) -1.243 (11.005) 50.806 (7.810) 0.052 (11.106) + Median 48.900 -1.369 48.933 -2.448 50.364 -0.600 + Min - Max 25.94 - 69.65 -25.87 - 40.32 33.70 - 68.55 -25.04 - 29.17 31.87 - 71.97 -27.64 - 31.06 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 49.878 (7.731) 0.472 (11.474) 50.632 (8.216) -0.484 (11.956) 49.945 (7.893) -0.809 (10.574) + Median 49.847 -0.208 50.304 -0.565 49.622 -1.718 + Min - Max 34.34 - 70.70 -30.30 - 37.18 28.42 - 69.84 -29.38 - 23.81 29.78 - 68.40 -21.30 - 22.32 + Systolic Blood Pressure + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.572 (8.322) NE (NE) 50.306 (8.343) NE (NE) 50.902 (7.822) NE (NE) + Median 49.571 NE 50.155 NE 50.774 NE + Min - Max 23.97 - 70.85 NE - NE 26.22 - 79.12 NE - NE 27.63 - 67.45 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 49.407 (8.467) 50.245 (8.531) 48.494 (7.184) + Median 48.335 49.971 49.217 + Min - Max 24.34 - 71.06 24.38 - 71.07 26.22 - 63.35 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 50.702 (9.166) 1.295 (12.814) 49.263 (8.693) -0.982 (11.221) 49.647 (7.991) 1.153 (10.185) + Median 49.526 0.129 48.302 -1.678 49.768 0.085 + Min - Max 29.75 - 78.99 -29.51 - 37.65 32.99 - 73.97 -27.62 - 24.77 25.52 - 68.62 -22.79 - 31.30 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 49.369 (8.469) -0.038 (11.936) 49.377 (7.009) -0.869 (10.968) 49.260 (7.683) 0.766 (9.716) + Median 49.489 -0.243 49.386 -0.929 48.289 -0.216 + Min - Max 24.18 - 65.44 -39.12 - 32.72 27.62 - 69.23 -37.10 - 33.85 29.39 - 74.75 -24.92 - 28.99 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 49.682 (7.776) 0.275 (11.383) 49.034 (7.844) -1.211 (12.123) 50.544 (8.303) 2.050 (11.059) + Median 50.136 1.479 48.794 -1.190 51.672 1.951 + Min - Max 31.30 - 70.31 -27.49 - 27.15 15.58 - 66.17 -35.56 - 36.36 29.62 - 69.40 -29.72 - 30.62 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 49.424 (7.637) 0.017 (11.473) 49.400 (8.640) -0.846 (12.599) 50.657 (7.395) 2.162 (10.495) + Median 49.783 0.599 49.927 -1.288 50.823 2.965 + Min - Max 22.92 - 69.57 -32.30 - 28.46 22.14 - 72.06 -29.71 - 38.11 29.72 - 65.12 -28.75 - 34.15 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 49.395 (7.898) -0.012 (11.876) 50.222 (8.653) -0.023 (11.828) 50.367 (8.176) 1.873 (10.490) + Median 49.565 0.730 49.934 0.192 50.811 2.431 + Min - Max 26.11 - 69.66 -39.25 - 33.93 27.91 - 74.17 -27.70 - 36.16 34.27 - 74.52 -23.70 - 32.42 + Temperature + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 48.947 (9.437) NE (NE) 50.080 (7.875) NE (NE) 50.208 (8.409) NE (NE) + Median 49.553 NE 50.118 NE 49.836 NE + Min - Max 28.96 - 75.23 NE - NE 29.91 - 73.35 NE - NE 30.45 - 72.25 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 49.748 (8.270) 50.873 (7.423) 49.118 (8.248) + Median 50.441 51.506 48.685 + Min - Max 29.02 - 69.08 30.70 - 67.70 20.63 - 70.52 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 51.609 (8.125) 1.861 (11.836) 49.473 (8.207) -1.400 (9.925) 49.756 (7.597) 0.638 (11.167) + Median 52.257 2.303 48.810 -1.054 50.172 0.943 + Min - Max 31.45 - 71.21 -27.99 - 33.15 27.07 - 67.32 -28.15 - 26.63 32.09 - 68.46 -28.01 - 29.36 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 50.202 (7.515) 0.454 (11.009) 49.538 (6.968) -1.334 (10.167) 51.764 (8.117) 2.646 (11.843) + Median 50.659 -0.705 49.681 -0.746 51.613 2.760 + Min - Max 35.15 - 67.74 -33.93 - 25.41 32.30 - 73.16 -29.69 - 29.02 30.10 - 73.30 -24.87 - 32.77 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.077 (8.206) 0.329 (11.065) 49.878 (8.007) -0.994 (10.913) 49.668 (8.247) 0.550 (11.114) + Median 49.476 1.145 49.644 -1.092 49.245 0.487 + Min - Max 28.96 - 68.65 -29.27 - 24.08 32.73 - 70.25 -28.29 - 21.57 35.19 - 75.20 -27.25 - 31.98 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 50.667 (7.657) 0.919 (11.764) 49.787 (8.548) -1.086 (11.790) 49.929 (7.450) 0.811 (11.526) + Median 50.701 1.389 49.776 -1.706 49.793 0.063 + Min - Max 29.72 - 70.80 -25.86 - 29.20 24.44 - 68.94 -28.18 - 37.26 28.39 - 68.64 -25.78 - 32.55 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 50.329 (8.319) 0.581 (12.284) 50.455 (8.104) -0.418 (11.688) 50.050 (7.275) 0.933 (10.808) + Median 49.811 -0.496 50.827 -0.286 49.692 0.861 + Min - Max 33.37 - 74.95 -30.07 - 33.36 34.61 - 77.96 -23.07 - 30.92 31.14 - 73.43 -23.82 - 39.14 + Weight + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.927 (7.443) NE (NE) 49.736 (8.291) NE (NE) 50.305 (9.057) NE (NE) + Median 48.686 NE 49.275 NE 49.745 NE + Min - Max 33.72 - 65.91 NE - NE 25.82 - 71.47 NE - NE 26.04 - 69.99 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 50.726 (7.856) 49.880 (8.342) 49.377 (7.489) + Median 49.780 50.674 49.568 + Min - Max 33.33 - 71.90 27.90 - 69.82 29.39 - 65.05 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 49.230 (7.681) -1.496 (11.399) 49.096 (7.612) -0.785 (11.361) 49.572 (8.396) 0.196 (12.142) + Median 50.507 -0.215 48.891 -2.667 49.864 -0.451 + Min - Max 26.02 - 64.53 -42.93 - 21.34 31.45 - 66.13 -25.00 - 23.52 29.73 - 69.07 -31.02 - 32.60 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 50.893 (8.178) 0.167 (11.238) 50.022 (7.807) 0.142 (12.504) 49.741 (7.937) 0.364 (10.827) + Median 50.344 2.024 50.217 -0.224 49.762 1.317 + Min - Max 32.10 - 70.09 -30.03 - 22.84 28.70 - 72.11 -29.23 - 34.60 28.09 - 73.67 -28.00 - 26.59 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 48.962 (7.994) -1.765 (11.362) 49.573 (8.348) -0.307 (12.454) 50.446 (8.084) 1.069 (10.807) + Median 48.868 -1.295 48.507 -0.982 50.805 -0.190 + Min - Max 31.68 - 75.41 -29.72 - 24.92 32.44 - 75.98 -36.82 - 34.43 27.81 - 70.85 -28.93 - 31.73 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 50.061 (8.083) -0.665 (11.186) 49.529 (8.097) -0.352 (10.428) 49.667 (7.509) 0.290 (10.415) + Median 50.867 -0.870 49.367 -0.513 49.608 -1.187 + Min - Max 30.09 - 68.88 -29.49 - 24.31 28.99 - 69.47 -24.91 - 26.30 30.79 - 77.45 -23.39 - 29.93 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 49.023 (8.110) -1.703 (11.514) 51.584 (8.486) 1.704 (11.545) 49.872 (7.400) 0.495 (10.871) + Median 49.752 -0.777 51.807 1.219 49.590 -0.156 + Min - Max 26.38 - 66.72 -34.78 - 29.74 26.29 - 76.63 -23.99 - 29.33 28.74 - 67.93 -36.15 - 31.04 + +# run vst01 works as expected + + Code + res + Output + Parameter A: Drug X B: Placebo C: Combination + Analysis Visit Change from Change from Change from + Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline + (N=134) (N=134) (N=134) (N=134) (N=132) (N=132) + ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— + Diastolic Blood Pressure + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.968 (7.197) NE (NE) 50.753 (8.429) NE (NE) 50.192 (7.627) NE (NE) + Median 49.706 NE 50.087 NE 49.641 NE + Min - Max 31.69 - 71.19 NE - NE 29.26 - 69.21 NE - NE 26.89 - 69.98 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 48.602 (7.962) 50.442 (7.948) 51.107 (7.790) + Median 48.418 50.179 50.804 + Min - Max 27.71 - 64.64 21.68 - 67.51 29.75 - 71.40 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 50.260 (7.514) 1.658 (10.774) 49.674 (7.743) -0.767 (10.947) 48.855 (7.888) -2.251 (10.380) + Median 50.088 0.607 49.747 -1.114 47.677 -2.229 + Min - Max 33.04 - 68.98 -20.37 - 29.94 33.71 - 66.49 -25.80 - 28.37 30.39 - 66.99 -22.06 - 22.44 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 50.836 (7.850) 2.234 (11.752) 49.718 (8.445) -0.724 (12.444) 49.981 (8.338) -1.126 (11.639) + Median 51.437 3.126 50.227 -0.709 51.007 -2.271 + Min - Max 31.89 - 70.34 -23.88 - 39.23 30.64 - 68.11 -28.40 - 36.97 24.82 - 65.57 -29.24 - 30.72 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.712 (7.815) 2.110 (10.865) 49.092 (7.941) -1.350 (11.104) 49.944 (7.662) -1.162 (10.901) + Median 50.157 2.611 49.533 -2.317 50.025 -0.617 + Min - Max 29.07 - 74.89 -25.78 - 30.66 24.50 - 67.11 -28.09 - 33.90 31.52 - 68.55 -29.72 - 26.98 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 50.074 (8.071) 1.472 (10.885) 49.624 (7.102) -0.818 (10.634) 49.707 (8.048) -1.399 (11.047) + Median 49.269 1.202 49.193 -0.757 49.844 -0.182 + Min - Max 29.41 - 71.36 -30.92 - 24.76 32.71 - 66.98 -33.18 - 35.95 28.75 - 68.45 -35.47 - 28.36 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 50.569 (7.531) 1.967 (11.206) 48.366 (7.959) -2.075 (11.736) 49.091 (7.570) -2.015 (10.658) + Median 49.422 1.573 47.721 -2.871 49.237 -2.247 + Min - Max 35.06 - 72.21 -25.22 - 31.47 30.42 - 70.61 -31.23 - 29.16 30.59 - 72.91 -30.45 - 34.57 + Pulse Rate + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.599 (8.981) NE (NE) 49.408 (8.388) NE (NE) 49.293 (8.593) NE (NE) + Median 49.871 NE 48.874 NE 48.603 NE + Min - Max 25.94 - 68.80 NE - NE 30.54 - 80.48 NE - NE 26.48 - 67.52 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 51.861 (8.077) 50.270 (8.808) 50.255 (9.366) + Median 51.232 51.248 50.698 + Min - Max 28.47 - 72.90 26.92 - 67.34 27.78 - 71.18 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 50.065 (8.316) -1.796 (11.589) 49.267 (7.520) -1.002 (11.583) 49.796 (7.650) -0.459 (12.609) + Median 49.930 -2.741 48.776 -2.188 49.478 -1.452 + Min - Max 26.70 - 69.37 -26.42 - 29.59 30.70 - 67.76 -29.47 - 32.12 30.14 - 72.89 -25.12 - 33.32 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 49.710 (8.757) -2.150 (12.372) 50.832 (7.595) 0.562 (11.778) 49.058 (7.657) -1.197 (11.326) + Median 49.224 -3.015 50.253 0.081 49.200 -1.144 + Min - Max 25.97 - 69.62 -37.59 - 26.40 33.32 - 70.27 -28.92 - 37.68 32.20 - 73.64 -33.74 - 26.35 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.450 (7.436) -1.410 (11.076) 49.915 (7.818) -0.355 (10.985) 49.803 (7.156) -0.452 (12.082) + Median 50.600 -1.147 49.386 -0.791 49.648 -2.273 + Min - Max 27.72 - 72.97 -30.00 - 26.46 27.84 - 71.02 -26.47 - 33.42 27.94 - 67.47 -28.68 - 28.02 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 48.956 (8.315) -2.905 (11.073) 49.959 (8.390) -0.310 (11.956) 50.991 (7.662) 0.736 (11.571) + Median 48.846 -3.039 49.948 -0.407 51.400 0.687 + Min - Max 32.27 - 78.39 -28.35 - 30.35 30.43 - 79.82 -29.06 - 28.32 31.41 - 70.33 -30.57 - 25.08 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 48.404 (8.500) -3.457 (11.602) 50.309 (7.177) 0.039 (11.233) 49.724 (7.584) -0.531 (12.428) + Median 47.703 -3.970 50.307 -1.452 49.061 -2.687 + Min - Max 24.96 - 75.72 -41.33 - 31.50 29.38 - 67.65 -24.94 - 27.29 35.29 - 73.67 -24.59 - 34.05 + Respiratory Rate + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.176 (8.185) NE (NE) 50.312 (8.326) NE (NE) 49.623 (8.440) NE (NE) + Median 49.265 NE 49.873 NE 50.058 NE + Min - Max 26.02 - 74.45 NE - NE 31.43 - 69.21 NE - NE 24.29 - 67.89 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 49.406 (8.087) 51.116 (8.187) 50.754 (8.413) + Median 49.781 50.523 51.107 + Min - Max 29.33 - 69.31 31.19 - 74.52 26.15 - 70.95 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 49.488 (8.043) 0.082 (11.647) 49.982 (7.919) -1.134 (11.530) 50.967 (7.820) 0.213 (11.140) + Median 49.276 0.244 49.147 -1.619 51.117 0.436 + Min - Max 24.14 - 66.14 -31.62 - 32.15 25.05 - 67.71 -29.13 - 30.92 29.89 - 69.76 -23.60 - 27.67 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 49.662 (7.678) 0.256 (9.707) 50.350 (8.663) -0.766 (12.149) 49.309 (8.540) -1.445 (12.012) + Median 49.211 1.369 49.736 -1.573 50.184 -1.611 + Min - Max 30.81 - 71.33 -24.86 - 27.63 28.47 - 77.02 -29.01 - 28.89 22.40 - 67.65 -43.84 - 26.98 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.605 (8.215) 1.199 (11.669) 50.155 (6.857) -0.960 (10.139) 49.147 (7.348) -1.607 (11.112) + Median 50.517 0.664 49.664 -0.707 49.563 -0.867 + Min - Max 33.17 - 70.78 -33.52 - 33.26 32.30 - 67.83 -29.57 - 22.20 27.42 - 63.34 -25.43 - 33.62 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 49.424 (7.669) 0.018 (10.853) 49.873 (7.786) -1.243 (11.005) 50.806 (7.810) 0.052 (11.106) + Median 48.900 -1.369 48.933 -2.448 50.364 -0.600 + Min - Max 25.94 - 69.65 -25.87 - 40.32 33.70 - 68.55 -25.04 - 29.17 31.87 - 71.97 -27.64 - 31.06 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 49.878 (7.731) 0.472 (11.474) 50.632 (8.216) -0.484 (11.956) 49.945 (7.893) -0.809 (10.574) + Median 49.847 -0.208 50.304 -0.565 49.622 -1.718 + Min - Max 34.34 - 70.70 -30.30 - 37.18 28.42 - 69.84 -29.38 - 23.81 29.78 - 68.40 -21.30 - 22.32 + Systolic Blood Pressure + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.572 (8.322) NE (NE) 50.306 (8.343) NE (NE) 50.902 (7.822) NE (NE) + Median 49.571 NE 50.155 NE 50.774 NE + Min - Max 23.97 - 70.85 NE - NE 26.22 - 79.12 NE - NE 27.63 - 67.45 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 49.407 (8.467) 50.245 (8.531) 48.494 (7.184) + Median 48.335 49.971 49.217 + Min - Max 24.34 - 71.06 24.38 - 71.07 26.22 - 63.35 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 50.702 (9.166) 1.295 (12.814) 49.263 (8.693) -0.982 (11.221) 49.647 (7.991) 1.153 (10.185) + Median 49.526 0.129 48.302 -1.678 49.768 0.085 + Min - Max 29.75 - 78.99 -29.51 - 37.65 32.99 - 73.97 -27.62 - 24.77 25.52 - 68.62 -22.79 - 31.30 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 49.369 (8.469) -0.038 (11.936) 49.377 (7.009) -0.869 (10.968) 49.260 (7.683) 0.766 (9.716) + Median 49.489 -0.243 49.386 -0.929 48.289 -0.216 + Min - Max 24.18 - 65.44 -39.12 - 32.72 27.62 - 69.23 -37.10 - 33.85 29.39 - 74.75 -24.92 - 28.99 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 49.682 (7.776) 0.275 (11.383) 49.034 (7.844) -1.211 (12.123) 50.544 (8.303) 2.050 (11.059) + Median 50.136 1.479 48.794 -1.190 51.672 1.951 + Min - Max 31.30 - 70.31 -27.49 - 27.15 15.58 - 66.17 -35.56 - 36.36 29.62 - 69.40 -29.72 - 30.62 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 49.424 (7.637) 0.017 (11.473) 49.400 (8.640) -0.846 (12.599) 50.657 (7.395) 2.162 (10.495) + Median 49.783 0.599 49.927 -1.288 50.823 2.965 + Min - Max 22.92 - 69.57 -32.30 - 28.46 22.14 - 72.06 -29.71 - 38.11 29.72 - 65.12 -28.75 - 34.15 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 49.395 (7.898) -0.012 (11.876) 50.222 (8.653) -0.023 (11.828) 50.367 (8.176) 1.873 (10.490) + Median 49.565 0.730 49.934 0.192 50.811 2.431 + Min - Max 26.11 - 69.66 -39.25 - 33.93 27.91 - 74.17 -27.70 - 36.16 34.27 - 74.52 -23.70 - 32.42 + Temperature + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 48.947 (9.437) NE (NE) 50.080 (7.875) NE (NE) 50.208 (8.409) NE (NE) + Median 49.553 NE 50.118 NE 49.836 NE + Min - Max 28.96 - 75.23 NE - NE 29.91 - 73.35 NE - NE 30.45 - 72.25 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 49.748 (8.270) 50.873 (7.423) 49.118 (8.248) + Median 50.441 51.506 48.685 + Min - Max 29.02 - 69.08 30.70 - 67.70 20.63 - 70.52 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 51.609 (8.125) 1.861 (11.836) 49.473 (8.207) -1.400 (9.925) 49.756 (7.597) 0.638 (11.167) + Median 52.257 2.303 48.810 -1.054 50.172 0.943 + Min - Max 31.45 - 71.21 -27.99 - 33.15 27.07 - 67.32 -28.15 - 26.63 32.09 - 68.46 -28.01 - 29.36 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 50.202 (7.515) 0.454 (11.009) 49.538 (6.968) -1.334 (10.167) 51.764 (8.117) 2.646 (11.843) + Median 50.659 -0.705 49.681 -0.746 51.613 2.760 + Min - Max 35.15 - 67.74 -33.93 - 25.41 32.30 - 73.16 -29.69 - 29.02 30.10 - 73.30 -24.87 - 32.77 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 50.077 (8.206) 0.329 (11.065) 49.878 (8.007) -0.994 (10.913) 49.668 (8.247) 0.550 (11.114) + Median 49.476 1.145 49.644 -1.092 49.245 0.487 + Min - Max 28.96 - 68.65 -29.27 - 24.08 32.73 - 70.25 -28.29 - 21.57 35.19 - 75.20 -27.25 - 31.98 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 50.667 (7.657) 0.919 (11.764) 49.787 (8.548) -1.086 (11.790) 49.929 (7.450) 0.811 (11.526) + Median 50.701 1.389 49.776 -1.706 49.793 0.063 + Min - Max 29.72 - 70.80 -25.86 - 29.20 24.44 - 68.94 -28.18 - 37.26 28.39 - 68.64 -25.78 - 32.55 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 50.329 (8.319) 0.581 (12.284) 50.455 (8.104) -0.418 (11.688) 50.050 (7.275) 0.933 (10.808) + Median 49.811 -0.496 50.827 -0.286 49.692 0.861 + Min - Max 33.37 - 74.95 -30.07 - 33.36 34.61 - 77.96 -23.07 - 30.92 31.14 - 73.43 -23.82 - 39.14 + Weight + SCREENING + n 134 0 134 0 132 0 + Mean (SD) 49.927 (7.443) NE (NE) 49.736 (8.291) NE (NE) 50.305 (9.057) NE (NE) + Median 48.686 NE 49.275 NE 49.745 NE + Min - Max 33.72 - 65.91 NE - NE 25.82 - 71.47 NE - NE 26.04 - 69.99 NE - NE + BASELINE + n 134 134 132 + Mean (SD) 50.726 (7.856) 49.880 (8.342) 49.377 (7.489) + Median 49.780 50.674 49.568 + Min - Max 33.33 - 71.90 27.90 - 69.82 29.39 - 65.05 + WEEK 1 DAY 8 + n 134 134 134 134 132 132 + Mean (SD) 49.230 (7.681) -1.496 (11.399) 49.096 (7.612) -0.785 (11.361) 49.572 (8.396) 0.196 (12.142) + Median 50.507 -0.215 48.891 -2.667 49.864 -0.451 + Min - Max 26.02 - 64.53 -42.93 - 21.34 31.45 - 66.13 -25.00 - 23.52 29.73 - 69.07 -31.02 - 32.60 + WEEK 2 DAY 15 + n 134 134 134 134 132 132 + Mean (SD) 50.893 (8.178) 0.167 (11.238) 50.022 (7.807) 0.142 (12.504) 49.741 (7.937) 0.364 (10.827) + Median 50.344 2.024 50.217 -0.224 49.762 1.317 + Min - Max 32.10 - 70.09 -30.03 - 22.84 28.70 - 72.11 -29.23 - 34.60 28.09 - 73.67 -28.00 - 26.59 + WEEK 3 DAY 22 + n 134 134 134 134 132 132 + Mean (SD) 48.962 (7.994) -1.765 (11.362) 49.573 (8.348) -0.307 (12.454) 50.446 (8.084) 1.069 (10.807) + Median 48.868 -1.295 48.507 -0.982 50.805 -0.190 + Min - Max 31.68 - 75.41 -29.72 - 24.92 32.44 - 75.98 -36.82 - 34.43 27.81 - 70.85 -28.93 - 31.73 + WEEK 4 DAY 29 + n 134 134 134 134 132 132 + Mean (SD) 50.061 (8.083) -0.665 (11.186) 49.529 (8.097) -0.352 (10.428) 49.667 (7.509) 0.290 (10.415) + Median 50.867 -0.870 49.367 -0.513 49.608 -1.187 + Min - Max 30.09 - 68.88 -29.49 - 24.31 28.99 - 69.47 -24.91 - 26.30 30.79 - 77.45 -23.39 - 29.93 + WEEK 5 DAY 36 + n 134 134 134 134 132 132 + Mean (SD) 49.023 (8.110) -1.703 (11.514) 51.584 (8.486) 1.704 (11.545) 49.872 (7.400) 0.495 (10.871) + Median 49.752 -0.777 51.807 1.219 49.590 -0.156 + Min - Max 26.38 - 66.72 -34.78 - 29.74 26.29 - 76.63 -23.99 - 29.33 28.74 - 67.93 -36.15 - 31.04 + diff --git a/tests/testthat/_snaps/vst02.md b/tests/testthat/_snaps/vst02.md index f5f02369d..b351e53df 100644 --- a/tests/testthat/_snaps/vst02.md +++ b/tests/testthat/_snaps/vst02.md @@ -1,7 +1,7 @@ -# vst02_1 works +# vst02 functions with default argument value return expected result with test data Code - run(vst02_1, proc_data) + cat(formatters::export_as_txt(res, lpp = 100)) Output Assessment A: Drug X B: Placebo C: Combination Abnormality (N=134) (N=134) (N=132) @@ -25,68 +25,14 @@ Low 73/134 (54.5%) 71/134 (53%) 76/132 (57.6%) High 69/134 (51.5%) 74/134 (55.2%) 74/132 (56.1%) ---- +# vst02 functions return expected result with test data when excluding subject with baseline abnormality Code - run(vst02_1, proc_data, prune_0 = TRUE) + cat(formatters::export_as_txt(res, lpp = 100)) Output Assessment A: Drug X B: Placebo C: Combination Abnormality (N=134) (N=134) (N=132) ——————————————————————————————————————————————————————————————————————————— - Diastolic Blood Pressure - Low 69/134 (51.5%) 73/134 (54.5%) 67/132 (50.8%) - High 76/134 (56.7%) 67/134 (50%) 65/132 (49.2%) - Pulse Rate - Low 75/134 (56%) 67/134 (50%) 69/132 (52.3%) - High 67/134 (50%) 74/134 (55.2%) 53/132 (40.2%) - Respiratory Rate - Low 70/134 (52.2%) 72/134 (53.7%) 64/132 (48.5%) - High 75/134 (56%) 65/134 (48.5%) 71/132 (53.8%) - Systolic Blood Pressure - Low 71/134 (53%) 69/134 (51.5%) 70/132 (53%) - High 78/134 (58.2%) 62/134 (46.3%) 64/132 (48.5%) - Temperature - Low 66/134 (49.3%) 68/134 (50.7%) 81/132 (61.4%) - High 67/134 (50%) 66/134 (49.3%) 69/132 (52.3%) - Weight - Low 73/134 (54.5%) 71/134 (53%) 76/132 (57.6%) - High 69/134 (51.5%) 74/134 (55.2%) 74/132 (56.1%) - -# vst02_2 works - - Code - run(vst02_2, proc_data) - Output - Assessment A: Drug X B: Placebo C: Combination - Abnormality (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————— - Diastolic Blood Pressure - Low 55/120 (45.8%) 60/121 (49.6%) 53/118 (44.9%) - High 55/113 (48.7%) 56/123 (45.5%) 52/119 (43.7%) - Pulse Rate - Low 66/125 (52.8%) 54/121 (44.6%) 55/118 (46.6%) - High 52/119 (43.7%) 59/119 (49.6%) 38/117 (32.5%) - Respiratory Rate - Low 59/123 (48%) 56/118 (47.5%) 50/118 (42.4%) - High 65/124 (52.4%) 58/127 (45.7%) 57/118 (48.3%) - Systolic Blood Pressure - Low 53/116 (45.7%) 55/120 (45.8%) 58/120 (48.3%) - High 65/121 (53.7%) 53/125 (42.4%) 56/124 (45.2%) - Temperature - Low 51/119 (42.9%) 53/119 (44.5%) 64/115 (55.7%) - High 61/128 (47.7%) 53/121 (43.8%) 59/122 (48.4%) - Weight - Low 59/120 (49.2%) 54/117 (46.2%) 63/119 (52.9%) - High 58/123 (47.2%) 61/121 (50.4%) 55/113 (48.7%) - ---- - - Code - run(vst02_2, proc_data, prune_0 = TRUE) - Output - Assessment A: Drug X B: Placebo C: Combination - Abnormality (N=134) (N=134) (N=132) - ——————————————————————————————————————————————————————————————————————————— Diastolic Blood Pressure Low 55/120 (45.8%) 60/121 (49.6%) 53/118 (44.9%) High 55/113 (48.7%) 56/123 (45.5%) 52/119 (43.7%) diff --git a/tests/testthat/test-ael01_nollt.R b/tests/testthat/test-ael01_nollt.R index f71487c16..179d02b07 100644 --- a/tests/testthat/test-ael01_nollt.R +++ b/tests/testthat/test-ael01_nollt.R @@ -1,34 +1,35 @@ -# ael01_nollt_1 ---- +# ael01_nollt ---- test_that("ael01_nollt works with admh dataset", { res <- expect_silent( - run(ael01_nollt_1, syn_data, dataset = "admh", key_cols = c("MHBODSYS", "MHDECOD"), disp_cols = "MHTERM") + run(ael01_nollt, syn_data, dataset = "admh", key_cols = c("MHBODSYS", "MHDECOD"), disp_cols = "MHTERM") ) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("ael01_nollt works with non-default label", { + proc_data <- syn_data + attr(proc_data$adae$AETERM, "label") <- "Investigator-Specified\n Adverse Event Term" res <- expect_silent( run( - ael01_nollt_1, - syn_data, - new_lbls = list(AETERM = "Investigator-Specified\n Adverse Event Term") + ael01_nollt, + syn_data ) ) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("ael01_nollt can handle all missing values", { proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate( - AEBODSYS = formatters::with_label("", formatters::var_labels(syn_data$adae)[["AEBODSYS"]]), - AEDECOD = formatters::with_label("", formatters::var_labels(syn_data$adae)[["AEDECOD"]]), - AETERM = formatters::with_label("", formatters::var_labels(syn_data$adae)[["AETERM"]]) + AEBODSYS = with_label("", formatters::var_labels(syn_data$adae)[["AEBODSYS"]]), + AEDECOD = with_label("", formatters::var_labels(syn_data$adae)[["AEDECOD"]]), + AETERM = with_label("", formatters::var_labels(syn_data$adae)[["AETERM"]]) ) - res <- expect_silent(run(ael01_nollt_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(ael01_nollt, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("ael01_nollt can handle some missing values", { @@ -38,10 +39,10 @@ test_that("ael01_nollt can handle some missing values", { proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate( - AEBODSYS = formatters::with_label(.env$new_aebodsys, formatters::var_labels(syn_data$adae)[["AEBODSYS"]]), - AEDECOD = formatters::with_label(.env$new_aedecod, formatters::var_labels(syn_data$adae)[["AEDECOD"]]) + AEBODSYS = with_label(.env$new_aebodsys, formatters::var_labels(syn_data$adae)[["AEBODSYS"]]), + AEDECOD = with_label(.env$new_aedecod, formatters::var_labels(syn_data$adae)[["AEDECOD"]]) ) - res <- expect_silent(run(ael01_nollt_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(ael01_nollt, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-aet01.R b/tests/testthat/test-aet01.R index 1b8576fce..3dc5fbd6b 100644 --- a/tests/testthat/test-aet01.R +++ b/tests/testthat/test-aet01.R @@ -1,4 +1,4 @@ -# aet01_1 ---- +# aet01 ---- test_that("aet01 can handle all NA values", { proc_data <- syn_data @@ -8,10 +8,10 @@ test_that("aet01 can handle all NA values", { AESER = NA ) - res <- expect_silent(run(aet01_1, proc_data)) - expect_snapshot(res) - res <- expect_silent(run(aet01_1, proc_data, prune_0 = TRUE)) - expect_snapshot(res) + res <- expect_silent(run(aet01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) + res <- expect_silent(run(aet01, proc_data, prune_0 = TRUE)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("aet01 can handle some NA values", { @@ -25,14 +25,14 @@ test_that("aet01 can handle some NA values", { AESER = .env$new_aeser ) - res <- expect_silent(run(aet01_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(aet01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet01 can use custom lbl_safety_var", { +test_that("aet01 can use custom anl_vars", { proc_data <- syn_data - res <- expect_silent(run(aet01_1, proc_data, safety_var = list("FATAL"), lbl_safety_var = list("Fatal AE"))) - expect_snapshot(res) + res <- expect_silent(run(aet01, proc_data, anl_vars = list(safety_var = "FATAL"))) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("aet01 fails on incomplete data input", { @@ -41,14 +41,26 @@ test_that("aet01 fails on incomplete data input", { mutate(AESER = NULL) expect_error( - run(aet01_1, proc_data), - "Expected column names: AESER not in adam_db$adae", + run(aet01, proc_data), + "Column `AESER` not found", fixed = TRUE ) }) -# aet01_2 ---- -test_that("aet01_2 can use custom medconcept_var", { + +test_that("aet01 can use custom medconcept_var", { proc_data <- syn_data - res <- expect_silent(run(aet01_2, proc_data, medconcept_var = list("SMQ01"), lbl_medconcept_var = list("SMQ 01"))) - expect_snapshot(res) + proc_data$adae$SMQ01 <- with_label(proc_data$adae$SMQ01NAM != "", "SMQ 01") + res <- expect_silent( + run( + aet01, proc_data, + anl_vars = list( + safety_var = c( + "FATAL", "SER", "SERWD", "SERDSM", + "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV" + ), + medconcept = "SMQ01" + ) + ) + ) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-aet01_aesi.R b/tests/testthat/test-aet01_aesi.R old mode 100755 new mode 100644 index 1da7b15a8..3bf0aa5c0 --- a/tests/testthat/test-aet01_aesi.R +++ b/tests/testthat/test-aet01_aesi.R @@ -1,4 +1,4 @@ -# aet01_aesi_1 ---- +# aet01_aesi ---- test_that("aet01_aesi can handle all NA values", { proc_data <- syn_data @@ -13,10 +13,10 @@ test_that("aet01_aesi can handle all NA values", { AESER = NA ) - res <- expect_silent(run(aet01_aesi_1, proc_data)) - expect_snapshot(res) - res <- expect_silent(run(aet01_aesi_1, proc_data, prune_0 = TRUE)) - expect_snapshot(res) + res <- expect_silent(run(aet01_aesi, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, cpp = 200))) + res <- expect_silent(run(aet01_aesi, proc_data, prune_0 = TRUE)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, cpp = 200))) }) test_that("aet01_aesi can handle some NA values", { @@ -26,24 +26,24 @@ test_that("aet01_aesi can handle some NA values", { AEACN = c(NA, as.character(syn_data$adae$AEACN)[-1]) ) - res <- expect_silent(run(aet01_aesi_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(aet01_aesi, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, cpp = 200))) }) test_that("aet01_aesi works with `ALL` argument", { proc_data <- syn_data - res <- expect_silent(run(aet01_aesi_1, proc_data, aesi_vars = list("ALL"))) - expect_snapshot(res) + res <- expect_silent(run(aet01_aesi, proc_data, aesi_vars = c("ALL"))) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, cpp = 200))) }) -test_that("aet01_aesi_1_check fails on incomplete data input", { +test_that("aet01_aesi_check fails on incomplete data input", { proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate(AEOUT = NULL) expect_error( - run(aet01_aesi_1, proc_data, aesi_vars = list("ALL")), - "AEOUT not in adam_db$adae", + run(aet01_aesi, proc_data, aesi_vars = c("ALL")), + "Column `AEOUT` not found in", fixed = TRUE ) }) diff --git a/tests/testthat/test-aet02.R b/tests/testthat/test-aet02.R index b92564a11..f9e6c9ecf 100644 --- a/tests/testthat/test-aet02.R +++ b/tests/testthat/test-aet02.R @@ -8,8 +8,8 @@ test_that("aet02 fails on incomplete data input", { ) expect_error( - run(aet02_1, proc_data), - "AEDECOD not in adam_db$adae", + run(aet02, proc_data), + "Column `AEDECOD` not found", fixed = TRUE ) }) @@ -21,29 +21,12 @@ test_that("aet02 handle empty data input", { AEDECOD == "" ) - expect_silent(run(aet02_1, proc_data)) + expect_silent(run(aet02, proc_data)) }) -# aet02_2 ---- - -test_that("aet02_2 fails on incomplete data input", { - proc_data <- syn_data - proc_data$adae <- proc_data$adae %>% - mutate( - AEDECOD = NULL - ) - - expect_error( - run(aet02_2, proc_data) - ) -}) - -test_that("aet02_2 handle empty data input", { - proc_data <- syn_data - proc_data$adae <- proc_data$adae %>% - filter( - AEDECOD == "" - ) - - expect_silent(run(aet02_2, proc_data)) +test_that("aet02 can have different levels of row_split", { + res1 <- run(aet02, syn_data, row_split_var = NULL) + res2 <- run(aet02, syn_data, row_split_var = c("AEBODSYS", "AEDECOD")) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) + expect_snapshot(cat(formatters::export_as_txt(res2, lpp = 100))) }) diff --git a/tests/testthat/test-aet03.R b/tests/testthat/test-aet03.R index c3d9254f9..9eab5dcdc 100644 --- a/tests/testthat/test-aet03.R +++ b/tests/testthat/test-aet03.R @@ -2,12 +2,12 @@ test_that("aet03 can handle NA values", { proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate( - AEBODSYS = NA_character_, - AEDECOD = NA_character_ + AEBODSYS = with_label(NA_character_, var_labels_for(syn_data$adae, "AEBODSYS")), + AEDECOD = with_label(NA_character_, var_labels_for(syn_data$adae, "AEDECOD")) ) - res1 <- expect_silent(run(aet03_1, proc_data)) - expect_snapshot(res1) + res1 <- expect_silent(run(aet03, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) }) test_that("aet03 can handle some NA values", { @@ -18,11 +18,11 @@ test_that("aet03 can handle some NA values", { proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate( - AEBODSYS = .env$new_aebodsys, - AEDECOD = .env$new_aedecod, + AEBODSYS = with_label(.env$new_aebodsys, var_labels_for(syn_data$adae, "AEBODSYS")), + AEDECOD = with_label(.env$new_aedecod, var_labels_for(syn_data$adae, "AEDECOD")), ASEV = .env$new_asev ) - res1 <- expect_silent(run(aet03_1, proc_data)) - expect_snapshot(res1) + res1 <- expect_silent(run(aet03, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) }) diff --git a/tests/testthat/test-aet04.R b/tests/testthat/test-aet04.R index 3f6a4f904..08ae7a592 100644 --- a/tests/testthat/test-aet04.R +++ b/tests/testthat/test-aet04.R @@ -2,57 +2,47 @@ test_that("aet04 can handle NA values", { proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate( - AEBODSYS = NA_character_, - AEDECOD = NA_character_ + AEBODSYS = with_label(NA_character_, var_labels_for(syn_data$adae, "AEBODSYS")), + AEDECOD = with_label(NA_character_, var_labels_for(syn_data$adae, "AEDECOD")) ) - res1 <- expect_silent(run(aet04_1, proc_data)) - expect_snapshot(res1) + res1 <- expect_silent(run(aet04, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) grade_groups <- list( "Grade 1-2" = c("1", "2"), "Grade 3-4" = c("3", "4"), "Grade 5" = c("5") ) - res2 <- expect_silent(run(aet04_1, proc_data, grade_groups = grade_groups)) + res2 <- expect_silent(run(aet04, proc_data, grade_groups = grade_groups)) expect_identical(res1, res2) grade_groups <- list( "Grade 1-2" = c("1", "2"), "Grade 3-5" = c("3", "4", "5") ) - res3 <- expect_silent(run(aet04_1, proc_data, grade_groups = grade_groups)) - expect_snapshot(res3) + res3 <- expect_silent(run(aet04, proc_data, grade_groups = grade_groups)) + expect_snapshot(cat(formatters::export_as_txt(res3, lpp = 100))) }) test_that("aet04 can handle some NA values", { - new_aebodsys <- c(NA, "", as.character(syn_data$adae$AEBODSYS[-c(1, 2)])) - new_aedecod <- c(NA, "", as.character(syn_data$adae$AEDECOD[-c(1, 2)])) - new_atoxgr <- c(NA, "", as.character(syn_data$adae$ATOXGR[-c(1, 2)])) - proc_data <- syn_data - proc_data$adae <- proc_data$adae %>% - mutate( - AEBODSYS = factor(.env$new_aebodsys), - AEDECOD = factor(.env$new_aedecod), - ATOXGR = factor(.env$new_atoxgr) - ) - - res1 <- expect_silent(run(aet04_1, proc_data)) - expect_snapshot(res1) + proc_data$adae[1:2, c("AEBODSYS", "AEDECOD")] <- NA + res1 <- expect_silent(run(aet04, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) grade_groups <- list( "Grade 1-2" = c("1", "2"), "Grade 3-4" = c("3", "4"), "Grade 5" = c("5") ) - res2 <- expect_silent(run(aet04_1, proc_data, grade_groups = grade_groups)) + res2 <- expect_silent(run(aet04, proc_data, grade_groups = grade_groups)) expect_identical(res1, res2) grade_groups <- list( "Grade 1-2" = c("1", "2"), "Grade 3-5" = c("3", "4", "5") ) - res3 <- expect_silent(run(aet04_1, proc_data, grade_groups = grade_groups)) - expect_snapshot(res3) + res3 <- expect_silent(run(aet04, proc_data, grade_groups = grade_groups)) + expect_snapshot(cat(formatters::export_as_txt(res3, lpp = 100))) }) diff --git a/tests/testthat/test-aet10.R b/tests/testthat/test-aet10.R index 5023533a8..36f449e63 100644 --- a/tests/testthat/test-aet10.R +++ b/tests/testthat/test-aet10.R @@ -1,26 +1,25 @@ -test_that("aet10_1 can handle NA values", { +test_that("aet10 can handle NA values", { proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate( - AEBODSYS = factor(NA, levels = ""), - AEDECOD = factor(NA, levels = "") + AEDECOD = with_label(NA_character_, var_labels_for(syn_data$adae, "AEDECOD")) ) - res <- expect_silent(run(aet10_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(aet10, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet10_1 can handle some NA values", { +test_that("aet10 can handle some NA values", { new_aedecod <- c(NA, "", as.character(syn_data$adae$AEDECOD[-c(1, 2)])) proc_data <- syn_data proc_data$adae <- proc_data$adae %>% mutate( - AEDECOD = .env$new_aedecod + AEDECOD = with_label(.env$new_aedecod, var_labels_for(syn_data$adae, "AEDECOD")) ) - res <- expect_silent(run(aet10_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(aet10, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-assertions.R b/tests/testthat/test-assertions.R index 43cc18e2b..888ab9d27 100644 --- a/tests/testthat/test-assertions.R +++ b/tests/testthat/test-assertions.R @@ -107,13 +107,7 @@ test_that("assert_args works as expected", { choices <- c("adam_db", "arm_var", "lbl_overall", "lbl_x", "lbl_y") - expect_error( - assert_subset_suggest(x, choices), - "lbl_ is not a valid argument. Do you mean: lbl_x, lbl_y ? -armvar is not a valid argument. Do you mean: arm_var ? -xxxx is not a valid argument. ", - fixed = TRUE - ) + expect_error(assert_subset_suggest(x, choices)) x_ok <- c( "lbl_overall", diff --git a/tests/testthat/test-chevron_tlg-methods.R b/tests/testthat/test-chevron_tlg-methods.R index a93a4498c..d475ebc97 100644 --- a/tests/testthat/test-chevron_tlg-methods.R +++ b/tests/testthat/test-chevron_tlg-methods.R @@ -1,55 +1,49 @@ # run ---- test_that("run works as expected for chevron_t object", { - res <- run(aet04_1, syn_data, prune_0 = TRUE) - expect_snapshot(res) -}) - -test_that("run returns a warning if provided with invalid arguments", { - expect_error(run(aet04_1, syn_data, xyz = TRUE), "xyz is not a valid argument.") + res <- run(aet04, syn_data, prune_0 = TRUE) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("run works as expected for chevron_t object when auto_pre = FALSE", { proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate(DOMAIN = "ADSL") - res <- run(dmt01_1, proc_data, auto_pre = FALSE) - expect_snapshot(res) + res <- run(dmt01, proc_data, auto_pre = FALSE) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) # args_ls ---- test_that("args_ls works as expected", { - res <- expect_silent(args_ls(aet04_1)) + res <- expect_silent(args_ls(aet04)) checkmate::expect_list(res, len = 3, names = "named") checkmate::expect_names(names(res), identical.to = c("main", "preprocess", "postprocess")) }) test_that("args_ls works as expected when simplify is TRUE", { - res <- expect_silent(args_ls(aet04_1, simplify = TRUE)) - checkmate::expect_list(res, len = 10, names = "named") + res <- expect_silent(args_ls(aet04, simplify = TRUE)) + checkmate::expect_list(res, len = 7, names = "named") checkmate::expect_names( names(res), identical.to = c( - "adam_db", "arm_var", "lbl_overall", "lbl_aebodsys", "lbl_aedecod", - "grade_groups", "deco", "...", "tlg", "prune_0" + "adam_db", "arm_var", "lbl_overall", "grade_groups", "...", "tlg", "prune_0" ) ) }) test_that("args_ls works as expected with custom chevron_tlg object", { - obj <- aet04_1 + obj <- aet04 preprocess(obj) <- function(adam_db, arm_var = "overwritten", new_arg = "NEW", ...) { adam_db } res <- expect_silent(args_ls(obj, simplify = TRUE)) - checkmate::expect_list(res, len = 11, names = "named") + checkmate::expect_list(res, len = 8, names = "named") checkmate::expect_names( names(res), identical.to = c( - "adam_db", "arm_var", "lbl_overall", "lbl_aebodsys", "lbl_aedecod", - "grade_groups", "deco", "...", "new_arg", "tlg", "prune_0" + "adam_db", "arm_var", "lbl_overall", "grade_groups", "...", "new_arg", "tlg", "prune_0" ) ) expect_identical(res$arm_var, "ACTARM") @@ -59,17 +53,17 @@ test_that("args_ls works as expected with custom chevron_tlg object", { test_that("main works as expected", { skip_on_covr() - res <- main(aet04_1) - expect_identical(res, aet04_1_main) + res <- main(aet04) + expect_identical(res, aet04_main) }) test_that("get_main works as expected", { skip_on_covr() expect_warning( - res <- get_main(aet04_1), + res <- get_main(aet04), "deprecated" ) - expect_identical(res, aet04_1_main) + expect_identical(res, aet04_main) }) @@ -77,7 +71,7 @@ test_that("main setter works as expected", { func <- function(adam_db, ...) { build_table(basic_table(), adam_db) } - obj <- aet04_1 + obj <- aet04 main(obj) <- func expect_identical(obj@main, func) }) @@ -86,7 +80,7 @@ test_that("main setter throw an error as expected", { func <- function(adam_db) { build_table(basic_table(), adam_db) } - obj <- aet04_1 + obj <- aet04 expect_error(main(obj) <- func, "Variable 'object@main': Must have formal arguments: ....", fixed = TRUE ) @@ -96,29 +90,29 @@ test_that("main setter throw an error as expected", { test_that("preprocess works as expected", { skip_on_covr() - res <- preprocess(aet04_1) - expect_identical(res, aet04_1_pre) + res <- preprocess(aet04) + expect_identical(res, aet04_pre) }) test_that("get_preprocess works as expected", { skip_on_covr() expect_warning( - res <- get_preprocess(aet04_1), + res <- get_preprocess(aet04), "deprecated" ) - expect_identical(res, aet04_1_pre) + expect_identical(res, aet04_pre) }) test_that("preprocess setter works as expected", { func <- function(adam_db, ...) adam_db - obj <- aet04_1 + obj <- aet04 preprocess(obj) <- func expect_identical(obj@preprocess, func) }) test_that("preprocess sends an error as expected", { func <- function(adam_db) adam_db - obj <- aet04_1 + obj <- aet04 expect_error(preprocess(obj) <- func, "Variable 'object@preprocess': Must have formal arguments: ....", fixed = TRUE ) @@ -128,30 +122,30 @@ test_that("preprocess sends an error as expected", { # postprocess ---- test_that("postprocess works as expected", { - res <- postprocess(aet04_1) - expect_identical(res, aet04_1@postprocess) + res <- postprocess(aet04) + expect_identical(res, aet04@postprocess) }) test_that("get_postprocess works as expected", { skip_on_covr() expect_warning( - res <- get_postprocess(aet04_1), + res <- get_postprocess(aet04), "deprecated" ) - expect_identical(res, aet04_1_post) + expect_identical(res, aet04_post) }) test_that("postprocess setter works as expected", { func <- function(tlg, ...) tlg - obj <- aet04_1 + obj <- aet04 postprocess(obj) <- func expect_identical(obj@postprocess, func) }) test_that("postprocess sends an error as expected", { func <- function(tlg) tlg - obj <- aet04_1 + obj <- aet04 expect_error(postprocess(obj) <- func, "Variable 'object@postprocess': Must have formal arguments: ....", fixed = TRUE ) @@ -160,21 +154,21 @@ test_that("postprocess sends an error as expected", { # Datasets ---- test_that("datasets works as expected", { - res <- datasets(aet04_1) + res <- datasets(aet04) expect_identical(res, c("adsl", "adae")) }) test_that("get_adam_datasets works as expected", { skip_on_covr() expect_warning( - res <- get_adam_datasets(aet04_1), + res <- get_adam_datasets(aet04), "deprecated" ) expect_identical(res, c("adsl", "adae")) }) test_that("datasets setter works as expected", { - obj <- aet04_1 + obj <- aet04 datasets(obj) <- c("adsl", "adxx") expect_identical(obj@adam_datasets, c("adsl", "adxx")) }) @@ -182,14 +176,14 @@ test_that("datasets setter works as expected", { # script_args ---- test_that("script works as expected", { - res <- expect_silent(script_args(aet04_1)) - checkmate::expect_character(res, len = 7) + res <- expect_silent(script_args(aet04)) + checkmate::expect_character(res, len = 4) checkmate::expect_subset("adam_db <- stop(\"missing value\")", res) }) test_that("script works as expected with dictionary of arguments", { - res <- expect_silent(script_args(aet04_1, dict = list(adam_db = sym("x"), new_arg = "NEW"))) - checkmate::expect_character(res, len = 8) + res <- expect_silent(script_args(aet04, dict = list(adam_db = sym("x"), new_arg = "NEW"))) + checkmate::expect_character(res, len = 5) checkmate::expect_subset("adam_db <- x", res) checkmate::expect_subset("new_arg <- \"NEW\"", res) }) @@ -198,22 +192,16 @@ test_that("script works as expected with dictionary of arguments", { test_that("script_funs works as expected in interactive mode", { skip_if(!interactive()) - res <- expect_silent(script_funs(aet04_1, adam_db = "data", args = "args_ls")) + res <- expect_silent(script_funs(aet04, adam_db = "data", args = "args_ls")) expect_snapshot(res) }) test_that("script_funs works as expected", { - res <- expect_silent(script_funs(aet04_1, adam_db = "data", args = "args_ls")) + res <- expect_silent(script_funs(aet04, adam_db = "data", args = "args_ls")) checkmate::expect_character(res) }) -test_that("script_funs works as expected with details set to TRUE in interactive mode", { - skip_if(!interactive()) - res <- expect_silent(script_funs(aet04_1, adam_db = "data", args = "args_ls", details = TRUE)) - expect_snapshot(res) -}) - test_that("script_funs works as expected with details set to TRUE", { - res <- expect_silent(script_funs(aet04_1, adam_db = "data", args = "args_ls", details = TRUE)) + res <- expect_silent(script_funs(aet04, adam_db = "data", args = "args_ls", details = TRUE)) checkmate::expect_character(res) }) diff --git a/tests/testthat/test-cmt01a.R b/tests/testthat/test-cmt01a.R index 5fbe823f7..cd3182a63 100644 --- a/tests/testthat/test-cmt01a.R +++ b/tests/testthat/test-cmt01a.R @@ -2,79 +2,18 @@ test_that("cmt01a can handle all NA values", { proc_data <- syn_data proc_data$adcm <- proc_data$adcm %>% mutate( - ATC2 = NA_character_, - CMDECOD = NA_character_, + ATC2 = with_label(NA_character_, var_labels_for(syn_data$adcm, "ATC2")), + CMDECOD = with_label(NA_character_, var_labels_for(syn_data$adcm, "CMDECOD")) ) - res <- expect_silent(run(cmt01a_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(cmt01a, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("cmt01a can handle some NA values", { - new_atc2 <- c(NA, "", as.character(syn_data$adcm$ATC2[-c(1, 2)])) - new_cmdecod <- c(NA, "", as.character(syn_data$adcm$CMDECOD[-c(1, 2)])) - - proc_data <- syn_data - proc_data$adcm <- proc_data$adcm %>% - mutate( - ATC2 = .env$new_atc2, - CMDECOD = .env$new_cmdecod - ) - - res <- expect_silent(run(cmt01a_1, proc_data)) - expect_snapshot(res) -}) - -test_that("cmt01a_2 can handle all NA values", { - proc_data <- syn_data - proc_data$adcm <- proc_data$adcm %>% - mutate( - ATC2 = NA_character_, - CMDECOD = NA_character_, - ) - - res <- expect_silent(run(cmt01a_2, proc_data)) - expect_snapshot(res) -}) - -test_that("cmt01a_2 can handle some NA values", { - new_atc2 <- c(NA, "", as.character(syn_data$adcm$ATC2[-c(1, 2)])) - new_cmdecod <- c(NA, "", as.character(syn_data$adcm$CMDECOD[-c(1, 2)])) - proc_data <- syn_data - proc_data$adcm <- proc_data$adcm %>% - mutate( - ATC2 = .env$new_atc2, - CMDECOD = .env$new_cmdecod - ) - - res <- expect_silent(run(cmt01a_2, proc_data)) - expect_snapshot(res) -}) - -test_that("cmt01a_3 can handle all NA values", { - proc_data <- syn_data - proc_data$adcm <- proc_data$adcm %>% - mutate( - ATC2 = NA_character_, - CMDECOD = NA_character_, - ) - - res <- expect_silent(run(cmt01a_3, proc_data)) - expect_snapshot(res) -}) - -test_that("cmt01a_3 can handle some NA values", { - new_atc2 <- c(NA, "", as.character(syn_data$adcm$ATC2[-c(1, 2)])) - new_cmdecod <- c(NA, "", as.character(syn_data$adcm$CMDECOD[-c(1, 2)])) - - proc_data <- syn_data - proc_data$adcm <- proc_data$adcm %>% - mutate( - ATC2 = .env$new_atc2, - CMDECOD = .env$new_cmdecod - ) - - res <- expect_silent(run(cmt01a_3, proc_data)) - expect_snapshot(res) + proc_data$adcm$ATC2[1:2] <- NA + proc_data$adcm$CMDECOD[1:2] <- NA + res <- expect_silent(run(cmt01a, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-cmt02_pt.R b/tests/testthat/test-cmt02_pt.R index d14d74dc3..1e6a907d5 100644 --- a/tests/testthat/test-cmt02_pt.R +++ b/tests/testthat/test-cmt02_pt.R @@ -1,26 +1,18 @@ -test_that("cmt02_pt_1 can handle all NA values", { +test_that("cmt02_pt can handle all NA values", { proc_data <- syn_data proc_data$adcm <- proc_data$adcm %>% mutate( - CMSEQ = NA_character_, CMDECOD = NA_character_ ) - res <- expect_silent(run(cmt02_pt_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(cmt02_pt, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("cmt02_pt_1 can handle some NA values", { - new_cmseq <- c(NA, "", as.character(syn_data$adcm$CMSEQ[-c(1, 2)])) - new_cmdecod <- c(NA, "", as.character(syn_data$adcm$CMDECOD[-c(1, 2)])) - +test_that("cmt02_pt can handle some NA values", { proc_data <- syn_data - proc_data$adcm <- proc_data$adcm %>% - mutate( - CMSEQ = .env$new_cmseq, - CMDECOD = .env$new_cmdecod - ) + proc_data$adcm[1:2, c("CMDECOD")] <- NA - res <- expect_silent(run(cmt02_pt_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(cmt02_pt, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-coxt02.R b/tests/testthat/test-coxt02.R index 0ba45f184..f0e47bf6c 100644 --- a/tests/testthat/test-coxt02.R +++ b/tests/testthat/test-coxt02.R @@ -1,44 +1,22 @@ test_that("coxt02 can handle some NA values", { proc_data <- dunlin::log_filter(syn_data, PARAMCD == "CRSD", "adtte") + proc_data$adtte[1:4, c("SEX", "RACE", "CNSR", "AVAL", "AAGE")] <- NA + res1 <- expect_silent(run(coxt02, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) - set.seed(1) - new_sex <- as.character(proc_data$adtte$SEX) - new_sex[sample(seq_along(new_sex), 20)] <- NA - new_race <- as.character(proc_data$adtte$RACE) - new_race[sample(seq_along(new_race), 15)] <- NA - new_cnsr <- proc_data$adtte$CNSR - new_cnsr[sample(seq_along(new_cnsr), 10)] <- NA - new_aval <- proc_data$adtte$AVAL - new_aval[sample(seq_along(new_aval), 15)] <- NA - new_aage <- proc_data$adtte$AAGE - new_aage[sample(seq_along(new_aage), 15)] <- NA + res2 <- expect_silent(run(coxt02, proc_data, conf_level = .90)) + expect_snapshot(cat(formatters::export_as_txt(res2, lpp = 100))) - proc_data$adtte <- proc_data$adtte %>% - mutate( - SEX = factor(.env$new_sex), - RACE = factor(.env$new_race), - CNSR = .env$new_cnsr, - AVAL = .env$new_aval, - AAGE = .env$new_aage - ) - - res1 <- expect_silent(run(coxt02_1, proc_data)) - expect_snapshot(res1) - - res2 <- expect_silent(run(coxt02_1, proc_data, conf_level = .90)) - expect_snapshot(res2) + res3 <- expect_silent(run(coxt02, proc_data, covariates = c("SEX", "AAGE"))) + expect_snapshot(cat(formatters::export_as_txt(res3, lpp = 100))) - res3 <- expect_silent(run(coxt02_1, proc_data, covariates = c("SEX", "AAGE"))) - expect_snapshot(res3) - - res4 <- expect_silent(run(coxt02_1, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"))) - expect_snapshot(res4) + res4 <- expect_silent(run(coxt02, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"))) + expect_snapshot(cat(formatters::export_as_txt(res4, lpp = 100))) }) test_that("coxt02 fails on incomlete date", { proc_data <- syn_data proc_data$adtte <- proc_data$adtte %>% mutate(PARAMCD = NULL) - - expect_error(run(coxt02_1, proc_data)) + expect_error(run(coxt02, proc_data)) }) diff --git a/tests/testthat/test-default_tlg.R b/tests/testthat/test-default_tlg.R old mode 100755 new mode 100644 index 01aeefa77..93f6c552c --- a/tests/testthat/test-default_tlg.R +++ b/tests/testthat/test-default_tlg.R @@ -1,294 +1,91 @@ -test_that("aet01_1 function with default argument value return expected result with test data", { - pre_data <- aet01_1_pre(syn_data) - raw_res <- aet01_1_main(pre_data) - res <- aet01_post(raw_res) - expect_snapshot(res) +test_that("ael01_nollt function with default argument value return expected result with test data", { + pre_data <- ael01_nollt_pre(syn_data) + raw_res <- ael01_nollt_main(pre_data) + res <- ael01_nollt_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet01_2 functions with default argument value return expected result with test data", { - pre_data <- aet01_2_pre(syn_data) - raw_res <- aet01_2_main(pre_data) +test_that("aet01 function with default argument value return expected result with test data", { + pre_data <- aet01_pre(syn_data) + raw_res <- aet01_main(pre_data) res <- aet01_post(raw_res) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet01_aesi_1 function with default argument value return expected result with test data", { - pre_data <- aet01_aesi_1_pre(syn_data) - raw_res <- aet01_aesi_1_main(pre_data) +test_that("aet01_aesi function with default argument value return expected result with test data", { + pre_data <- aet01_aesi_pre(syn_data) + raw_res <- aet01_aesi_main(pre_data) res <- aet01_aesi_post(raw_res) - expect_snapshot(res) -}) - -test_that("ael01_nollt_1 function with default argument value return expected result with test data", { - pre_data <- ael01_nollt_1_pre(syn_data) - raw_res <- ael01_nollt_1_main(pre_data) - res <- ael01_nollt_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("aet02_1 functions with default argument value return expected result with test data", { - pre_data <- aet02_1_pre(syn_data) - raw_res <- aet02_1_main(pre_data) - res <- aet02_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("aet02_2 functions with default argument value return expected result with test data", { - pre_data <- aet02_2_pre(syn_data) - raw_res <- aet02_2_main(pre_data) - res <- aet02_2_post(raw_res) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet02_3 functions with default argument value return expected result with test data", { - pre_data <- aet02_3_pre(syn_data) - raw_res <- aet02_3_main(pre_data) - res <- aet02_3_post(raw_res) - expect_snapshot(res) +test_that("aet02 functions with default argument value return expected result with test data", { + pre_data <- aet02_pre(syn_data) + raw_res <- aet02_main(pre_data) + res <- aet02_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet03_1 functions with default argument value return expected result with test data", { - pre_data <- aet03_1_pre(syn_data) - raw_res <- aet03_1_main(pre_data) - res <- aet03_1_post(raw_res) - expect_snapshot(res) +test_that("aet03 functions with default argument value return expected result with test data", { + pre_data <- aet03_pre(syn_data) + raw_res <- aet03_main(pre_data) + res <- aet03_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet04_1 functions with default argument value return expected result with test data", { - pre_data <- aet04_1_pre(syn_data) - raw_res <- aet04_1_main(pre_data) - res <- aet04_1_post(raw_res) - expect_snapshot(res) +test_that("aet04 functions with default argument value return expected result with test data", { + pre_data <- aet04_pre(syn_data) + raw_res <- aet04_main(pre_data) + res <- aet04_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("aet10_1 functions with default argument value return expected result with test data", { - pre_data <- aet10_1_pre(syn_data) - raw_res <- aet10_1_main(pre_data) - res <- aet10_1_post(raw_res) - expect_snapshot(res) +test_that("aet10 functions with default argument value return expected result with test data", { + pre_data <- aet10_pre(syn_data) + raw_res <- aet10_main(pre_data) + res <- aet10_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("cmt01a_1 functions with default argument value return expected result with test data", { - pre_data <- cmt01a_1_pre(syn_data) - raw_res <- cmt01a_1_main(pre_data) - res <- cmt01a_1_post(raw_res) - expect_snapshot(res) + pre_data <- cmt01a_pre(syn_data) + raw_res <- cmt01a_main(pre_data) + res <- cmt01a_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("cmt01a_2 functions with default argument value return expected result with test data", { - pre_data <- cmt01a_2_pre(syn_data) - raw_res <- cmt01a_2_main(pre_data) - res <- cmt01a_2_post(raw_res) - expect_snapshot(res) +test_that("cmt02_pt functions with default argument value return expected result with test data", { + pre_data <- cmt02_pt_pre(syn_data) + raw_res <- cmt02_pt_main(pre_data) + res <- cmt02_pt_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("cmt01a_3 functions with default argument value return expected result with test data", { - pre_data <- cmt01a_3_pre(syn_data) - raw_res <- cmt01a_3_main(pre_data) - res <- cmt01a_3_post(raw_res) - expect_snapshot(res) -}) - -test_that("cmt02_pt_1 functions with default argument value return expected result with test data", { - pre_data <- cmt02_pt_1_pre(syn_data) - raw_res <- cmt02_pt_1_main(pre_data) - res <- cmt02_pt_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("coxt02_1 functions with default argument value return expected result with test data", { +test_that("coxt02 functions with default argument value return expected result with test data", { proc_data <- dunlin::log_filter(syn_data, PARAMCD == "CRSD", "adtte") - pre_data <- coxt02_1_pre(proc_data) - raw_res <- coxt02_1_main(pre_data) - res <- coxt02_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("dmt01_1 functions with default argument value return expected result with test data", { - pre_data <- dmt01_1_pre(syn_data) - raw_res <- dmt01_1_main(pre_data) - res <- dmt01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("dst01_1 functions with default argument value return expected result with test data", { - pre_data <- dst01_1_pre(syn_data) - raw_res <- dst01_1_main(pre_data) - res <- dst01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("dst01_2 functions with default argument value return expected result with test data", { - pre_data <- dst01_2_pre(syn_data) - raw_res <- dst01_2_main(pre_data) - res <- dst01_2_post(raw_res) - expect_snapshot(res) -}) - -test_that("dst01_3 functions with default argument value return expected result with test data", { - pre_data <- dst01_3_pre(syn_data) - raw_res <- dst01_3_main(pre_data) - res <- dst01_3_post(raw_res) - expect_snapshot(res) -}) - -test_that("dtht01_1 functions with default argument value return expected result with test data", { - pre_data <- dtht01_1_pre(syn_data) - raw_res <- dtht01_1_main(pre_data) - res <- dtht01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("egt01_1 functions with default argument value return expected result with test data", { - pre_data <- egt01_1_pre(syn_data) - raw_res <- egt01_1_main(pre_data) - res <- egt01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("egt02_1 functions with default argument value return expected result with test data", { - pre_data <- egt02_1_pre(syn_data) - raw_res <- egt02_1_main(pre_data) - res <- egt02_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("egt02_2 functions with default argument value return expected result with test data", { - pre_data <- egt02_2_pre(syn_data) - raw_res <- egt02_2_main(pre_data) - res <- egt02_2_post(raw_res) - expect_snapshot(res) -}) - -test_that("egt03_1 functions with default argument value return expected result with test data", { - pre_data <- egt03_1_pre(syn_data) - raw_res <- egt03_1_main(pre_data) - res <- egt03_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("egt03_2 functions with default argument value return expected result with test data", { - pre_data <- egt03_2_pre(syn_data) - raw_res <- egt03_2_main(pre_data) - res <- egt03_2_post(raw_res) - expect_snapshot(res) -}) - -test_that("egt05_qtcat_1 functions with default argument value return expected result with test data", { - pre_data <- egt05_qtcat_1_pre(syn_data) - raw_res <- egt05_qtcat_1_main(pre_data) - res <- egt05_qtcat_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("ext01_1 functions with default argument value return expected result with test data", { - pre_data <- ext01_1_pre(syn_data) - raw_res <- ext01_1_main(pre_data) - res <- ext01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("ext01_2 functions with default argument value return expected result with test data", { - pre_data <- ext01_2_pre(syn_data) - raw_res <- ext01_2_main(pre_data) - res <- ext01_2_post(raw_res) - expect_snapshot(res) -}) - -test_that("lbt01_1 functions with default argument value return expected result with test data", { - pre_data <- lbt01_1_pre(syn_data) - raw_res <- lbt01_1_main(pre_data) - res <- lbt01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("lbt04_1 functions with default argument value return expected result with test data", { - pre_data <- lbt04_1_pre(syn_data) - raw_res <- lbt04_1_main(pre_data) - res <- lbt04_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("lbt05_1 functions with default argument value return expected result with test data", { - pre_data <- lbt05_1_pre(syn_data) - raw_res <- lbt05_1_main(pre_data) - res <- lbt05_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("lbt07_1 functions with default argument value return expected result with test data", { - pre_data <- lbt07_1_pre(syn_data) - raw_res <- lbt07_1_main(pre_data) - res <- lbt07_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("lbt14_1 functions with default argument value return expected result with test data", { - pre_data <- lbt14_1_pre(syn_data) - raw_res <- lbt14_1_main(pre_data) - res <- lbt14_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("lbt14_2 functions with default argument value return expected result with test data", { - pre_data <- lbt14_2_pre(syn_data) - raw_res <- lbt14_2_main(pre_data) - res <- lbt14_2_post(raw_res) - expect_snapshot(res) -}) - -test_that("mht01_1 functions with default argument value return expected result with test data", { - pre_data <- mht01_1_pre(syn_data) - raw_res <- mht01_1_main(pre_data) - res <- mht01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("pdt01_1 function with default argument value return expected result with test data", { - pre_data <- pdt01_1_pre(syn_data) - raw_res <- pdt01_1_main(pre_data) - res <- pdt01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("pdt02_1 function with default argument value return expected result with test data", { - pre_data <- pdt02_1_pre(syn_data) - raw_res <- pdt02_1_main(pre_data) - res <- pdt02_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("rmpt01_1 function with default argument value return expected result with test data", { - pre_data <- rmpt01_1_pre(syn_data) - raw_res <- rmpt01_1_main(pre_data) - res <- rmpt01_1_post(raw_res) - expect_snapshot(res) -}) - -test_that("vst01_1 functions with default argument value return expected result with test data", { - pre_data <- vst01_1_pre(syn_data) - raw_res <- vst01_1_main(pre_data) - res <- vst01_1_post(raw_res) - expect_snapshot(res) + pre_data <- coxt02_pre(proc_data) + raw_res <- coxt02_main(pre_data) + res <- coxt02_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("vst01_1 functions with default argument value return expected result with test data", { - pre_data <- vst01_1_pre(syn_data) - raw_res <- vst01_1_main(pre_data) - res <- vst01_1_post(raw_res) - expect_snapshot(res) +test_that("dmt01 functions with default argument value return expected result with test data", { + pre_data <- dmt01_pre(syn_data) + raw_res <- dmt01_main(pre_data) + res <- dmt01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("vst02_1 functions with default argument value return expected result with test data", { - pre_data <- vst02_1_pre(syn_data) - raw_res <- vst02_1_main(pre_data) - res <- vst02_1_post(raw_res) - expect_snapshot(res) +test_that("dst01 functions with default argument value return expected result with test data", { + pre_data <- dst01_pre(syn_data) + raw_res <- dst01_main(pre_data) + res <- dst01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("vst02_2 functions with default argument value return expected result with test data", { - pre_data <- vst02_2_pre(syn_data) - raw_res <- vst02_2_main(pre_data) - res <- vst02_2_post(raw_res) - expect_snapshot(res) +test_that("dtht01 functions with default argument value return expected result with test data", { + pre_data <- dtht01_pre(syn_data) + raw_res <- dtht01_main(pre_data) + res <- dtht01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-dmt01.R b/tests/testthat/test-dmt01.R index 16e4b6918..0f773b955 100644 --- a/tests/testthat/test-dmt01.R +++ b/tests/testthat/test-dmt01.R @@ -1,23 +1,16 @@ -test_that("dmt01_1 can handle NA values", { +test_that("dmt01 can handle NA values", { proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate( - AAGE = formatters::with_label(NA, "Age"), - AGEGR1 = formatters::with_label(NA_character_, "Age Group") + AAGE = with_label(NA, "Age") ) - - res <- expect_silent(run(dmt01_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(dmt01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("dmt01_1 can handle some NA values", { +test_that("dmt01 can handle numeric NA values", { proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - AAGE = formatters::with_label(c(NA, .data$AGE[-1]), "Age"), - AGEGR1 = formatters::with_label(c(NA, as.character(.data$AGEGR1[-1])), "Age Group") - ) - - res <- expect_silent(run(dmt01_1, proc_data)) - expect_snapshot(res) + proc_data$adsl$AGE[1] <- NA + res <- expect_silent(run(dmt01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-dst01.R b/tests/testthat/test-dst01.R index 5b4b557cf..8c4a3e44b 100644 --- a/tests/testthat/test-dst01.R +++ b/tests/testthat/test-dst01.R @@ -1,155 +1,57 @@ # NA values ---- -test_that("dst01 can handle all NA values", { +test_that("dst01 works as expected when all data are NA", { proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate( EOSSTT = NA_character_, DCSREAS = NA_character_ ) - - res <- expect_silent(run(dst01_1, proc_data)) - expect_snapshot(res) -}) - -test_that("dst01_1 can handle all NA values in disc_reason_var", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - DCSREAS = NA_character_ - ) - - res <- expect_silent(run(dst01_1, proc_data)) - expect_snapshot(res) + expect_silent(res <- run(dst01, proc_data, detail_vars = list())) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("dst01_1 can handle some NA values", { +test_that("dst01 can handle all NA values in DCSREAS", { proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate( - EOSSTT = c(NA_character_, "", as.character(.data$EOSSTT[-c(1, 2)])), - DCSREAS = c(NA_character_, "", as.character(.data$DCSREAS[-c(1, 2)])) + DCSREAS = factor(NA_character_) ) - res <- expect_silent(run(dst01_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(dst01, proc_data, detail_vars = list())) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("dst01_1 can handle missing levels in status_var", { +test_that("dst01 can handle some NA values", { proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - EOSSTT = factor(.data$EOSSTT, levels = "ONGOING"), - ) - - res <- expect_silent(run(dst01_1, proc_data)) - expect_snapshot(res) -}) - -test_that("dst01_1 can handle missing levels in disc_reason_var", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - DCSREAS = factor(.data$DCSREAS, levels = "DEATH") - ) - - res <- expect_silent(run(dst01_1, proc_data)) - expect_snapshot(res) + proc_data$adsl[1:2, c("EOSSTT", "DCSREAS")] <- NA + res <- expect_silent(run(dst01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) - -# dst01_2 ---- - -test_that("dst01_2 can handle all NA values", { +test_that("dst01 can handle missing levels in status_var", { proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate( - EOSSTT = NA_character_, - DCSREAS = NA_character_ + EOSSTT = with_label(factor(.data$EOSSTT, levels = "ONGOING"), var_labels_for(syn_data$adsl, "EOSSTT")), ) - - res <- expect_silent(run(dst01_2, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(dst01, proc_data, detail_vars = list())) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("dst01_2 can handle all NA values in disc_reason_var", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - DCSREAS = NA_character_ - ) - - res <- expect_silent(run(dst01_2, proc_data)) - expect_snapshot(res) +test_that("dst01 can create variants", { + res <- expect_silent(run(dst01, syn_data, detail_vars = list(Ongoing = "STDONS", Discontinued = "DCSREAS"))) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("dst01_2 can handle some NA values", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - EOSSTT = c(NA_character_, "", as.character(.data$EOSSTT[-c(1, 2)])), - DCSREAS = c(NA_character_, "", as.character(.data$DCSREAS[-c(1, 2)])) - ) - - res <- expect_silent(run(dst01_2, proc_data)) - expect_snapshot(res) +test_that("dst01 can create variants", { + res <- expect_silent(run(dst01, syn_data, detail_vars = list(Discontinued = c("DCSREASGP", "DCSREAS")))) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("dst01_2 can handle missing levels in disc_reason_var", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - DCSREAS = factor(.data$DCSREAS, levels = "DEATH") - ) - - res <- expect_silent(run(dst01_2, proc_data)) - expect_snapshot(res) -}) - -# dst01_3 ---- - -test_that("dst01_3 can handle all NA values", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - EOSSTT = NA_character_, - DCSREAS = NA_character_, - EOTSTT = NA_character_, - ) - - res <- expect_silent(run(dst01_3, proc_data)) - expect_snapshot(res) -}) - -test_that("dst01_3 can handle all NA values in status_treatment_var", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - EOTSTT = NA_character_ - ) - - res <- expect_silent(run(dst01_3, proc_data)) - expect_snapshot(res) -}) - -test_that("dst01_3 can handle some NA values in status_treatment_var", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - EOTSTT = c(NA_character_, "", as.character(.data$EOTSTT[-c(1, 2)])) - ) - - res <- expect_silent(run(dst01_3, proc_data)) - expect_snapshot(res) -}) - -test_that("dst01_3 can handle missing levels in status_treatment_var", { - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - EOTSTT = factor(.data$EOTSTT, levels = "ONGOING") - ) - - res <- expect_silent(run(dst01_3, proc_data)) - expect_snapshot(res) +test_that("dst01 can create variants", { + res <- expect_silent( + run(dst01, syn_data, detail_vars = list(Discontinued = c("DCSREASGP", "DCSREAS")), trt_status_var = "EOTSTT") + ) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-dtht01.R b/tests/testthat/test-dtht01.R index 064dcd4b0..cf894d080 100644 --- a/tests/testthat/test-dtht01.R +++ b/tests/testthat/test-dtht01.R @@ -8,23 +8,15 @@ test_that("dtht01 can handle all NA values", { DTHCAUS = NA_character_ ) - res <- expect_silent(run(dtht01_1, proc_data, time_since_last_dose = TRUE, other_category = TRUE)) - expect_snapshot(res) + res <- expect_silent(run(dtht01, proc_data, time_since_last_dose = FALSE, other_category = FALSE, prune_0 = FALSE)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("dtht01 can handle some NA values", { - new_dthcat <- c(NA_character_, "", as.character(syn_data$adsl$DTHCAT[-c(1, 2)])) - new_dthcaus <- c(NA_character_, "", as.character(syn_data$adsl$DTHCAUS[-c(1, 2)])) - proc_data <- syn_data - proc_data$adsl <- proc_data$adsl %>% - mutate( - DTHCAT = .env$new_dthcat, - DTHCAUS = .env$new_dthcaus - ) - - res <- expect_silent(run(dtht01_1, proc_data, time_since_last_dose = TRUE, other_category = TRUE)) - expect_snapshot(res) + proc_data$adsl[1:2, c("DTHCAT", "DTHCAUS")] <- NA + res <- expect_silent(run(dtht01, proc_data, time_since_last_dose = TRUE, other_category = TRUE)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) # Arguments ---- @@ -32,8 +24,8 @@ test_that("dtht01 can handle some NA values", { test_that("dtht01 can be parametrize as expected", { proc_data <- syn_data - pre_data <- dtht01_1_pre(proc_data) - raw_res <- dtht01_1_main(pre_data, time_since_last_dose = TRUE, other_category = TRUE) - res <- dtht01_1_post(raw_res) - expect_snapshot(res) + pre_data <- dtht01_pre(proc_data) + raw_res <- dtht01_main(pre_data, time_since_last_dose = TRUE, other_category = TRUE) + res <- dtht01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-egt01.R b/tests/testthat/test-egt01.R new file mode 100644 index 000000000..6e9c422e9 --- /dev/null +++ b/tests/testthat/test-egt01.R @@ -0,0 +1,22 @@ +# egt01 functions ---- + +test_that("egt01 functions with default argument value return expected result with test data", { + pre_data <- egt01_pre(syn_data) + raw_res <- egt01_main(pre_data) + res <- egt01_post(raw_res) + expect_snapshot(res) +}) + +# egt01 ---- + +test_that("egt01 can handle n = 0 and outputs NE instead of infs and NAs", { + proc_data <- syn_data + proc_data$adeg <- proc_data$adeg %>% + filter(PARAM != "HR" & ACTARM != "A: Drug X") + + res <- expect_silent( + run(egt01, proc_data, precision = list("RR" = 0, "HR" = 1)) + ) + res <- res[1:11, 1] + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) diff --git a/tests/testthat/test-egt02.R b/tests/testthat/test-egt02.R new file mode 100644 index 000000000..7ae1f30f8 --- /dev/null +++ b/tests/testthat/test-egt02.R @@ -0,0 +1,15 @@ +# egt02 functions ---- + +test_that("egt02_1 functions with default argument value return expected result with test data", { + pre_data <- egt02_pre(syn_data) + raw_res <- egt02_1_main(pre_data) + res <- egt02_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +test_that("egt02_2 functions with default value return expected result with test data", { + pre_data <- egt02_pre(syn_data) + raw_res <- egt02_2_main(pre_data) + res <- egt02_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) diff --git a/tests/testthat/test-egt03.R b/tests/testthat/test-egt03.R old mode 100755 new mode 100644 index 80cab8f98..c0c31fced --- a/tests/testthat/test-egt03.R +++ b/tests/testthat/test-egt03.R @@ -1,36 +1,15 @@ -# egt03_1 ---- -test_that("egt03_1 can handle all NA values", { - proc_data <- syn_data - proc_data$adeg <- proc_data$adeg %>% - mutate( - BNRIND = NA_character_, - ANRIND = NA_character_, - ) - - res <- expect_silent(run(egt03_1, proc_data)) - expect_snapshot(res) +# egt03 functions ---- - res <- expect_silent(run(egt03_1, proc_data, prune_0 = TRUE)) - expect_snapshot(res) +test_that("egt03 functions with default argument value return expected result with test data", { + pre_data <- egt03_pre(syn_data) + raw_res <- egt03_main(pre_data) + res <- egt03_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("egt03_1 can handle some NA values", { - new_bnrind <- c(NA_character_, "", as.character(syn_data$adeg$BNRIND[-c(1, 2)])) - new_anrind <- c(NA_character_, "", as.character(syn_data$adeg$ANRIND[-c(1, 2)])) +# egt03 ---- - proc_data <- syn_data - proc_data$adeg <- proc_data$adeg %>% - mutate( - BNRIND = .env$new_bnrind, - ANRIND = .env$new_anrind - ) - - res <- expect_silent(run(egt03_1, proc_data)) - expect_snapshot(res) -}) - -# egt03_2 ---- -test_that("egt03_2 can handle all NA values", { +test_that("egt03 errors on all NA values", { proc_data <- syn_data proc_data$adeg <- proc_data$adeg %>% mutate( @@ -38,33 +17,23 @@ test_that("egt03_2 can handle all NA values", { ANRIND = NA_character_, ) - res <- expect_silent(run(egt03_2, proc_data)) - expect_snapshot(res) + expect_error(run(egt03, proc_data)) }) -test_that("egt03_2 can handle some NA values", { - new_bnrind <- c(NA_character_, "", as.character(syn_data$adeg$BNRIND[-c(1, 2)])) - new_anrind <- c(NA_character_, "", as.character(syn_data$adeg$ANRIND[-c(1, 2)])) - +test_that("egt03 can handle some NA values", { proc_data <- syn_data - proc_data$adeg <- proc_data$adeg %>% - mutate( - BNRIND = .env$new_bnrind, - ANRIND = .env$new_anrind - ) + proc_data$adeg[1:2, c("ANRIND", "BNRIND")] <- NA - res <- expect_silent(run(egt03_2, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(egt03, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -# egt03 checks ---- - -test_that("egt03_1 fails on incomplete data", { +test_that("egt03 fails on incomplete data", { proc_data <- syn_data proc_data$adeg <- proc_data$adeg %>% mutate(PARAMCD = NULL) expect_error( - run(egt03_1, proc_data) + run(egt03, proc_data) ) }) diff --git a/tests/testthat/test-egt05_qtcat.R b/tests/testthat/test-egt05_qtcat.R index 54efc8090..9ab2b7d55 100644 --- a/tests/testthat/test-egt05_qtcat.R +++ b/tests/testthat/test-egt05_qtcat.R @@ -1,32 +1,29 @@ -# egt05_qtcat_1 ---- +# egt05_qtcat functions ---- -test_that("egt05_qtcat can handle all NA values", { +test_that("egt05_qtcat functions with default argument value return expected result with test data", { + pre_data <- egt05_qtcat_pre(syn_data) + raw_res <- egt05_qtcat_main(pre_data) + res <- egt05_qtcat_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +# egt05_qtcat ---- + +test_that("egt05_qtcat erros on all NA values", { proc_data <- syn_data proc_data$adeg <- proc_data$adeg %>% mutate( AVISIT = NA_character_, ) - res <- expect_silent(run(egt05_qtcat_1, proc_data)) - expect_snapshot(res) + expect_error(run(egt05_qtcat, proc_data)) }) test_that("egt05_qtcat can handle some NA values", { proc_data <- syn_data proc_data$adeg <- proc_data$adeg %>% filter(PARAMCD == "QT") - - new_avisit <- c(NA_character_, NA_character_, as.character(proc_data$adeg$AVISIT[-c(1, 2)])) - new_avalcat1 <- c(NA_character_, NA_character_, as.character(proc_data$adeg$AVALCAT1[-c(1, 2)])) - new_chgcat1 <- c(NA_character_, NA_character_, as.character(proc_data$adeg$CHGCAT1[-c(1, 2)])) - - proc_data$adeg <- proc_data$adeg %>% - mutate( - AVISIT = factor(.env$new_avisit), - AVALCAT1 = .env$new_avalcat1, - CHGCAT1 = .env$new_chgcat1 - ) - - res <- expect_silent(run(egt05_qtcat_1, proc_data)) - expect_snapshot(res) + proc_data$adeg[1:2, c("AVALCAT1", "CHGCAT1")] <- NA + res <- expect_silent(run(egt05_qtcat, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-empty_report.R b/tests/testthat/test-empty_report.R index 04a7b253b..f403e3ae0 100644 --- a/tests/testthat/test-empty_report.R +++ b/tests/testthat/test-empty_report.R @@ -2,112 +2,88 @@ test_that("tlg functions return null reports when domain table is empty", { dat_empty <- lapply(syn_data, tern::df_explicit_na) %>% - lapply(filter, USUBJID == "") + lapply(dplyr::filter, USUBJID == "") empty_report <- rtables::rtable( header = "", - rrow("Null Report: No observations met the reporting criteria for inclusion in this output.") + rrow("", "Null Report: No observations met the reporting criteria for inclusion in this output.") ) empty_listing <- rlistings::as_listing( - df = data.frame(x = formatters::with_label( + df = data.frame(x = with_label( "Null Report: No observations met the reporting criteria for inclusion in this output.", "" )) ) rtables::table_inset(empty_report) <- 2L - res <- run(aet01_1, dat_empty, prune_0 = TRUE) - expect_identical(res, empty_report) - - res <- run(aet01_2, dat_empty, prune_0 = TRUE) - expect_identical(res, empty_report) - - res <- run(aet01_aesi_1, dat_empty, prune_0 = TRUE) - expect_identical(res, empty_report) - - res <- run(aet02_1, dat_empty) - expect_identical(res, empty_report) - - res <- run(aet02_2, dat_empty) - expect_identical(res, empty_report) - - res <- run(aet02_3, dat_empty) - expect_identical(res, empty_report) - - res <- run(aet03_1, dat_empty) - expect_identical(res, empty_report) - - res <- run(aet04_1, dat_empty) - expect_identical(res, empty_report) + res <- run(ael01_nollt, dat_empty) + expect_identical(res, empty_listing) - res <- run(cmt01a_1, dat_empty) + res <- run(aet01, dat_empty, prune_0 = TRUE) expect_identical(res, empty_report) - res <- run(cmt01a_2, dat_empty) + res <- run(aet01_aesi, dat_empty, prune_0 = TRUE) expect_identical(res, empty_report) - res <- run(cmt01a_3, dat_empty) + res <- run(aet02, dat_empty) expect_identical(res, empty_report) - res <- run(cmt02_pt_1, dat_empty) + res <- run(aet03, dat_empty) expect_identical(res, empty_report) - res <- run(dmt01_1, dat_empty, summaryvars = c("Age (yo)" = "AGE")) + res <- run(aet04, dat_empty) expect_identical(res, empty_report) - res <- run(dst01_1, dat_empty) + res <- run(cmt01a, dat_empty) expect_identical(res, empty_report) - res <- run(dst01_2, dat_empty) + res <- run(cmt02_pt, dat_empty) expect_identical(res, empty_report) - res <- run(dst01_3, dat_empty) + res <- run(dst01, dat_empty) expect_identical(res, empty_report) - res <- run(dtht01_1, dat_empty) + res <- run(dtht01, dat_empty) expect_identical(res, empty_report) - res <- run(egt01_1, dat_empty) + res <- run(egt01, dat_empty) expect_identical(res, empty_report) res <- run(egt02_1, dat_empty) expect_identical(res, empty_report) - res <- run(egt02_2, dat_empty) - expect_identical(res, empty_report) - - res <- suppressWarnings(run(egt03_1, dat_empty)) + res <- run(egt02_1, dat_empty) expect_identical(res, empty_report) - res <- suppressWarnings(run(egt03_2, dat_empty)) + res <- suppressWarnings(run(egt03, dat_empty)) expect_identical(res, empty_report) - res <- run(egt05_qtcat_1, dat_empty) + res <- suppressWarnings(run(egt03, dat_empty, minmax = "max")) expect_identical(res, empty_report) - res <- run(ext01_1, dat_empty) + res <- run(egt05_qtcat, dat_empty) expect_identical(res, empty_report) - res <- run(ext01_2, dat_empty) + res <- run(ext01, dat_empty) expect_identical(res, empty_report) - res <- run(lbt01_1, dat_empty) + res <- run(ext01, dat_empty, summaryvars = c("AVAL", "AVALCAT1")) expect_identical(res, empty_report) - res <- run(lbt05_1, dat_empty, prune_0 = TRUE) + res <- run(lbt01, dat_empty) expect_identical(res, empty_report) - res <- run(mht01_1, dat_empty) + res <- run(lbt05, dat_empty, prune_0 = TRUE) expect_identical(res, empty_report) - res <- run(pdt01_1, dat_empty) + res <- run(mht01, dat_empty) expect_identical(res, empty_report) - res <- run(vst01_1, dat_empty) + res <- run(pdt01, dat_empty) expect_identical(res, empty_report) - res <- run(vst01_1, dat_empty) + res <- run(vst01, dat_empty) expect_identical(res, empty_report) res <- run(vst02_1, dat_empty) @@ -115,7 +91,4 @@ test_that("tlg functions return null reports when domain table is empty", { res <- run(vst02_2, dat_empty) expect_identical(res, empty_report) - - res <- run(ael01_nollt_1, dat_empty) - expect_identical(res, empty_listing) }) diff --git a/tests/testthat/test-ext01.R b/tests/testthat/test-ext01.R index de32f152c..19bf2658a 100644 --- a/tests/testthat/test-ext01.R +++ b/tests/testthat/test-ext01.R @@ -1,18 +1,37 @@ -# ext01_1 ---- +# ext01 functions ---- + +test_that("ext01 functions with default argument value return expected result with test data", { + pre_data <- ext01_pre(syn_data) + raw_res <- ext01_main(pre_data) + res <- ext01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +test_that("ext01 functions with categorical data return expected result with test data", { + proc_data <- dunlin::log_filter(syn_data, PARAMCD == "TDOSE", "adex") + pre_data <- ext01_pre(proc_data) + raw_res <- ext01_main(pre_data, summaryvars = c("AVAL", "AVALCAT1")) + res <- ext01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +# ext01 ---- + test_that("ext01 works", { proc_data <- syn_data - tlg <- expect_silent(run(ext01_1, proc_data)) - expect_snapshot(tlg) + res1 <- expect_silent(run(ext01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) - tlg <- expect_silent(run(ext01_1, proc_data, prune_0 = FALSE)) - expect_snapshot(tlg) + res2 <- expect_silent(run(ext01, proc_data, prune_0 = FALSE)) + expect_snapshot(cat(formatters::export_as_txt(res2, lpp = 100))) }) -# ext02_1 ---- -test_that("ext02_1 works for selected parameters", { +# ext01 with categorical variables functions ---- + +test_that("ext01 works for selected parameters and categorical variables", { proc_data <- syn_data proc_data$adex <- proc_data$adex %>% filter(PARAMCD == "TDOSE") - - expect_snapshot(run(ext01_2, proc_data, prune_0 = TRUE)) + res <- run(ext01, proc_data, prune_0 = TRUE, summaryvars = c("AVAL", "AVALCAT1")) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-kmg01.R b/tests/testthat/test-kmg01.R index d7cf44d46..2a4c95868 100644 --- a/tests/testthat/test-kmg01.R +++ b/tests/testthat/test-kmg01.R @@ -1,27 +1,31 @@ -test_that("kmg01_1 works as expected", { +# kmg01 functions ---- + +test_that("kmg01 works as expected", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "OS", "adtte") - pre_data <- expect_silent(kmg01_1_pre(filter_data, dataset = "adtte")) - raw_res <- expect_silent(kmg01_1_main(pre_data, dataset = "adtte")) + pre_data <- expect_silent(kmg01_pre(filter_data, dataset = "adtte")) + raw_res <- expect_silent(kmg01_main(pre_data, dataset = "adtte")) checkmate::assert_true(grid::is.grob(raw_res)) }) -test_that("kmg01_1 works as expected with custom color set", { - col <- list( +# kmg01 ---- + +test_that("kmg01 works as expected with custom color set", { + col <- c( "A: Drug X" = "black", "B: Placebo" = "blue", "C: Combination" = "gray" ) filter_data <- dunlin::log_filter(syn_data, PARAMCD == "OS", "adtte") - res <- expect_silent(run(kmg01_1, filter_data, dataset = "adtte", line_col = col)) + res <- expect_silent(run(kmg01, filter_data, dataset = "adtte", col = col)) checkmate::assert_true(grid::is.grob(res)) - res <- expect_silent(run(kmg01_1, filter_data, dataset = "adtte", line_col = unname(col))) + res <- expect_silent(run(kmg01, filter_data, dataset = "adtte", col = unname(col))) checkmate::assert_true(grid::is.grob(res)) }) -test_that("kmg01_1 works if change pvalue, ties and conf level", { +test_that("kmg01 works if change pvalue, ties and conf level", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "OS", "adtte") - res <- expect_silent(run(kmg01_1, filter_data, + res <- expect_silent(run(kmg01, filter_data, dataset = "adtte", pval_method = "log-rank", ties = "efron", @@ -31,10 +35,10 @@ test_that("kmg01_1 works if change pvalue, ties and conf level", { }) -test_that("kmg01_1 works if change annotation position", { +test_that("kmg01 works if change annotation position", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "OS", "adtte") - res <- expect_silent(run(kmg01_1, filter_data, - dataset = "adtte", show_statis = FALSE, + res <- expect_silent(run(kmg01, filter_data, + dataset = "adtte", annot_surv_med = FALSE, position_coxph = c(0.4, 0.5), position_surv_med = c(1, 0.7) )) checkmate::assert_true(grid::is.grob(res)) diff --git a/tests/testthat/test-lbt01.R b/tests/testthat/test-lbt01.R old mode 100755 new mode 100644 index 040b4d2bd..11b4ba5b4 --- a/tests/testthat/test-lbt01.R +++ b/tests/testthat/test-lbt01.R @@ -1,11 +1,22 @@ -test_that("lbt01_1 can handle n = 0 and outputs NE instead of infs and NAs", { +# lbt01 functions ---- + +test_that("lbt01 functions with default argument value return expected result with test data", { + pre_data <- lbt01_pre(syn_data) + raw_res <- lbt01_main(pre_data) + res <- lbt01_post(raw_res) + expect_snapshot(res) +}) + +# lbt01 ---- + +test_that("lbt01 can handle n = 0 and outputs NE instead of infs and NAs", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% filter(PARAM != "ALT" & ACTARM != "A: Drug X") res <- expect_silent( - run(lbt01_1, proc_data, precision = list("ALT" = 0, "CRP" = 1)) + run(lbt01, proc_data, precision = list("ALT" = 0, "CRP" = 1)) ) res <- res[1:11, 1] - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-lbt04.R b/tests/testthat/test-lbt04.R index 703b01919..2700c2fe1 100644 --- a/tests/testthat/test-lbt04.R +++ b/tests/testthat/test-lbt04.R @@ -1,3 +1,12 @@ +# lbt04 functions ---- + +test_that("lbt04 functions with default argument value return expected result with test data", { + pre_data <- lbt04_pre(syn_data) + raw_res <- lbt04_main(pre_data) + res <- lbt04_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + # lbt04 ---- test_that("lbt04 can handle all NA values", { @@ -7,21 +16,27 @@ test_that("lbt04 can handle all NA values", { ANRIND = NA_character_ ) - res <- expect_silent(run(lbt04_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt04, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("lbt04 can handle some NA values", { - new_anrind <- c(NA_character_, "", as.character(syn_data$adlb$ANRIND[-c(1, 2)])) - +test_that("lbt04 can handle missing levels", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% mutate( - ANRIND = .env$new_anrind, + ANRIND = "" ) - res <- expect_silent(run(lbt04_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt04, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +test_that("lbt04 can handle some NA values", { + proc_data <- syn_data + proc_data$adlb[1:2, "ANRIND"] <- NA + + res <- expect_silent(run(lbt04, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("lbt04 fails on incomlete date", { @@ -29,5 +44,5 @@ test_that("lbt04 fails on incomlete date", { proc_data$adlb <- proc_data$adlb %>% mutate(PARCAT1 = NULL) - expect_error(run(lbt04_1, proc_data)) + expect_error(run(lbt04, proc_data)) }) diff --git a/tests/testthat/test-lbt05.R b/tests/testthat/test-lbt05.R old mode 100755 new mode 100644 index 9f51fef10..edeaf974c --- a/tests/testthat/test-lbt05.R +++ b/tests/testthat/test-lbt05.R @@ -1,10 +1,21 @@ +# lbt05 functions ---- + +test_that("lbt05 functions with default argument value return expected result with test data", { + pre_data <- lbt05_pre(syn_data) + raw_res <- lbt05_main(pre_data) + res <- lbt05_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +# lbt05 ---- + test_that("lbt05 give all 0 count if ANRIND are all missing", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% mutate( ANRIND = NA_character_ ) - res <- run(lbt05_1, proc_data) + res <- run(lbt05, proc_data) res <- smart_prune(res) expect_identical(nrow(res), 0L) }) @@ -18,13 +29,13 @@ test_that("lbt05 can handle some NA values", { ANRIND = factor(.env$new_anrind), ) - res <- expect_silent(run(lbt05_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt05, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("lbt05 fails on incomlete date", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% mutate(PARCAT2 = NULL) - expect_error(run(lbt05_1, proc_data)) + expect_error(run(lbt05, proc_data)) }) diff --git a/tests/testthat/test-lbt07.R b/tests/testthat/test-lbt07.R old mode 100755 new mode 100644 index 79a1edb32..d180857a2 --- a/tests/testthat/test-lbt07.R +++ b/tests/testthat/test-lbt07.R @@ -1,3 +1,14 @@ +# lbt07 functions ---- + +test_that("lbt07 functions with default argument value return expected result with test data", { + pre_data <- lbt07_pre(syn_data) + raw_res <- lbt07_main(pre_data) + res <- lbt07_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +# lbt07 ---- + test_that("lbt07 can handle some NA values", { new_grade_dir <- c(NA_character_, "", as.character(syn_data$adlb$ATOXGR[-c(1, 2)])) @@ -7,8 +18,8 @@ test_that("lbt07 can handle some NA values", { GRADE_DIR = factor(.env$new_grade_dir), ) - res <- expect_silent(run(lbt07_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt07, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) test_that("lbt07 fails on incomlete data", { @@ -16,5 +27,5 @@ test_that("lbt07 fails on incomlete data", { proc_data$adlb <- proc_data$adlb %>% mutate(ATOXGR = NULL) - expect_error(run(lbt07_1, proc_data)) + expect_error(run(lbt07, proc_data)) }) diff --git a/tests/testthat/test-lbt14.R b/tests/testthat/test-lbt14.R old mode 100755 new mode 100644 index 163033f0d..dd4d9adbe --- a/tests/testthat/test-lbt14.R +++ b/tests/testthat/test-lbt14.R @@ -1,5 +1,21 @@ -# lbt14_1 ---- -test_that("lbt14_1 can handle all NA values", { +# lbt14 functions ---- + +test_that("lbt14 functions with default argument value return expected result with test data", { + pre_data <- lbt14_pre(syn_data) + raw_res <- lbt14_main(pre_data) + res <- lbt14_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +test_that("lbt14 functions with default argument value return expected result with test data when direction = high", { + pre_data <- lbt14_pre(syn_data, direction = "high") + raw_res <- lbt14_main(pre_data, direction = "high") + res <- lbt14_post(raw_res, direction = "high") + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +# lbt14 ---- +test_that("lbt14 can handle all NA values", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% mutate( @@ -7,11 +23,11 @@ test_that("lbt14_1 can handle all NA values", { ATOXGR = NA_character_ ) - res <- expect_silent(run(lbt14_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt14, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("lbt14_1 can handle some NA values", { +test_that("lbt14 can handle some NA values", { set.seed(1) new_btoxgr <- syn_data$adlb$BTOXGR new_btoxgr[sample(seq_along(new_btoxgr), 20)] <- NA @@ -26,29 +42,31 @@ test_that("lbt14_1 can handle some NA values", { ATOXGR = factor(.env$new_atoxgr) ) - res <- expect_silent(run(lbt14_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt14, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("lbt14_1 can accept different gr_missing", { +test_that("lbt14 can accept different gr_missing", { proc_data <- syn_data - - expect_snapshot(run(lbt14_1, proc_data, gr_missing = "incl")) - expect_snapshot(run(lbt14_1, proc_data, gr_missing = "excl")) - expect_snapshot(run(lbt14_1, proc_data, gr_missing = "gr_0")) + res1 <- run(lbt14, proc_data, gr_missing = "incl") + res2 <- run(lbt14, proc_data, gr_missing = "excl") + res3 <- run(lbt14, proc_data, gr_missing = "gr_0") + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) + expect_snapshot(cat(formatters::export_as_txt(res2, lpp = 100))) + expect_snapshot(cat(formatters::export_as_txt(res3, lpp = 100))) }) -test_that("lbt14_1 fails on incomlete data", { +test_that("lbt14 fails on incomlete data", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% mutate(ATOXGR = NULL) - expect_error(run(lbt14_1, proc_data)) + expect_error(run(lbt14, proc_data)) }) -# lbt14_2 ---- -test_that("lbt14_2 can handle all NA values", { +# lbt14 direction = "high" ---- +test_that("lbt14 can handle all NA values with direction = high", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% @@ -57,11 +75,11 @@ test_that("lbt14_2 can handle all NA values", { ATOXGR = factor(NA) ) - res <- expect_silent(run(lbt14_2, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt14, proc_data, direction = "high")) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("lbt14_2 can handle some NA values", { +test_that("lbt14 can handle some NA values with direction = high", { set.seed(1) new_btoxgr <- syn_data$adlb$BTOXGR new_btoxgr[sample(seq_along(new_btoxgr), 20)] <- NA @@ -76,22 +94,25 @@ test_that("lbt14_2 can handle some NA values", { ATOXGR = factor(.env$new_atoxgr) ) - res <- expect_silent(run(lbt14_2, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(lbt14, proc_data, direction = "high")) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("lbt14_2 can accept different gr_missing", { +test_that("lbt14 can accept different gr_missing with direction = high", { proc_data <- syn_data - expect_snapshot(run(lbt14_2, proc_data, gr_missing = "incl")) - expect_snapshot(run(lbt14_2, proc_data, gr_missing = "excl")) - expect_snapshot(run(lbt14_2, proc_data, gr_missing = "gr_0")) + res1 <- run(lbt14, proc_data, gr_missing = "incl", direction = "high") + res2 <- run(lbt14, proc_data, gr_missing = "excl", direction = "high") + res3 <- run(lbt14, proc_data, gr_missing = "gr_0", direction = "high") + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) + expect_snapshot(cat(formatters::export_as_txt(res2, lpp = 100))) + expect_snapshot(cat(formatters::export_as_txt(res3, lpp = 100))) }) -test_that("lbt14_2 fails on incomlete data", { +test_that("lbt14 fails on incomlete data", { proc_data <- syn_data proc_data$adlb <- proc_data$adlb %>% mutate(ATOXGR = NULL) - expect_error(run(lbt14_2, proc_data)) + expect_error(run(lbt14, proc_data, direction = "high")) }) diff --git a/tests/testthat/test-mht01.R b/tests/testthat/test-mht01.R index 1fd07e0a3..3f3dc3e19 100644 --- a/tests/testthat/test-mht01.R +++ b/tests/testthat/test-mht01.R @@ -1,11 +1,22 @@ +# mht01 functions ---- + +test_that("mht01_1 functions with default argument value return expected result with test data", { + pre_data <- mht01_pre(syn_data) + raw_res <- mht01_main(pre_data) + res <- mht01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + # mht01_1 ---- -test_that("mht01_1 works", { +test_that("mht01 works", { proc_data <- syn_data - expect_snapshot(run(mht01_1, proc_data)) + res <- run(mht01, proc_data) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("mht01_1 works on NULL in lbl_mhbodsys or lbl_mhdecod", { +test_that("mht01 works on NULL in lbl_mhbodsys or lbl_mhdecod", { proc_data <- syn_data - expect_snapshot(run(mht01_1, proc_data, lbl_mhbodsys = NULL, lbl_mhdecod = NULL)) + res <- run(mht01, proc_data, lbl_mhbodsys = NULL, lbl_mhdecod = NULL) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-mng01.R b/tests/testthat/test-mng01.R old mode 100755 new mode 100644 index 6b65c1d36..e135d8e87 --- a/tests/testthat/test-mng01.R +++ b/tests/testthat/test-mng01.R @@ -1,40 +1,35 @@ -test_that("mng01_1 works as expected", { +test_that("mng01 works as expected", { proc_data <- syn_data - pre_data <- mng01_1_pre(proc_data, dataset = "adlb") - raw_res <- mng01_1_main(pre_data, dataset = "adlb") + pre_data <- mng01_pre(proc_data, dataset = "adlb") + raw_res <- mng01_main(pre_data, dataset = "adlb") checkmate::expect_list(raw_res, len = 3, types = "ggplot") }) -test_that("mng01_1 works as expected with custom color set", { - col <- list( - "A: Drug X" = "black", - "B: Placebo" = "blue", +test_that("mng01 works as expected with custom color set", { + col <- c( + "B: Placebo" = "black", + "A: Drug X" = "blue", "C: Combination" = "gray" ) proc_data <- syn_data - res <- run(mng01_1, proc_data, dataset = "adlb", line_col = col) + res <- run(mng01, proc_data, dataset = "adlb", line_col = col) checkmate::expect_list(res, len = 3, types = "ggplot") - res <- run(mng01_1, proc_data, dataset = "adlb", line_col = unname(col)) - checkmate::expect_list(res, len = 3, types = "ggplot") -}) -test_that("mng01_1 works if show_v_grid/show_h_grid is TRUE", { - proc_data <- syn_data - res <- run(mng01_1, proc_data, dataset = "adlb", show_v_grid = TRUE, show_h_grid = TRUE) + res <- run(mng01, proc_data, dataset = "adlb", line_col = unname(col)) checkmate::expect_list(res, len = 3, types = "ggplot") }) -test_that("mng01_1 works on custom color with named line_col", { +test_that("mng01 works if show_v_grid/show_h_grid is TRUE", { proc_data <- syn_data - res <- run(mng01_1, proc_data, dataset = "adlb", show_v_grid = TRUE, show_h_grid = TRUE) + res <- run(mng01, proc_data, dataset = "adlb", show_v_grid = TRUE, show_h_grid = TRUE) checkmate::expect_list(res, len = 3, types = "ggplot") }) -test_that("mng01_1 works with combination of x variables", { +test_that("mng01 works with combination of x variables", { proc_data <- syn_data res <- run( - mng01_1, + mng01, proc_data, dataset = "adlb", x_var = c("AVISIT", "AVISITN"), diff --git a/tests/testthat/test-pdt01.R b/tests/testthat/test-pdt01.R index 8608c1a6f..031b2e344 100755 --- a/tests/testthat/test-pdt01.R +++ b/tests/testthat/test-pdt01.R @@ -1,4 +1,15 @@ -test_that("pdt01_1 can handle all NA values", { +# pdt01 functions ---- + +test_that("pdt01 function with default argument value return expected result with test data", { + pre_data <- pdt01_pre(syn_data) + raw_res <- pdt01_main(pre_data) + res <- pdt01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, cpp = 200))) +}) + +# pdt01 ---- + +test_that("pdt01 can handle all NA values", { proc_data <- syn_data proc_data$addv <- proc_data$addv %>% mutate( @@ -6,11 +17,11 @@ test_that("pdt01_1 can handle all NA values", { DVTERM = NA_character_, ) - res <- expect_silent(run(pdt01_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(pdt01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, cpp = 200))) }) -test_that("pdt01_1 can handle some NA values", { +test_that("pdt01 can handle some NA values", { new_dvdecod <- c(NA_character_, "", as.character(syn_data$addv$DVDECOD[-c(1, 2)])) new_dvterm <- c(NA_character_, "", as.character(syn_data$addv$DVTERM[-c(1, 2)])) @@ -21,6 +32,6 @@ test_that("pdt01_1 can handle some NA values", { DVTERM = .env$new_dvterm ) - res <- expect_silent(run(pdt01_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(pdt01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, cpp = 200))) }) diff --git a/tests/testthat/test-pdt02.R b/tests/testthat/test-pdt02.R old mode 100755 new mode 100644 index 26896edf6..71a125f33 --- a/tests/testthat/test-pdt02.R +++ b/tests/testthat/test-pdt02.R @@ -1,4 +1,15 @@ -test_that("pdt02_1 can handle all NA values", { +# pdt02 function ---- + +test_that("pdt02 function with default argument value return expected result with test data", { + pre_data <- pdt02_pre(syn_data) + raw_res <- pdt02_main(pre_data) + res <- pdt02_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, colwidths = c(40, 10, 10, 10)))) +}) + +# pdt02 ---- + +test_that("pdt02 can handle all NA values", { proc_data <- syn_data proc_data$addv <- proc_data$addv %>% mutate( @@ -6,11 +17,11 @@ test_that("pdt02_1 can handle all NA values", { DVTERM = NA_character_, ) - res <- expect_silent(run(pdt02_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(pdt02, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, colwidths = c(40, 10, 10, 10)))) }) -test_that("pdt02_1 can handle some NA values", { +test_that("pdt02 can handle some NA values", { new_dvreas <- c(NA_character_, "", as.character(syn_data$addv$DVREAS[-c(1, 2)])) new_dvterm <- c(NA_character_, "", as.character(syn_data$addv$DVTERM[-c(1, 2)])) @@ -21,6 +32,6 @@ test_that("pdt02_1 can handle some NA values", { DVTERM = new_dvterm ) - res <- expect_silent(run(pdt02_1, proc_data)) - expect_snapshot(res) + res <- expect_silent(run(pdt02, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100, colwidths = c(40, 10, 10, 10)))) }) diff --git a/tests/testthat/test-rmpt01.R b/tests/testthat/test-rmpt01.R index 0d219881f..62cbf57e7 100644 --- a/tests/testthat/test-rmpt01.R +++ b/tests/testthat/test-rmpt01.R @@ -1,15 +1,23 @@ +# rmp01 functions ---- + +test_that("rmpt01 function with default argument value return expected result with test data", { + pre_data <- rmpt01_pre(syn_data) + raw_res <- rmpt01_main(pre_data) + res <- rmpt01_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) +}) + +# rmp01 ---- + test_that("rmpt01 can handle NA values", { proc_data <- syn_data - proc_data$adex <- proc_data$adex %>% - mutate( - AVAL = NA - ) + proc_data$adex$AVAL <- NA_real_ - res1 <- expect_silent(run(rmpt01_1, proc_data)) - expect_snapshot(res1) + res1 <- expect_silent(run(rmpt01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) - res2 <- expect_silent(run(rmpt01_1, proc_data, parcat = "PARCAT2")) - expect_snapshot(res2) + res2 <- expect_silent(run(rmpt01, proc_data, parcat = "PARCAT2")) + expect_snapshot(cat(formatters::export_as_txt(res2, lpp = 100))) }) test_that("rmpt01 can handle some NA values", { @@ -19,11 +27,11 @@ test_that("rmpt01 can handle some NA values", { AVAL = case_when(PARAMCD == "TDURD" & AVAL %% 2 == 0 ~ NA, TRUE ~ .data$AVAL) ) - res1 <- expect_silent(run(rmpt01_1, proc_data)) - expect_snapshot(res1) + res1 <- expect_silent(run(rmpt01, proc_data)) + expect_snapshot(cat(formatters::export_as_txt(res1, lpp = 100))) - res2 <- expect_silent(run(rmpt01_1, proc_data, parcat = "PARCAT2")) - expect_snapshot(res2) + res2 <- expect_silent(run(rmpt01, proc_data, parcat = "PARCAT2")) + expect_snapshot(cat(formatters::export_as_txt(res2, lpp = 100))) }) test_that("rmpt01 fails on incomlete data", { @@ -33,7 +41,6 @@ test_that("rmpt01 fails on incomlete data", { PARAMCD = NULL ) - expect_error(run(rmpt01_1, proc_data)) - - expect_error(run(rmpt01_1, proc_data, parcat = "PARCAT2")) + expect_error(run(rmpt01, proc_data)) + expect_error(run(rmpt01, proc_data, parcat = "PARCAT2")) }) diff --git a/tests/testthat/test-rspt01.R b/tests/testthat/test-rspt01.R index dd6801ee2..e109277b5 100644 --- a/tests/testthat/test-rspt01.R +++ b/tests/testthat/test-rspt01.R @@ -1,78 +1,78 @@ -test_that("rspt01_1 works as expected", { +test_that("rspt01 works as expected", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") - pre_data <- expect_silent(rspt01_1_pre(filter_data, dataset = "adrs")) - res <- expect_silent(rspt01_1_main(pre_data, dataset = "adrs", methods = list(diff_pval_method = "fisher"))) - expect_snapshot(res) + pre_data <- expect_silent(rspt01_pre(filter_data, dataset = "adrs")) + res <- expect_silent(rspt01_main(pre_data, dataset = "adrs", methods = list(diff_pval_method = "fisher"))) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("rspt01_1 works as expected for stratified and unstratified analysis", { +test_that("rspt01 works as expected for stratified and unstratified analysis", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") - res <- expect_silent(run(rspt01_1, filter_data, + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = FALSE, perform_analysis = c("unstrat", "strat"), strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) - res <- expect_silent(run(rspt01_1, filter_data, + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, perform_analysis = c("strat", "unstrat"), strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("rspt01_1 works as expected for unstratified analysis only", { +test_that("rspt01 works as expected for unstratified analysis only", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") - res <- expect_silent(run(rspt01_1, filter_data, + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = FALSE, perform_analysis = c("unstrat"), methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) - res <- expect_silent(run(rspt01_1, filter_data, + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, perform_analysis = c("unstrat"), methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("rspt01_1 works as expected for stratified analysis only", { +test_that("rspt01 works as expected for stratified analysis only", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") - res <- expect_silent(run(rspt01_1, filter_data, + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = FALSE, perform_analysis = c("strat"), strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) - res <- expect_silent(run(rspt01_1, filter_data, + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, perform_analysis = c("strat"), strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("rspt01_1 works if change reference group", { +test_that("rspt01 works if change reference group", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") - res <- expect_silent(run(rspt01_1, filter_data, + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, ref_group = "B: Placebo", methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) - res <- expect_silent(run(rspt01_1, filter_data, + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, perform_analysis = c("unstrat", "strat"), @@ -80,12 +80,12 @@ test_that("rspt01_1 works if change reference group", { ref_group = "B: Placebo", methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("rspt01_1 works if change statistic methods", { +test_that("rspt01 works if change statistic methods", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") - res <- expect_silent(run(rspt01_1, filter_data, + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, methods = list( @@ -94,8 +94,8 @@ test_that("rspt01_1 works if change statistic methods", { diff_pval_method = "fisher" ) )) - expect_snapshot(res) - res <- expect_silent(run(rspt01_1, filter_data, + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, perform_analysis = c("unstrat", "strat"), @@ -108,20 +108,20 @@ test_that("rspt01_1 works if change statistic methods", { strat_diff_pval_method = "schouten" ) )) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -test_that("rspt01_1 works if change confidence interval", { +test_that("rspt01 works if change confidence interval", { filter_data <- dunlin::log_filter(syn_data, PARAMCD == "BESRSPI", "adrs") - res <- expect_silent(run(rspt01_1, filter_data, + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, conf_level = 0.9, methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) - res <- expect_silent(run(rspt01_1, filter_data, + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) + res <- expect_silent(run(rspt01, filter_data, dataset = "adrs", odds_ratio = TRUE, perform_analysis = c("unstrat", "strat"), @@ -129,5 +129,5 @@ test_that("rspt01_1 works if change confidence interval", { conf_level = 0.9, methods = list(diff_pval_method = "fisher") )) - expect_snapshot(res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/tests/testthat/test-utils.R b/tests/testthat/test-utils.R index 5b63f5de1..e39d009a8 100755 --- a/tests/testthat/test-utils.R +++ b/tests/testthat/test-utils.R @@ -53,18 +53,6 @@ test_that("h_format_dec works as expected with NA digits", { expect_identical(res, "123.000 - 222.210000") }) -# get_db_data ---- -test_that("get_db_data works", { - dfs <- list(iris = iris, mtcars = mtcars) - expect_identical( - get_db_data(dfs, "iris"), - list(iris = iris) - ) - expect_identical( - get_db_data(dfs), - list() - ) -}) # fuse_sequentially ---- diff --git a/tests/testthat/test-vst01.R b/tests/testthat/test-vst01.R new file mode 100644 index 000000000..28f6790ba --- /dev/null +++ b/tests/testthat/test-vst01.R @@ -0,0 +1,15 @@ +# vst12 functions ---- + +test_that("vst01 functions with default argument value return expected result with test data", { + pre_data <- vst01_pre(syn_data) + raw_res <- vst01_main(pre_data) + res <- vst01_post(raw_res) + expect_snapshot(res) +}) + +# vst01 ---- + +test_that("run vst01 works as expected", { + res <- expect_silent(run(vst01, syn_data)) + expect_snapshot(res) +}) diff --git a/tests/testthat/test-vst02.R b/tests/testthat/test-vst02.R index dc2e6ac95..f51e6b3f2 100644 --- a/tests/testthat/test-vst02.R +++ b/tests/testthat/test-vst02.R @@ -1,15 +1,15 @@ -# vst02_1 ---- +# vst02 functions ---- -test_that("vst02_1 works", { - proc_data <- syn_data - expect_snapshot(run(vst02_1, proc_data)) - expect_snapshot(run(vst02_1, proc_data, prune_0 = TRUE)) +test_that("vst02 functions with default argument value return expected result with test data", { + pre_data <- vst02_pre(syn_data) + raw_res <- vst02_1_main(pre_data) + res <- vst02_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) -# vst02_2 ---- - -test_that("vst02_2 works", { - proc_data <- syn_data - expect_snapshot(run(vst02_2, proc_data)) - expect_snapshot(run(vst02_2, proc_data, prune_0 = TRUE)) +test_that("vst02 functions return expected result with test data when excluding subject with baseline abnormality", { + pre_data <- vst02_pre(syn_data) + raw_res <- vst02_2_main(pre_data) + res <- vst02_post(raw_res) + expect_snapshot(cat(formatters::export_as_txt(res, lpp = 100))) }) diff --git a/vignettes/adding_new_tlgs_to_chevron.Rmd b/vignettes/adding_new_tlgs_to_chevron.Rmd index d9835f8a5..2334d3b68 100644 --- a/vignettes/adding_new_tlgs_to_chevron.Rmd +++ b/vignettes/adding_new_tlgs_to_chevron.Rmd @@ -24,9 +24,9 @@ The `chevron` package is a collection of function to create standard tables, lis reporting. Here we present the logic to request new tables for the end users and how to construct new `chevron_tlg` objects for the programmers. The list of the already available functions is available [here](https://glowing-giggle-c0c5190c.pages.github.io/reference/index.html). The naming convention for table functions -is `_`. ex: `aet02_2`. The default design number is by convention the number 1. Layouts are internal -functions that determine the underlying structure of a table. One table function is generally associated with one layout -function. The naming convention for layout is `
__lyt`. ex: `aet02_2_lyt`. +is `
`. ex: `aet02`. Layouts are internal functions that determine the underlying structure of a table. +One table function is generally associated with one layout function. +The naming convention for layout is `
_lyt`. ex: `aet02_lyt`. ## How to request a table diff --git a/vignettes/args.yaml b/vignettes/args.yaml deleted file mode 100644 index 33612f88c..000000000 --- a/vignettes/args.yaml +++ /dev/null @@ -1,5 +0,0 @@ -dataset: "adlb" -arm_var: "ARM" -center_fun: "median" -interval_fun: "mean_ci" -show_table: FALSE, diff --git a/vignettes/chevron.Rmd b/vignettes/chevron.Rmd index f22abbf48..ddecd9476 100755 --- a/vignettes/chevron.Rmd +++ b/vignettes/chevron.Rmd @@ -38,46 +38,48 @@ The *TLG-functions* in `chevron` use other packages to produce the final outputs used to create tables, `ggplot2`, `lattice`, and `grid` are used to create graphs, `rlistings` to create listings. -*TLG-functions* in `chevron` such as `dmt01_1_main`, `aet02_1_main`, `aet02_2_main` have the following properties: +*TLG-functions* in `chevron` such as `dmt01_main`, `aet02_main`, `aet02_main` have the following properties: 1. they produce a narrow defined output (currently standards in Roche `GDS`). Note, that the naming convention - `__main` indicates that a Roche `GDS` defined standard may have different implementations. Or, + `_main` indicates that a Roche `GDS` defined standard may have different implementations. Or, alternatively, a `GDS` template id can be regarded as a *guideline* and the function name in `chevron` as a *standard*. 1. have, if possible, few arguments to modify the standard. Generally, arguments may change the structure of the table (arm -variable, which variables are summarized) but not parameterize the cell content (i.e. alpha-level for p-value). +variable, which variables are summarized) and also parameterize the cell content (i.e. alpha-level for p-value). 1. have always the first argument `adam_db` which is the collection of `ADaM` datasets (`ADSL`, `ADAE`, `ADRS`, etc.). Please read the *The `adam_db` Argument* vignette in this package for more details. ### *preprocessing* -The *preprocess* functions in `chevron` use `dm` and `dunlin` packages to process `dm` object and turn them into a -suitable input for *TLG-functions*. The preprocessing step typically includes checks that will ensure that the `dm` -input can be later processed by the *TLG-functions*. +The *preprocess* functions in `chevron` use `base`, `dplyr` and `dunlin` packages to process input data object and turn them into a +suitable input for *TLG-functions*. -*preprocess* in chevron such as `dmt01_1_pre`, `aet02_1_pre`, `aet02_2_pre` have the following properties: +*preprocess* in chevron such as `dmt01_pre`, `aet02_pre`, `aet02_pre` have the following properties: -1. they return a `dm` object amenable to processing by a *TLG-functions* or return rapidly an understandable error +1. they return a `list` of `data.frame` object amenable to processing by a *TLG-functions*. message. 1. have very few arguments to modify the standard. 1. have always the first argument `adam_db` which is the collection of `ADaM` datasets (`ADSL`, `ADAE`, `ADRS`, etc.). Please read the *The `adam_db` Argument* vignette in this package for more details. +Please note that the ultimate responsible person of the preprocessing functions is the end user. +The provided preprocessing function is only a template and users could modify depending on their need/data. +This preprocessing function will be printed to allow modification in script generated in `citril`. + ### *postprocessing* -By default, the Postprocessing function returns its input or a `NULL` report if the input has no rows. *`postprocessing`* function of a `chevron_tlg` object must have at least `tlg` as formal arguments. +By default, the Postprocessing function returns its input or a null report if the input has no rows. +*`postprocessing`* function of a `chevron_tlg` object must have at least `tlg` as formal arguments. ### *ADaM datasets* -The `adam_datasets` stores the name(s) of the data sets in the `AdAM` `dm` object that will be used in the process. This +The `adam_datasets` stores the name(s) of the data sets in the `AdAM` `list` of `data.frame` object that will be used in the process. This information is important when the `chevron_tlg` object is interfaced with other processes from the `chevron` ecosystem of packages such as `citril`. ## Example `AET02` -For example, the `GDS` template `aet02` is implemented in `chevron` with the `chevropn_tlg` objects that have the name `aet02_*`. The -object documentation which is accessible with the `help` function, e.g. `help('aet02_1')` documents what is particular -in the `_1` implementation. +For example, the `GDS` template `aet02` is implemented in `chevron` with the `chevropn_tlg` objects that have the name `aet02`. We first load the data as a `list` of `data.frame`, where each table represents a domain. @@ -86,25 +88,25 @@ library(chevron) data(syn_data, package = "chevron") ``` -A the `aet02_1` output is then created as follows: +A the `aet02` output is then created as follows: ```{r} -run(aet02_1, syn_data) +run(aet02, syn_data) ``` The function associated with a particular slot can be retrieved with the corresponding method: `main`, `lyt`, `preprocess` `postprocess` and `datasets`. ```{r} -main(aet02_1) +main(aet02) ``` These are standard functions that can be used on their own. ```{r} -res <- preprocess(aet02_1)(syn_data) +res <- preprocess(aet02)(syn_data) # or -foo <- aet02_1@preprocess +foo <- aet02@preprocess res <- foo(syn_data) str(res, max.level = 0) @@ -112,50 +114,36 @@ str(res, max.level = 0) ## `chevron_tlg` object customization -In some instances it is useful to customize the `chevron_tlg` object, for example by changing the pre processing functions. Be aware that you have to think carefully about argument names and compatibility with downstream functions. - -Note that this operation creates a local version of the `chevron_tlg` object. The package version of the `chevron_tlg` -object (accessible with `chevron::aet01_1`) remains unchanged. - -```{r} -preprocess(aet02_1) <- function(adam_db, ...) adam_db -preprocess(aet02_1) -``` +In some instances it is useful to customize the `chevron_tlg` object, for example by changing the pre processing functions in script generated. +Please modify the code directly inside the `pre_fun`, and make sure the function returns a named list of data frames. +Please be careful about the argument names. The default argument of `pre` functions will be override by the argument in spec. ## Custom `chevron_tlg` object creation +In some cases, you may want to create a new `chevron_tlg` template. To create a `chevron_tlg` object from scratch, use the provided constructors corresponding to the desired output: * `chevron_t()` for tables. * `chevron_l()` for listings. * `chevron_g()` for graphs. -```{r} +```{r, eval = FALSE} library(rtables) library(tern) my_template <- chevron_t( - main = aet02_1_main, - preprocess = aet02_1_pre, - postprocess = function(tlg, ...) { - tbl_sorted <- tlg %>% - sort_at_path( - path = c("AEBODSYS"), - scorefun = cont_n_onecol(j = 3) # sort based on your chosen column - ) %>% - sort_at_path( - path = c("AEBODSYS", "*", "AEDECOD"), - scorefun = score_occurrences - ) - tbl_sorted - }, - adam_datasets = c("adsl", "adae") + main = "", + preprocess = "", + postprocess = "", + adam_datasets = c("adsl") ) run(my_template, syn_data) ``` Note that to ensure the correct execution of the `run` function, the name of the first argument of the `main` function -must be `adam_db`; the input `dm` object to pre-process. The name of the first argument of the `preprocess` function must -be `adam_db`; the input `dm` object to create `TLG` output and finally, the name of the first argument of the -`postprocess` function must be `tlg`, the input `TableTree` object to post-process. Validation criteria enforce these -rules upon creation of a `chevron_tlg` object. +must be `adam_db`; the input `list` of `data.frame` object to pre-process. +The name of the first argument of the `preprocess` function must be `adam_db`; +the input `dm` object to create `TLG` output and finally, +the name of the first argument of the `postprocess` function must be `tlg`, +the input `TableTree` object to post-process. +Validation criteria enforce these rules upon creation of a `chevron_tlg` object. diff --git a/vignettes/layouts.Rmd b/vignettes/layouts.Rmd deleted file mode 100644 index 37a6cf445..000000000 --- a/vignettes/layouts.Rmd +++ /dev/null @@ -1,73 +0,0 @@ ---- -title: "Layouts in Chevron" -output: rmarkdown::html_vignette -vignette: > - %\VignetteIndexEntry{Layouts in Chevron} - %\VignetteEncoding{UTF-8} - %\VignetteEngine{knitr::rmarkdown} -editor_options: - chunk_output_type: console ---- - -```{r, include = FALSE} -knitr::opts_chunk$set( - collapse = TRUE, - comment = "#>" -) -``` - -## Introduction - -The `chevron` R package has a collection of functions that create standard tables, listings, and graphs (TLGs). These functions are referred in `chevron` as *TLG-functions*. A subset of these *TLG-functions* create tables. Tables are created using the `rtables` package. `rtables` has the context of table layouts, i.e. pre-data table cell-derivation instructions. For example: - -```{r} -library(rtables) - -lyt <- basic_table() %>% - split_cols_by("ARM") %>% - analyze("AGE", mean) - -lyt -``` - -These layout contain all the cell-value derivation information and can be used and reused for different data - -```{r} -adsl <- data.frame( - ARM = factor(sample(c("ARM A", "ARM B"), 100, TRUE)), - AGE = runif(100, 20, 90), - COUNTRY = factor(sample(c("CHN", "USA", "BRA", "RUS"), 100, TRUE)) -) - -build_table(lyt, adsl) - -build_table(lyt, adsl[adsl$COUNTRY == "RUS", ]) -``` - -Hence these layouts define a table pre-data. That is, the layout functions in `chevron` do never take any data as an argument. Note that pruning and sorting are currently not performed in the layout space in `rtables` but rather on the actual table objects. - -Also, layouts allow for certain queries such as which variables are required to build the table using the given layout: - -```{r} -rtables::vars_in_layout(lyt) -``` - -So in `chevron` when creating tables we always do the explicit layout creation in the `*_lyt` functions. For example for `aet02_1` we have the layout function: - -```{r} -library(chevron) -aet02_1_lyt -``` - -Note that the `aet02_1_lyt` function returns a concise description on how `tern` and `rtables` can be used to create the cell values of the tables. The table creation function then does then use the `*_lyt` function and builds the table using `build_table` and the data given in `adam_db` as shown next: - -```{r} -aet02_1_main -``` - -## Summary - -* Layouts specify a tabulation an cell-values derivation pre-data -* these layouts are useful to understand how table is created and what variables are required in the data to create a table using the layout -* the table creation functions focus the main part of their code on building, sorting and pruning the table -* Headers and footers are taken by default from the standards. They can be specified with the `deco` argument. Note that we currently do not have all of the data base for standard headers and footers imported in `chevron`. diff --git a/vignettes/script_generator.Rmd b/vignettes/script_generator.Rmd index 6aa04bd23..a8e50d256 100644 --- a/vignettes/script_generator.Rmd +++ b/vignettes/script_generator.Rmd @@ -33,9 +33,9 @@ In addition of the embedded `run()` method to create a `tlg`, chevron offers a s The object returned by the `script` methods are vectors of character with one element per line of the script, that can be easily rendered. ```{r} -res <- script_args(aet01_1) +res <- script_args(aet01) writeLines(res) -res <- script_funs(aet01_1, adam_db = "syn_data", args = "args_list") +res <- script_funs(aet01, adam_db = "syn_data", args = "args_list") writeLines(res) ``` @@ -44,12 +44,12 @@ writeLines(res) The script generator depends on the functions actually stored in the object. Modifying the `chevron_tlg` object can lead to a different script. ```{r} -preprocess(aet01_1) <- function(adam_db, new_format, ...) { - dunlin::reformat(adam_db, new_format) +preprocess(aet01) <- function(adam_db, new_format, ...) { + reformat(adam_db, new_format) } -res_args <- script_args(aet01_1) -res_funs <- script_funs(aet01_1, adam_db = "syn_data", args = "args_list") +res_args <- script_args(aet01) +res_funs <- script_funs(aet01, adam_db = "syn_data", args = "args_list") ``` Print the generated scripts. Note that a new argument `new_format` has been added and the pre processing function has been modified. @@ -72,8 +72,8 @@ dict <- list( some_vector = c("A", "B") ) -res_args <- script_args(mng01_1, dict = dict) -res_funs <- script_funs(mng01_1, adam_db = "syn_data", args = "args_list") +res_args <- script_args(mng01, dict = dict) +res_funs <- script_funs(mng01, adam_db = "syn_data", args = "args_list") ``` ```{r} @@ -107,7 +107,7 @@ tlg_output By specifying `details = TRUE` the main and post processing functions are also exposed. ```{r} -res_fun <- script_funs(mng01_1, adam_db = "syn_data", args = "args_list", details = TRUE) +res_fun <- script_funs(mng01, adam_db = "syn_data", args = "args_list", details = TRUE) ``` ```{r}