This repository has been archived by the owner on Jan 9, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
493 lines (442 loc) · 20.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# pylint: skip-file
import os
TORCH_GPU_DEVICE_ID = 0
os.environ["CUDA_VISIBLE_DEVICES"] = f"{TORCH_GPU_DEVICE_ID}"
import io
import time
import requests
import random
import base64
import ray
import torch
from PIL import Image
import numpy as np
from instill.helpers.const import DataType, VisualQuestionAnsweringInput
from instill.helpers.ray_io import (
serialize_byte_tensor,
deserialize_bytes_tensor,
StandardTaskIO,
)
from instill.helpers.ray_config import instill_deployment, InstillDeployable
from instill.helpers import (
construct_infer_response,
construct_metadata_response,
Metadata,
)
import transformers
from transformers import AutoTokenizer
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from llava.conversation import conv_templates, Conversation, SeparatorStyle
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.mm_utils import process_images, tokenizer_image_token
@instill_deployment
class Llava:
def __init__(self):
print(f"torch version: {torch.__version__}")
print(f"torch.cuda.is_available() : {torch.cuda.is_available()}")
print(f"torch.cuda.device_count() : {torch.cuda.device_count()}")
print(f"torch.cuda.current_device() : {torch.cuda.current_device()}")
print(f"torch.cuda.device(0) : {torch.cuda.device(0)}")
print(f"torch.cuda.get_device_name(0) : {torch.cuda.get_device_name(0)}")
self.tokenizer = AutoTokenizer.from_pretrained("llava-v1.6-vicuna-13b", use_fast=False)
print(f"[DEBUG] self.tokenizer.pad_token: {self.tokenizer.pad_token}")
print(f"[DEBUG] self.tokenizer.eos_token: {self.tokenizer.eos_token}")
# print(f"[DEBUG] transformers version: {transformers.__version__}")
# print(f"[DEBUG] torch version: {torch.__version__}")
self.model = LlavaLlamaForCausalLM.from_pretrained(
"llava-v1.6-vicuna-13b",
low_cpu_mem_usage=True,
device_map="auto", # "cpu"
# max_memory={0: "12GB", 1: "12GB", 2: "12GB", 3: "12GB"},
torch_dtype=torch.float16,
)
def ModelMetadata(self, req):
resp = construct_metadata_response(
req=req,
inputs=[
Metadata(
name="prompt",
datatype=str(DataType.TYPE_STRING.name),
shape=[1],
),
Metadata(
name="prompt_images",
datatype=str(DataType.TYPE_STRING.name),
shape=[1],
),
Metadata(
name="chat_history",
datatype=str(DataType.TYPE_STRING.name),
shape=[1],
),
Metadata(
name="system_message",
datatype=str(DataType.TYPE_STRING.name),
shape=[1],
),
Metadata(
name="max_new_tokens",
datatype=str(DataType.TYPE_UINT32.name),
shape=[1],
),
Metadata(
name="temperature",
datatype=str(DataType.TYPE_FP32.name),
shape=[1],
),
Metadata(
name="top_k",
datatype=str(DataType.TYPE_UINT32.name),
shape=[1],
),
Metadata(
name="random_seed",
datatype=str(DataType.TYPE_UINT64.name),
shape=[1],
),
Metadata(
name="extra_params",
datatype=str(DataType.TYPE_STRING.name),
shape=[1],
),
],
outputs=[
Metadata(
name="text",
datatype=str(DataType.TYPE_STRING.name),
shape=[-1, -1],
),
],
)
return resp
async def __call__(self, req):
task_visual_question_answering_input: VisualQuestionAnsweringInput = (
StandardTaskIO.parse_task_visual_question_answering_input(request=req)
)
print("----------------________")
print(task_visual_question_answering_input)
print("----------------________")
print("print(task_text_generation_chat.prompt")
print(task_visual_question_answering_input.prompt)
print("-------\n")
print("print(task_text_generation_chat.prompt_images")
print(task_visual_question_answering_input.prompt_images)
print("-------\n")
print("print(task_text_generation_chat.chat_history")
print(task_visual_question_answering_input.chat_history)
print("-------\n")
print("print(task_text_generation_chat.system_message")
print(task_visual_question_answering_input.system_message)
if len(task_visual_question_answering_input.system_message) is not None:
if len(task_visual_question_answering_input.system_message) == 0:
task_visual_question_answering_input.system_message = None
print("-------\n")
print("print(task_text_generation_chat.max_new_tokens")
print(task_visual_question_answering_input.max_new_tokens)
print("-------\n")
print("print(task_text_generation_chat.temperature")
print(task_visual_question_answering_input.temperature)
print("-------\n")
print("print(task_text_generation_chat.top_k")
print(task_visual_question_answering_input.top_k)
print("-------\n")
print("print(task_text_generation_chat.random_seed")
print(task_visual_question_answering_input.random_seed)
print("-------\n")
print("print(task_text_generation_chat.stop_words")
print(task_visual_question_answering_input.stop_words)
print("-------\n")
print("print(task_text_generation_chat.extra_params")
print(task_visual_question_answering_input.extra_params)
print("-------\n")
if task_visual_question_answering_input.temperature <= 0.0:
task_visual_question_answering_input.temperature = 0.8
if task_visual_question_answering_input.random_seed > 0:
random.seed(task_visual_question_answering_input.random_seed)
np.random.seed(task_visual_question_answering_input.random_seed)
# Process chat_history
# Preprocessing
CHECK_FIRST_ROLE_IS_USER = False
COMBINED_CONSEQUENCE_PROMPTS = True
conv_mode = "vicuna_v1"
# prompt_roles = ["USER", "ASSISTANT", "SYSTEM"]
# conversation_prompt = task_visual_question_answering_input.prompt
# if (
# task_visual_question_answering_input.chat_history is not None
# and len(task_visual_question_answering_input.chat_history) > 0
# ):
# prompt_conversation = []
# default_system_message = task_visual_question_answering_input.system_message
# for chat_entity in task_visual_question_answering_input.chat_history:
# role = str(chat_entity["role"]).upper()
# chat_history_messages = None
# chat_hisotry_images = []
# for chat_entity_message in chat_entity["content"]:
# if chat_entity_message["type"] == "text":
# if chat_history_messages is not None:
# raise ValueError(
# "Multiple text message detected"
# " in a single chat history entity"
# )
# # This structure comes from google protobuf `One of` Syntax, where an additional layer in Content
# # [{'role': 'system', 'content': [{'type': 'text', 'Content': {'Text': "What's in this image?"}}]}]
# if "Content" in chat_entity_message:
# chat_history_messages = chat_entity_message["Content"][
# "Text"
# ]
# elif "Text" in chat_entity_message:
# chat_history_messages = chat_entity_message["Text"]
# elif "text" in chat_entity_message:
# chat_history_messages = chat_entity_message["text"]
# else:
# raise ValueError(
# f"Unknown structure of chat_hisoty: {task_visual_question_answering_input.chat_history}"
# )
# elif chat_entity_message["type"] == "image_url":
# # TODO: imeplement image parser in model_backedn
# # This field is expected to be base64 encoded string
# IMAGE_BASE64_PREFIX = (
# "data:image/jpeg;base64," # "{base64_image}"
# )
# # This structure comes from google protobuf `One of` Syntax, where an additional layer in Content
# # TODO: Handling this field
# if (
# "Content" not in chat_entity_message
# or "ImageUrl" not in chat_entity_message["Content"]
# ):
# print(
# f"Unsupport chat_entity_message format: {chat_entity_message}"
# )
# continue
# if len(chat_entity_message["Content"]["ImageUrl"]) == 0:
# continue
# elif (
# "promptImageUrl"
# in chat_entity_message["Content"]["ImageUrl"]["image_url"][
# "Type"
# ]
# ):
# image = Image.open(
# io.BytesIO(
# requests.get(
# chat_entity_message["Content"]["ImageUrl"][
# "image_url"
# ]["Type"]["promptImageUrl"]
# ).content
# )
# )
# chat_hisotry_images.append(image)
# elif (
# "promptImageBase64"
# in chat_entity_message["Content"]["ImageUrl"]["image_url"][
# "Type"
# ]
# ):
# image_base64_str = chat_entity_message["Content"][
# "ImageUrl"
# ]["image_url"]["Type"]["promptImageBase64"]
# if image_base64_str.startswith(IMAGE_BASE64_PREFIX):
# image_base64_str = image_base64_str[
# IMAGE_BASE64_PREFIX:
# ]
# # expected content in url with base64 format:
# # f"data:image/jpeg;base64,{base64_image}"
# pil_img = Image.open(
# io.BytesIO(base64.b64decode(image_base64_str))
# )
# image = np.array(pil_img)
# if len(image.shape) == 2: # gray image
# raise ValueError(
# f"The chat history image shape with {image.shape} is "
# f"not in acceptable"
# )
# chat_hisotry_images.append(image)
# else:
# raise ValueError(
# "Unsupported chat_hisotry message type"
# ", expected eithjer 'text' or 'image_url'"
# f" but get {chat_entity_message['type']}"
# )
# # TODO: support image message in chat history
# # self.messages.append([role, message])
# if role not in prompt_roles:
# raise ValueError(
# f"Role `{chat_entity['role']}` is not in supported"
# f"role list ({','.join(prompt_roles)})"
# )
# elif (
# role == prompt_roles[-1]
# and default_system_message is not None
# and len(default_system_message) > 0
# ):
# raise ValueError(
# "it's ambiguious to set `system_message` and "
# f"using role `{prompt_roles[-1]}` simultaneously"
# )
# elif chat_history_messages is None:
# raise ValueError(
# f"No message found in chat_history. {chat_entity_message}"
# )
# if role == prompt_roles[-1]:
# default_system_message = chat_history_messages
# else:
# if CHECK_FIRST_ROLE_IS_USER:
# if len(prompt_conversation) == 0 and role != prompt_roles[0]:
# prompt_conversation.append([prompt_roles[0], " "])
# if COMBINED_CONSEQUENCE_PROMPTS:
# if (
# len(prompt_conversation) > 0
# and prompt_conversation[-1][0] == role
# ):
# laset_conversation = prompt_conversation.pop()
# chat_history_messages = (
# f"{laset_conversation[1]}\n\n{chat_history_messages}"
# )
# prompt_conversation.append([role, chat_history_messages])
# if default_system_message is None:
# default_system_message = (
# "A chat between a curious human and an artificial intelligence assistant. "
# "The assistant gives helpful, detailed, and polite answers to the human's questions."
# )
# if COMBINED_CONSEQUENCE_PROMPTS:
# if (
# len(prompt_conversation) > 0
# and prompt_conversation[-1][0] == prompt_roles[0]
# ):
# laset_conversation = prompt_conversation.pop()
# conversation_prompt = (
# f"{laset_conversation[1]}\n\n{conversation_prompt}"
# )
# conv = Conversation(
# system=default_system_message,
# roles=tuple(prompt_roles[:-1]),
# version="v1",
# messages=prompt_conversation,
# offset=0,
# sep_style=SeparatorStyle.TWO,
# sep=" ",
# sep2="</s>",
# )
# # for llava model, handle first prompt later
# # conv.append_message(conv.roles[0], conversation_prompt)
# else:
# if task_visual_question_answering_input.system_message is not None:
# conv = Conversation(
# system=task_visual_question_answering_input.system_message,
# roles=tuple(prompt_roles[:-1]),
# version="v1",
# messages=[],
# offset=0,
# sep_style=SeparatorStyle.TWO,
# sep=" ",
# sep2="</s>",
# )
# else:
# conv = conv_templates[conv_mode].copy()
# # for llava model, handle first prompt later
# # conv.append_message(conv.roles[0], task_visual_question_answering_input.prompt)
conv = conv_templates[conv_mode].copy()
# Handle Image
vision_tower = self.model.get_vision_tower()
# if not vision_tower.is_loaded:
vision_tower.load_model() # alwasy loadig to fix `NotImplementedError: Cannot copy out of meta tensor; no data!`
vision_tower = vision_tower.to(device="cuda", dtype=torch.float16)
image_processor = vision_tower.image_processor
raw_image = None
if len(task_visual_question_answering_input.prompt_images) > 0:
raw_image = task_visual_question_answering_input.prompt_images[0]
else:
print("NOOOOOOO no image")
image_tensor = process_images(
[raw_image], image_processor, {"image_aspect_ratio": "pad"}
).to(self.model.device, dtype=torch.float16)
print(f"image_tensor.shape: {image_tensor.shape}")
inp = DEFAULT_IMAGE_TOKEN + "\n" + task_visual_question_answering_input.prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
processed_prompt = conv.get_prompt()
count_end_tag = processed_prompt.count("</s>")
count_image_tag = processed_prompt.count("<image>")
input_length = (
len(processed_prompt)
- (len("<image>") * count_image_tag)
- (len("</s>") * count_end_tag)
+ 1 * (count_image_tag + count_end_tag)
)
print(
f"----------------, length: {input_length}, (</s>:{count_end_tag}), (<image>:{count_image_tag}"
)
print(f"[DEBUG] Conversation Prompt: \n{conv.get_prompt()}")
print("----------------")
input_ids = (
tokenizer_image_token(
processed_prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
)
.unsqueeze(0)
.cuda()
)
print("---------------- input_ids")
print(input_ids)
print("----------------")
# End of Process chat_history
t0 = time.time()
output_ids = self.model.generate(
input_ids,
images=image_tensor,
do_sample=True,
temperature=task_visual_question_answering_input.temperature,
top_k=task_visual_question_answering_input.top_k,
max_new_tokens=task_visual_question_answering_input.max_new_tokens,
use_cache=False,
**task_visual_question_answering_input.extra_params,
)
# output = self.model.generate(
# **inputs,
# max_new_tokens=task_visual_question_answering_input.max_new_tokens,
# do_sample=True,
# temperature=task_visual_question_answering_input.temperature,
# top_k=task_visual_question_answering_input.top_k,
# **task_visual_question_answering_input.extra_params,
# )
print(f"Inference time cost {time.time()-t0}s")
print("---output_ids:")
print(output_ids)
print("---")
outputs = self.tokenizer.decode(
# output_ids[0, input_ids.shape[1] :], skip_special_tokens=True
output_ids[0, :],
skip_special_tokens=True,
).strip()
max_output_len = 0
text_outputs = []
# Not iterate outputs
# for seq in sequences:
# print("Output No Clean ----")
# print(self.processor.decode(output[0], skip_special_tokens=True))
# print("Output Clean ----")
# print(self.processor.decode(output[0], skip_special_tokens=True)[input_length:])
print("---outputs:")
print(outputs)
print("---")
generated_text = outputs.strip().encode("utf-8")
text_outputs.append(generated_text)
max_output_len = max(max_output_len, len(generated_text))
# --
text_outputs_len = len(text_outputs)
task_output = serialize_byte_tensor(np.asarray(text_outputs))
# task_output = StandardTaskIO.parse_task_text_generation_output(sequences)
print("Output:")
print(task_output)
print(type(task_output))
return construct_infer_response(
req=req,
outputs=[
Metadata(
name="text",
datatype=str(DataType.TYPE_STRING.name),
shape=[text_outputs_len, max_output_len],
)
],
raw_outputs=[task_output],
)
entrypoint = InstillDeployable(Llava).get_deployment_handle()