Skip to content

Releases: instructlab/training

v0.0.5

01 Jul 15:12
3db367d
Compare
Choose a tag to compare

Minor bugfixes and updates.

Minor bugfixes and updates

28 Jun 18:17
5c35c5b
Compare
Choose a tag to compare

Minor bugfixes and updates

Minor bugfixes and updates.

25 Jun 13:10
Compare
Choose a tag to compare

Minor bugfixes and updates.

instructlab-training initial release take 2

24 Jun 13:12
ee76c17
Compare
Choose a tag to compare

This introduces the instructlab library as a package in the instructlab package namespace.

To install it:
pip install instructlab-training

And to install it with flash-attn and other CUDA-dependent packages, you can use
pip install instructlab-training[cuda]

Here's how to use it:

from instructlab.training.config import TorchrunArgs, TrainingArgs, run_training

torchrun_args = TorchrunArgs(
    nproc_per_node = 1,  # 1 GPU
    nnodes = 1,  # only 1 overall machine in the system
    node_rank = 0,  # rank of the current machine
    rdzv_id = 123,  # what ID other nodes will join on
    rdzv_endpoint = '0.0.0.0:12345'  # address where other nodes will join
)

training_args = TrainingArgs(
    # specify training args here
)


run_training(torch_args = torchrun_args, train_args = training_args)

instructlab-training initial release

21 Jun 16:44
Compare
Choose a tag to compare

This introduces the instructlab library as a package in the instructlab package namespace.

To install it:
pip install instructlab-training

And to install it with flash-attn and other CUDA-dependent packages, you can use
pip install instructlab-training[cuda]

Here's how to use it:

from instructlab.training.config import TorchrunArgs, TrainingArgs, run_training

torchrun_args = TorchrunArgs(
    nproc_per_node = 1,  # 1 GPU
    nnodes = 1,  # only 1 overall machine in the system
    node_rank = 0,  # rank of the current machine
    rdzv_id = 123,  # what ID other nodes will join on
    rdzv_endpoint = '0.0.0.0:12345'  # address where other nodes will join
)

training_args = TrainingArgs(
    # specify training args here
)


run_training(torch_args = torchrun_args, train_args = training_args)